University of Colorado

Department of Mathematics
2016/2017 Semester 2
Math 8340 Functional Analysis 2
Assignment 3

Some solutions

Q 2 Here we consider $\ell^{1}(\mathbb{Z})$. For $j \in \mathbb{Z}$, let δ_{j} be the function on \mathbb{Z} that is 1 if $n=j$, and is 0 for $n \neq j$. Note $\delta_{j} \in \ell^{1}(\mathbb{Z}), \forall j \in \mathbb{Z}$, and if $\lambda \in \mathbb{C}$,

$$
\left[\lambda \delta_{j}\right]^{*}=\bar{\lambda} \delta_{-j}
$$

Now consider $f \in \ell^{1}(\mathbb{Z})$ defined by

$$
f(n)=\delta_{-1}(n)+\delta_{0}(n)+i \delta_{1}(n)
$$

Note

$$
\|f\|=1+1+1=3, \text { and }\|f\|^{2}=9
$$

An easy calculation shows

$$
f^{*}(n)=-i \delta_{-1}(n)+\delta_{0}(n)+\delta_{1}(n)
$$

and

$$
\left(f^{*}\right) * f(n)=-i \delta_{-2}(n)+(1-i) \delta_{-1}(n)+3 \delta_{0}(n)+(1+i) \delta_{1}(n)+i \delta_{2}(n) .
$$

Therefore

$$
\left\|\left(f^{*}\right) * f\right\|=5+2 \sqrt{2}<5+2 \cdot 2=9=\|f\|^{2}
$$

so that $\ell^{1}(\mathbb{Z})$ is not a C^{*}-algebra.
Q 5 (a) Let \mathcal{C} be the C^{*}-subalgebra of \mathcal{A} generated by $\left\{1, b, b^{-1}\right\}$. Note that \mathcal{C} is commutative. Consider $G: \mathcal{C} \rightarrow C(\Sigma(\mathcal{C}))$, where $\Sigma:=\Sigma(\mathcal{C})$ is the maximal ideal space of \mathcal{C} and G is the Gelfand transform. By the Gelfand-Naimark Theorem, G is an isometric $*$-isomorphism. Hence for all $a \in \mathcal{C},\|a\|_{\mathcal{C}}=\sup _{\phi \in \Sigma}\{|\hat{a}(\phi)|\}$. Since b is self adjoint, $\sigma_{\mathcal{C}}(b)$ is contained in \mathbb{R}, and since b is invertible, $0 \notin \sigma_{\mathcal{C}}(b)$ so that there exist $\delta, M>0$ with $\sigma_{\mathcal{C}}(b) \subseteq[-M,-\delta] \cup[\delta, M]$. The function $g(t)=\frac{1}{t}$ is continuous on $[-M,-\delta] \cup[\delta, M]$, so by a variant of Weierstrass' polynomial approximation theorem, there exists a sequence of polynomials in $t,\left\{p_{n}(t)\right\}$, such that $\left\{p_{n}(t)\right\}$ converges to $\frac{1}{t}$ uniformly on $[-M,-\delta] \cup[\delta, M]$. Thus given $\epsilon>0$, there exists $N>0$ and $\epsilon^{\prime}>0$ such that whenever $n \geq N$,

$$
\left|p_{n}(t)-\frac{1}{t}\right|<\epsilon^{\prime}<\epsilon, \forall t \in[-M,-\delta] \cup[\delta, M] .
$$

But for every $\phi \in \Delta, \phi(b)=\hat{b}(\phi) \in \sigma_{\mathcal{C}}(b) \subseteq[-M,-\delta] \cup[\delta, M]$. Thus whenever $n \geq N$,

$$
\left|p_{n}(\hat{b}(\phi))-\frac{1}{\hat{b}(\phi)}\right|<\epsilon^{\prime}<\epsilon, \forall \phi \in \Sigma
$$

Now by properties of the Gelfand transform, $p_{n}\left(\hat{b}(\phi)=\widehat{p_{n}(b)}(\phi)\right.$ and $\frac{1}{\hat{b}(\phi)}=\widehat{b^{-1}}(\phi)$, so that we have whenever $n \geq N$,

$$
\left|\widehat{p_{n}(b)}(\phi)-\widehat{b^{-1}}(\phi)\right|=\mid\left[p_{n}\left(\widehat{b)-b^{-1}}\right](\phi) \mid<\epsilon^{\prime}<\epsilon, \forall \phi \in \Sigma .\right.
$$

Thus $\sup _{\phi \in \Sigma}\left|\left[p_{n} \widehat{(b)-b^{-1}}\right](\phi)\right| \leq \epsilon^{\prime}<\epsilon$, for all $n \geq N$. It follows by our earlier remarks that $\left\|p_{n}(b)-b^{-1}\right\|_{\mathcal{C}}=\left\|p_{n}(b)-b^{-1}\right\|_{\mathcal{A}}<\epsilon$ whenever $n \geq N$. Since ϵ was arbitrary, this implies that b^{-1} is in the C^{*}-algebra generated by 1 and b, hence $b^{-1} \in \mathcal{B}$, as we desired to show.

