University of Colorado
 Department of Mathematics

2017/18 Semester 2

Math 8370 Harmonic Analysis
Assignment 2

Due Friday February 16, 2018

1. Do problems 1.11, 1.12, 1.14, 1.15, and 1.17 pp. 21-23 of the Deitmar textbook.
2. Suppose that f is continuously differentiable on $\left[0, \frac{1}{2}\right]$ with $f(0)=f\left(\frac{1}{2}\right)=0$. Prove that

$$
\int_{0}^{\frac{1}{2}}|f(t)|^{2} d t \leq \int_{0}^{\frac{1}{2}}\left|f^{\prime}(t)\right|^{2} d t
$$

[Hint: extend f to be an odd periodic function on $\left[-\frac{1}{2}, \frac{1}{2}\right.$], and then do some Fourier analysis.]
3. Let f be continuous on \mathbb{R}, with period 1 , and suppose that α is an irrational real number. Prove that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1} f(t+k \alpha)
$$

exists and is equal to $\int_{0}^{1} f(t) d t$.
[Hint: first do the problem when f is a trigonometric polynomial, $f(x)=\sum_{j=-M}^{N} a_{j} e^{2 \pi i j x}$.]

