1. (12 points)

For each of the following statements, either prove it is true, or provide a counterexample to show that it is false.
(a) If a sequence $\left(s_{n}\right)$ is unbounded, then $\left(s_{n}\right)$ cannot have a convergent subsequence.

FALSE. Let

$$
s_{n}= \begin{cases}n & \text { if } n \text { is odd } \\ 1 & \text { if } n \text { is odd }\end{cases}
$$

Then for given $M>0$ find an odd integer $2 n-1>M$. We then have $s_{2 n-1}=2 n-1>M$, so that the sequence $\left(s_{n}\right)$ is unbounded. On the other hand $\left(s_{2 n}\right)=(1)$ a constant sequence, which converges to 0 .
(b) Let $f:[a, b] \rightarrow \mathbb{R}$, and let $c \in(a, b)$. If the limit of $f(x)$ as x goes to c exists, then f is continuous at c.
FALSE. Defin $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}2 x & \text { if } x \neq \frac{1}{2} \\ 2 & \text { if } x=\frac{1}{2}\end{cases}
$$

We note $\lim _{x \rightarrow 1 / 2} f(x)=2 \cdot(1 / 2)=1$, but $f\left(\frac{1}{2}\right)=2$. Therefore f is not continuous at $x=\frac{1}{2}$.
(c) If I is an interval, and $f: I \rightarrow \mathbb{R}$ is uniformly continuous on I, then f is continuous on I.

TRUE: Let $c \in I$ be fixed, and let $\epsilon>0$ be fixed. Since f is uniformly continuous on I, there exist $\delta>0$ such that $|f(x)-f(y)|<\epsilon$ whenever $x, y \in I$ and $|x-y|<\delta$. Take $y=c$, then $|f(x)-f(c)|<\epsilon$ whenever $x, c \in I$, and $|x-c|<\delta$. Therefore f is continuous at c. Since $c \in I$ was arbitrary, f is continuous on c.
2. (13 points)
(a) Suppose that $f:[a, b] \rightarrow \mathbb{R}$, and that f is continuous at $c \in(a, b)$, with $f(c)>0$. Prove that there is a $\delta>0$ such that $f(x)>0$ for all $x \in(c-\delta, c+\delta)$.
Take $\epsilon=f(c)>0$ in the definition of continuity. Then since c is an interior point of I there exists $\delta>0$ such that whenever $|x-c|<\delta$ (i.e. whenever $x \in(c-\delta, c+\delta)$),

$$
|f(x)-f(c)|<\epsilon=f(c) .
$$

Therefore, whenever $x \in(c-\delta, c+\delta)$,

$$
-f(d)<f(x)-f(c)<f(c) .
$$

Adding $f(c)$ to all sides of the inequality, we see that whenever $|x-c|<\delta$,

$$
0<f(x)<f(c)+f(c)=2 f(c) .
$$

Thus $f(x)>0$ whenever $|x-c|<\delta$, as desired.
(b) Let

$$
f(x)= \begin{cases}3 x^{2}+1 & \text { if } x \geq 1 \\ 6 x & \text { if } x<1\end{cases}
$$

Determine whether or not f is differentiable at $x=1$, and if it is differentiable, compute the derivative $f^{\prime}(1)$.
We note that

$$
\lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 1-} 6 x=6 \neq f(1)=4 .
$$

Therefore, f is not continuous at $x=1$. It follows from Theorem 6.1.3 that f is not differentiable at $x=1$, either.
3. (12 points)

Define $s_{1}=1$ and for $n \geq 1$, let $s_{n+1}=\sqrt{2+s_{n}}$.
(a) Prove that $s_{n}<2, \forall n \in \mathbb{N}$.

We use mathematical induction for this result.
The base case is $n=1$ and $s_{1}=1<2$. Hence the statement holds for the base case $n=1$. We now assume the statement holds for $n=k$ so that $s_{k}<2$. Then adding 2 to both sides, $2+s_{k}<2+2=4$. We note all s_{k} are non negative so $2+x_{k} \geq 0$. Taking square roots gives $\sqrt{2+s_{k}}<\sqrt{4}=2$. Therefore $s_{k+1}=\sqrt{2+s_{k}}<2$. The statement is thus true for $n=k+1$, establishing the induction step. It follows that $s_{n}<2$ for all $n \in \mathbb{N}$.
(b) It is also possible to show that $\left(s_{n}\right)$ is an increasing sequence. Assuming this fact, deduce that $\left(s_{n}\right)$ is a convergent sequence and compute its limit. Be sure to justify your reasoning. We know that $\left(s_{n}\right)$ is bounded, and we are allowed to assume (s_{n}) is monotone increasing as a sequence. By the Monotone Convergence Theorem for sequences, we obtain that $\left(s_{n}\right)$ is a convergent sequence. Let $\lim _{n \rightarrow \infty} s_{n}=L$. Since $\left(s_{n+1}\right)$ is a subsequence of $\left(s_{n}\right)$, we know $\lim _{n \rightarrow \infty} s_{n+1}=L$, too. Therefore,

