University of Colorado Department of Mathematics

2017/18 Semester 2

Math 8370 Harmonic Analysis

Assignment 3

Due Wednesday March 14, 2018

- 1. Do problems 3.2, 3.3, 3.5 [hint: use induction], 3.6, 3.7, 3.8, 3.9, 3.11, pp. 56–57 in the Deitmar textbook.
- 2. Let $F(x) = \frac{1}{2\pi} \left[\frac{\sin x/2}{x/2} \right]^2$.
 - (a) Using the methods of complex analysis, prove that $\int_{\mathbb{R}} F(x) dx = 1$.
 - (b) For $\lambda \in (0, \infty)$, let $F_{\lambda}(x) = \lambda F(\lambda x)$. Prove that $\{F_{\lambda}\}$ is an approximate identity on \mathbb{R} , where here the limit is taken as $\lambda \to \infty$. (Recall this means that $\int_{\mathbb{R}} F_{\lambda}(x) dx = 1, \ \forall \lambda$; that there exists M > 0 with $\int_{\mathbb{R}} |F_{\lambda}(x)| dx \leq M$, and that $\forall \delta > 0$,

$$\lim_{\lambda \to +\infty} \int_{(-\infty, -\delta) \cup (\delta, \infty)} |F_{\lambda}(x)| dx = 0.$$

(c) Prove that

$$F_{\lambda}(x) = \lambda \int_{-1/2\pi}^{1/2\pi} (1 - 2\pi |y|) e^{2\pi i \lambda y x} dy.$$

(d) Deduce that if $f \in L^1(\mathbb{R})$, then

$$\lim_{\lambda \to \infty} \int_{-\lambda/2\pi}^{\lambda/2\pi} (1 - \frac{2\pi |y|}{\lambda}) \hat{f}(y) e^{2\pi i y x} dy = f(x)$$

in the L^1 norm.

(e) Use the above to give another proof that if $f, f \in L^1(\mathbb{R})$, then

$$f(x) = \int_{\mathbb{R}} \hat{f}(y) e^{2\pi i y x} dy, \ a.e.$$