1. (12 points)

For each of the following statements, either prove it is true, or provide a counterexample to show that it is false.

(a) If \(x, y \in \mathbb{R} \), with \(x < y \), then \(x^2 < y^2 \).

False - Take \(x = -2 < -1 = y \).

\[
(-2)^2 - x^2 = 4 \quad \land \quad y^2 = (-1)^2 = 1 \quad \Rightarrow \quad x^2 > y^2
\]

(b) If \(x, y \in \mathbb{R} \), with \(|x| < |y| \), then \(x^2 < y^2 \).

True - Since \(x \) is always less than \(y \),

\[
0 \leq |x| \quad \text{so} \quad 0 \leq |x| < |y| \quad \text{and} \quad |x| < |y| \quad \Rightarrow \quad x^2 < y^2.
\]

(c) If \(S \) is a nonempty bounded subset of \(\mathbb{R} \) containing both its maximum and its minimum element, then \(S \) is a compact subset of \(\mathbb{R} \).

False - Take \(S = [1, 2) \cup (3, 4] \)

\[
\min S = 1 \in S \quad \land \quad \max S = 4 \in S
\]

But by the Heine-Borel Theorem, \(S \) is not compact since \(S \) is not closed.

\(S \) must be both closed and bounded to be compact.
2. (18 points)

(a) Let \(x \in \mathbb{R} \) and fix \(\varepsilon > 0 \). Define the notions of the \(\varepsilon \)-neighborhood of \(x \), \(N(x; \varepsilon) \), and the deleted \(\varepsilon \)-neighborhood of \(x \), \(N^*(x; \varepsilon) \).

\[
\varepsilon \text{-neighborhood of } x, \quad N(x; \varepsilon) = \{ y \in \mathbb{R} : |y - x| < \varepsilon \}
\]

\[
\text{deleting } \varepsilon \text{-neighborhood of } x, \quad N^*(x; \varepsilon) = \{ y \in \mathbb{R} : |y - x| < \varepsilon \} \setminus \{ x \}
\]

(b) Let \(S \) be a subset of \(\mathbb{R} \). Define what it means for \(x \in \mathbb{R} \) to be an accumulation point of \(S \), i.e. what does it mean to write \(x \in S' \)?

We say \(x \) is an accumulation point of \(S \) (written \(x \in S' \)) if for every \(\varepsilon > 0 \)

\[
N^*(x; \varepsilon) \cap S \neq \emptyset,
\]

i.e. if for every \(\varepsilon > 0 \) there exists \(y \in S \) with \(0 < |y - x| < \varepsilon \).

(c) Compute the set of accumulation points of the set \(S = \{ \frac{1}{n} : n \in \mathbb{N} \} \). Justify your answer.

We claim \(S' = \\{ 0 \} \).

First we show \(0 \in S' \).

Let \(\varepsilon > 0 \) be given. Recall from part (a),

\[
N^*(0; \varepsilon) = (-\varepsilon, 0) \cup (0, \varepsilon)
\]

By Archimedean Principle, \(\exists n \in \mathbb{N} \) with \(\frac{1}{n} < \varepsilon \). Since \(0 < \frac{1}{n} \),

we have \(\frac{1}{n} \in N^*(0; \varepsilon) \cap S \). So \(N^*(0; \varepsilon) \cap S \neq \emptyset \) for every \(\varepsilon > 0 \).

So \(0 \in S' \).

If \(x \neq 0 \), take \(\varepsilon = \frac{|x|}{2} > 0 \). In fact \(N^*(x; \varepsilon) \cap S = \emptyset \) and \(x \notin S' \).

If \(x > 0 \) and \(x \notin S \), let \(s = \min \{ x - y : y \in S \} \). Then \(x - s \notin \mathbb{N} \) and \(x - s \notin S \).

If \(x = \frac{1}{n} \in S \), take \(\varepsilon = \frac{1}{n+1} \). Then \(N^*(x; \varepsilon) \cap S = \emptyset \) and \(x \notin S' \).