$$
\begin{aligned}
& L=\lim _{n \rightarrow \infty} s_{n+1}=\lim _{n \rightarrow \infty} \sqrt{2+s_{n}} \\
& =\sqrt{2+\lim _{n \rightarrow \infty} s_{n}}=\sqrt{2+L}
\end{aligned}
$$

It follows that the limit L satisfies the equation

$$
L=\sqrt{2+L}
$$

Squaring both sides we get $L^{2}=2+L$ or

$$
:^{2}-L-2=0
$$

i.e.

$$
(L-2)(L+1)=0 ; L=2 \text { or } L=-1
$$

But $\left(s_{n}\right)$ is an increasing sequence of positive numbers so that $L>0$. It follows that $L=2$ so that

$$
\lim _{n \rightarrow \infty} s_{n}=2
$$

4. (13 points)
(a) Prove that the equation $x+\frac{1}{2}=\cos x$ has a solution in $\left[0, \frac{\pi}{2}\right]$.

Let functions $g:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ and $h:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ be defined by

$$
g(x)=x+\frac{1}{2}, \quad \text { and } \quad h(x)=\cos x
$$

Note that g and h are continuous on $\left[0, \frac{\pi}{2}\right]$, so that $f:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ defined by $f(x)=g(x)-h(x)$ is also continuous on $\left[0, \frac{\pi}{2}\right]$. We note that $f(0)=+\frac{1}{2}-\cos 0=\frac{1}{2}-1=-\frac{1}{2}<0$, and $f\left(\frac{\pi}{2}\right)=$ $\frac{\pi}{2}+\frac{1}{2}-\cos \frac{\pi}{2}=\frac{\pi+1}{2}-0=\frac{\pi+1}{2}>0$. By the Intermediate Value Theorem, there exists $x_{0} \in\left(0, \frac{\pi}{2}\right)$ such that $f\left(x_{0}\right)=0$, i.e. there exists $x_{0} \in\left(0, \frac{\pi}{2}\right)$ such that

$$
x_{0}+\frac{1}{2}-\cos x_{0}=0
$$

But this means here exists $x_{0} \in\left(0, \frac{\pi}{2}\right)$ such that

$$
x_{0}+\frac{1}{2}=\cos x_{0}
$$

so that the given equation has a solution within the desired interval.
(b) Prove that f and g are uniformly continuous on $D \subset \mathbb{R}$, then the sum function $f+g$ is uniformly continuous on $D \subset \mathbb{R}$.
Fix $\epsilon>0$. Since f is uniformly continuous on D, there exists $\delta_{1}>$ such that whenever $x, y \in D$ and $|x-y|<\delta_{1}$,

$$
|f(x)-f(y)|<\frac{\epsilon}{2},
$$

Similarly, since g is uniformly continuous on D, there exists $\delta_{2}>$ such that whenever $x, y \in D$ and $|x-y|<\delta_{2}$,

$$
\begin{equation*}
|g(x)-g(y)|<\frac{\epsilon}{2} \tag{2}
\end{equation*}
$$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then $0<\delta \leq \delta_{1}$ and $0<\delta \leq \delta_{2}$. It follows that if $x, y \in D$ and $|x-y|<\delta$,

$$
\begin{aligned}
\mid(f+g)(x) & -(f+g)(y)|=|f(x)+g(x)-(f(y)+g(y))|=|f(x)+g(x)-f(y)-g(y)| \\
& =|f(x)-f(y)+g(x)-g(y)| \leq|f(x)-f(y)|+|g(x)-g(y)|
\end{aligned}
$$

(by the Triangle inequality)

$$
<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Therefore if $x, y \in D$ and $|x-y|<\delta$,

$$
|(f+g)(x)-(f+g)(y)|<\epsilon
$$

so that $f+g$ is uniformly continuous on D.

