University of Colorado

Department of Mathematics

Due Wednesday March 14, 2018

1. Do problems 3.2, 3.3, 3.5 [hint: use induction], 3.6, 3.7, 3.8, 3.9, 3.11, pp. 56-57 in the Deitmar textbook.
2. Let $F(x)=\frac{1}{2 \pi}\left[\frac{\sin x / 2}{x / 2}\right]^{2}$.
(a) Using the methods of complex analysis, prove that $\int_{\mathbb{R}} F(x) d x=1$.
(b) For $\lambda \in(0, \infty)$, let $F_{\lambda}(x)=\lambda F(\lambda x)$. Prove that $\left\{F_{\lambda}\right\}$ is an approximate identity on \mathbb{R}, where here the limit is taken as $\lambda \rightarrow \infty$.
(Recall this means that $\int_{\mathbb{R}} F_{\lambda}(x) d x=1, \forall \lambda$; that there exists $M>0$ with $\int_{\mathbb{R}}\left|F_{\lambda}(x)\right| d x \leq M$, and that $\forall \delta>0$,

$$
\lim _{\lambda \rightarrow+\infty} \int_{(-\infty,-\delta) \cup(\delta, \infty)}\left|F_{\lambda}(x)\right| d x=0 .
$$

(c) Prove that

$$
F_{\lambda}(x)=\lambda \int_{-1 / 2 \pi}^{1 / 2 \pi}(1-2 \pi|y|) e^{2 \pi i \lambda y x} d y
$$

(d) Deduce that if $f \in L^{1}(\mathbb{R})$, then

$$
\lim _{\lambda \rightarrow \infty} \int_{-\lambda / 2 \pi}^{\lambda / 2 \pi}\left(1-\frac{2 \pi|y|}{\lambda}\right) \hat{f}(y) e^{2 \pi i y x} d y=f(x)
$$

in the L^{1} norm.
(e) Use the above to give another proof that if $f, \hat{f} \in L^{1}(\mathbb{R})$, then

$$
f(x)=\int_{\mathbb{R}} \hat{f}(y) e^{2 \pi i y x} d y \text {, a.e. }
$$

