
1. (12 points)

For each of the following statements, either prove it is true, or provide a counterexample to show
that it is false.

(a) If a sequence (sn) is unbounded, then (sn) cannot have a convergent subsequence.
FALSE. Let

sn =

{
n if n is odd,

1 if n is odd.

Then for given M > 0 find an odd integer 2n − 1 > M. We then have s2n−1 = 2n − 1 > M,
so that the sequence (sn) is unbounded. On the other hand (s2n) = (1) a constant sequence,
which converges to 0.

(b) Let f : [a, b] → R, and let c ∈ (a, b). If the limit of f(x) as x goes to c exists, then f is continuous
at c.
FALSE. Defin f : [0, 1] → R by

f(x) =

{
2x if x 6= 1

2 ,

2 if x = 1
2 .

We note limx→1/2 f(x) = 2 · (1/2) = 1, but f(1
2) = 2. Therefore f is not continuous at x = 1

2 .

(c) If I is an interval, and f : I → R is uniformly continuous on I, then f is continuous on I.
TRUE: Let c ∈ I be fixed, and let ε > 0 be fixed. Since f is uniformly continuous on I, there
exist δ > 0 such that |f(x) − f(y)| < ε whenever x, y ∈ I and |x − y| < δ. Take y = c, then
|f(x)− f(c)| < ε whenever x, c ∈ I, and |x− c| < δ. Therefore f is continuous at c. Since c ∈ I
was arbitrary, f is continuous on c.



2. (13 points)

(a) Suppose that f : [a, b] → R, and that f is continuous at c ∈ (a, b), with f(c) > 0. Prove that
there is a δ > 0 such that f(x) > 0 for all x ∈ (c− δ, c + δ).
Take ε = f(c) > 0 in the definition of continuity. Then since c is an interior point of I there
exists δ > 0 such that whenever |x− c| < δ (i.e. whenever x ∈ (c− δ, c + δ)),

|f(x)− f(c)| < ε = f(c).

Therefore, whenever x ∈ (c− δ, c + δ),

−f(d) < f(x)− f(c) < f(c).

Adding f(c) to all sides of the inequality, we see that whenever |x− c| < δ,

0 < f(x) < f(c) + f(c) = 2f(c).

Thus f(x) > 0 whenever |x− c| < δ, as desired.

(b) Let

f(x) =

{
3x2 + 1 if x ≥ 1,

6x if x < 1.

Determine whether or not f is differentiable at x = 1, and if it is differentiable, compute the
derivative f ′(1).
We note that

lim
x→1−

f(x) = lim
x→1−

6x = 6 6= f(1) = 4.

Therefore, f is not continuous at x = 1. It follows from Theorem 6.1.3 that f is not differentiable
at x = 1, either.



3. (12 points)

Define s1 = 1 and for n ≥ 1, let sn+1 =
√

2 + sn.

(a) Prove that sn < 2, ∀n ∈ N.
We use mathematical induction for this result.
The base case is n = 1 and s1 = 1 < 2. Hence the statement holds for the base case n = 1.
We now assume the statement holds for n = k so that sk < 2. Then adding 2 to both sides,
2 + sk < 2 + 2 = 4. We note all sk are non negative so 2 + xk ≥ 0. Taking square roots gives√

2 + sk <
√

4 = 2. Therefore sk+1 =
√

2 + sk < 2. The statement is thus true for n = k + 1,
establishing the induction step. It follows that sn < 2 for all n ∈ N.

(b) It is also possible to show that (sn) is an increasing sequence. Assuming this fact, deduce
that (sn) is a convergent sequence and compute its limit. Be sure to justify your reasoning.
We know that (sn) is bounded, and we are allowed to assume (sn) is monotone increasing
as a sequence. By the Monotone Convergence Theorem for sequences, we obtain that (sn) is
a convergent sequence. Let limn→∞ sn = L. Since (sn+1) is a subsequence of (sn), we know
limn→∞ sn+1 = L, too. Therefore,

L = lim
n→∞

sn+1 = lim
n→∞

√
2 + sn

=
√

2 + lim
n→∞

sn =
√

2 + L.

It follows that the limit L satisfies the equation

L =
√

2 + L.

Squaring both sides we get L2 = 2 + L or

:2 −L− 2 = 0,

i.e.
(L− 2)(L + 1) = 0; L = 2 or L = −1.

But (sn) is an increasing sequence of positive numbers so that L > 0. It follows that L = 2 so
that

lim
n→∞

sn = 2.



4. (13 points)

(a) Prove that the equation x + 1
2 = cos x has a solution in [0, π

2 ].
Let functions g : [0, π

2 ] → R and h : [0, π
2 ] → R be defined by

g(x) = x +
1
2
, and h(x) = cos x.

Note that g and h are continuous on [0, π
2 ], so that f : [0, π

2 ] → R defined by f(x) = g(x)− h(x)
is also continuous on [0, π

2 ]. We note that f(0) = +1
2 − cos 0 = 1

2 − 1 = −1
2 < 0, and f(π

2 ) =
π
2 + 1

2−cos π
2 = π+1

2 −0 = π+1
2 > 0. By the Intermediate Value Theorem, there exists x0 ∈ (0, π

2 )
such that f(x0) = 0, i.e. there exists x0 ∈ (0, π

2 ) such that

x0 +
1
2
− cos x0 = 0.

But this means here exists x0 ∈ (0, π
2 ) such that

x0 +
1
2

= cos x0,

so that the given equation has a solution within the desired interval.

(b) Prove that f and g are uniformly continuous on D ⊂ R, then the sum function f +g is uniformly
continuous on D ⊂ R.
Fix ε > 0. Since f is uniformly continuous on D, there exists δ1 > such that whenever x, y ∈ D
and |x− y| < δ1,

|f(x)− f(y)| < ε

2
, (1).

Similarly, since g is uniformly continuous on D, there exists δ2 > such that whenever x, y ∈ D
and |x− y| < δ2,

|g(x)− g(y)| < ε

2
, (2).

Let δ = min{δ1, δ2}. Then 0 < δ ≤ δ1 and 0 < δ ≤ δ2. It follows that if x, y ∈ D and |x− y| < δ,

|(f + g)(x)− (f + g)(y)| = |f(x) + g(x)− (f(y) + g(y))| = |f(x) + g(x)− f(y)− g(y)|

= |f(x)− f(y) + g(x)− g(y)| ≤ |f(x)− f(y)|+ |g(x)− g(y)|

(by the Triangle inequality)
<

ε

2
+

ε

2
= ε.

Therefore if x, y ∈ D and |x− y| < δ,

|(f + g)(x)− (f + g)(y)| < ε,

so that f + g is uniformly continuous on D.