\(\therefore S' = \{ 0 \} \).
3. (12 points)

Let \(S \) be a non-empty bounded subset of the real numbers, with \(m = \inf(S) \). Define

\[
3S = \{3 \cdot s : s \in S\}.
\]

(a) Prove that \(3 \cdot m \) is a lower bound for \(3S \).

\[
\text{Since } m = \inf(S), \text{ } m \text{ is a lower bound for } S.
\]

\[
i.e. \quad m \leq a, \quad \forall a \in S.
\]

\[
3 > 0 \quad \Rightarrow \quad 3m \leq 3a, \quad \forall a \in S,
\]

\[
\Rightarrow 3m \leq y, \quad \forall y \in 3S,
\]

\[
3m \text{ is a lower bound for } 3S.
\]

(b) Prove that

\[
3 \cdot m = \inf(3S).
\]

Take \(\ell \) \(\neq 3m \), we will show \(\ell \) is not a lower bound for \(3S \).

Consequently, \(3m \) will be the greatest lower bound for \(3S \), i.e., \(3m = \inf(3S) \).

\[
3m < \ell, \quad \text{Note } 0 < S, \quad \text{so } 0 < \frac{1}{3}.
\]

\[
\therefore \frac{1}{3} \cdot 3m < \frac{1}{3} \cdot \ell, \quad \text{i.e., } m < \frac{1}{3} \ell.
\]

\[
m = \inf(S) \text{ (greatest lower bound for } S \text{).} \quad \text{So } \frac{1}{3} \ell
\]

is not a lower bound for \(S \), i.e., \(S \) cannot contain

\[
0 < \frac{1}{3} \ell \quad \Rightarrow \quad 3 \cdot 0 < 3 \cdot \frac{1}{3} \ell = \ell \quad \therefore \quad 3 \cdot \ell \text{ is not a lower bound for } S.
\]

\[
3m = \inf(3S),
\]
4. (13 points)

Prove using the definition of convergence of sequences that

\[\lim_{n \to \infty} \frac{8n^3 + 5}{4n^3 - n} = 2. \]

We need to show: given \(\varepsilon > 0 \), there exists \(N > 0 \) such that if \(n > N \),

\[\left| \frac{8n^3 + 5}{4n^3 - n} - 2 \right| < \varepsilon \]

\[\left| \frac{8n^3 + 5}{4n^3 - n} - 2 \right| = \left| \frac{8n^3 + 5 - 2(4n^3 - n)}{4n^3 - n} \right| \]

\[= \left| \frac{2n + 5}{4n^3 - n} \right| = \frac{2n + 5}{4n^3 - n} \]

We note for all \(n \geq 1 \),

\[2n + 5 \leq 2n + 5n = 7n \]

For all \(n \in \mathbb{N} \), \(n \leq n^3 \Rightarrow -n \geq -n^3 \)

\[4n^3 - n \geq 4n^3 - n^3 = 3n^3 \geq 0 \]

For all \(n \in \mathbb{N} \),

\[\frac{1}{4n^3 - n^3} \leq \frac{1}{3n^3} \]

\[\left| \frac{2n + 5}{4n^3 - n} \right| = \left| \frac{2n + 5}{4n^3 - n} \right| = \frac{2n + 5}{4n^3 - n} \leq \frac{7}{3n^3} = \frac{7}{3n^2} \]

Take \(N = \frac{\sqrt{3\varepsilon}}{\varepsilon} \) i.e. \(\frac{17}{3\varepsilon} < N^2 \) i.e. \(N > \sqrt{\frac{17}{3\varepsilon}} \)

Then if \(n > N \),

\[\left| \frac{8n^3 + 5}{4n^3 - n} - 2 \right| = \left| \frac{2n + 5}{4n^3 - n} \right| \leq \frac{7}{3n^2} \leq \frac{7}{3N^2} < \varepsilon, \]