1. (12 points)

For each of the following statements, either prove it is true, or provide a counterexample to show
that it is false.

(a)

If a sequence (s;) is unbounded, then (s,) cannot have a convergent subsequence.
FALSE. Let
n if nis odd,
Sp =
1 ifnis odd.

Then for given M > 0 find an odd integer 2n — 1 > M. We then have sop_1 = 2n — 1 > M,
so that the sequence (s,,) is unbounded. On the other hand (s2,) = (1) a constant sequence,
which converges to 0.

Let f : [a,b] — R, and let ¢ € (a,b). If the limit of f(z) as x goes to ¢ exists, then f is continuous
at c.
FALSE. Defin f:[0,1] — R by

ifx = bR

x ifz#t
f(x)z{j 5

We note lim,_1 /5 f(z) =2+ (1/2) =1, but f(3) = 2. Therefore f is not continuous at = = 3.

If I is an interval, and f : I — R is uniformly continuous on I, then f is continuous on I.
TRUE: Let ¢ € I be fixed, and let € > 0 be fixed. Since f is uniformly continuous on I, there
exist & > 0 such that |f(z) — f(y)] < € whenever z,y € I and |z — y| < 0. Take y = ¢, then
|f(z) — f(c)| < € whenever z, ¢ € I, and |x — ¢| < §. Therefore f is continuous at c. Since ¢ € [
was arbitrary, f is continuous on c.



2. (13 points)

(a) Suppose that f : [a,b] — R, and that f is continuous at ¢ € (a,b), with f(c) > 0. Prove that
there is a 6 > 0 such that f(z) > 0 for all z € (¢ —d,c+ ).
Take € = f(c¢) > 0 in the definition of continuity. Then since ¢ is an interior point of I there
exists § > 0 such that whenever |z — ¢| < ¢ (i.e. whenever x € (¢ —d,c+ §)),

[f(x) = fl)] < e= f(o).

Therefore, whenever = € (¢ — 4, ¢+ 0),

—f(d) < f(x) = f(c) < f(0).

Adding f(c) to all sides of the inequality, we see that whenever |x — ¢| < 4,

0 < flz) < fle)+ fle) = 2f(c).

Thus f(z) > 0 whenever |z — | < 0, as desired.

(b) Let
322 +1 ifx>1,
€Tr) =
/(@) {6;0 ifx <1.

Determine whether or not f is differentiable at z = 1, and if it is differentiable, compute the
derivative f'(1).
We note that

lim f(z)= lim 6x=06# f(1) =4.

rz—1— r—1—
Therefore, f is not continuous at z = 1. It follows from Theorem 6.1.3 that f is not differentiable
at x = 1, either.



3. (12 points)
Define sy =1 and for n > 1, let s,41 = V2 + Sy

(a)

Prove that s, < 2, Vn € N.

We use mathematical induction for this result.

The base case is n = 1 and s; = 1 < 2. Hence the statement holds for the base case n = 1.
We now assume the statement holds for n = k so that s < 2. Then adding 2 to both sides,
2+ s < 242 = 4. We note all s are non negative so 2 + x; > 0. Taking square roots gives
V2 F sp < V4 = 2. Therefore sp1 = /2 + s < 2. The statement is thus true for n = k + 1,
establishing the induction step. It follows that s, < 2 for all n € N.

It is also possible to show that (s,) is an increasing sequence. Assuming this fact, deduce
that (s,,) is a convergent sequence and compute its limit. Be sure to justify your reasoning.
We know that (s,) is bounded, and we are allowed to assume (s,) is monotone increasing
as a sequence. By the Monotone Convergence Theorem for sequences, we obtain that (s,) is
a convergent sequence. Let lim,_, s, = L. Since (s,11) is a subsequence of (s,), we know
limy, o0 Snt+1 = L, too. Therefore,

L= lim sp4+1 = lim v2 4 s,
n—oo n—oo

= /2+ lim s, = v2+ L.

n—oo

It follows that the limit L satisfies the equation
L = V2+ L.

Squaring both sides we get L? =2 + L or
2_L-2=0,
ie.
(L-2)(L+1)=0; L=2or L=-1.

But (s,) is an increasing sequence of positive numbers so that L > 0. It follows that L = 2 so
that

lim s, = 2.
n—oo



4. (13 points)

(a)

Prove that the equation x + § = cosz has a solution in [0, Z].
Let functions g : [0, 5] — R and A : [0, §] — R be defined by

1
g(z)=x+ 2 and h(z) = cosz.

Note that g and h are continuous on [0, 5], so that f : [0, 5] — R defined by f(z) = g(z) — h(x

is also continuous on [0, Z]. We note that f(0) = +3 —cos0 =3 —1 = -1 <0, and () =

T+3—cosT =T 0=t > (. By the Intermediate Value Theorem, there exists 2o € (0, F)
such that f(zg) =0, i.e. there exists zo € (0, §) such that

1
xo + B —cosxg = 0.
But this means here exists g € (0, ) such that

1
To + 3 = COSs X,

so that the given equation has a solution within the desired interval.

Prove that f and g are uniformly continuous on D C R, then the sum function f+ g is uniformly
continuous on D C R.

Fix € > 0. Since f is uniformly continuous on D, there exists d; > such that whenever z,y € D
and |z —y| < d1,

@) - fW)] < 5. Q).

Similarly, since g is uniformly continuous on D, there exists d9 > such that whenever x,y € D
and |z — y| < da,

9(@) — 9w < 5. (2.

Let § = min{d1,d2}. Then 0 < § < 6; and 0 < 6 < 6. It follows that if z,y € D and |z —y| < 0,
I(f+9)(x) = (f +9)W)| = f(z) +9(z) = (f(y) +9y)| = |f(z) + 9(z) — f(y) — 9(v)]

= |f(2) = Fy) +9(x) =g < |f(2) = FW)l +19(z) —9(y)|
(by the Triangle inequality)

Therefore if x,y € D and |z — y| < 0,

I(f+9)(z) = (f+9) W) <e

so that f + ¢ is uniformly continuous on D.



