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ABSTRACT. A noncommutative solenoid is the C*-algebra C∗(Q2
N , σ) where QN

is the group of the N -adic rationals twisted and σ is a multiplier of Q2
N . In this

paper, we use techniques from noncommutative topology to classify these C*-
algebras up to *-isomorphism in terms of the multipliers of the N -adics. We also
establish a necessary and sufficient condition for simplicity of noncommutative
solenoids, compute their K-theory and show that the K0 groups of noncommu-
tative solenoids are given by the extensions of Z b y QN . We give a concrete
description of non-simple noncommutative solenoids as bundle of matrices over
solenoid groups, and we show that irrational noncommutative solenoids are real
rank zero AT C*-algebras.

1. INTRODUCTION

Since the early 1960’s, the specific form of transformation group C∗-algebras
given by the action of Z on the circle generated through a rotation that was an
irrational multiple of 2π has sparked interest in the classification problem for C∗-
algebras in particular and the theory of C∗-algebras in general. When first intro-
duced by Effros and Hahn in [9], it was thought that these C∗-algebras had no
non-trivial projections. This was shown not to be the case by M. Rieffel in the
late 1970’s ([19]), when he constructed a whole family of projections in these C∗-
algebras, and these projections played a key role one of Pimsner’s and Voiculescu’s
methods of classifying these C∗-algebras up to ∗-isomorphism, achieved in 1980
([18]) by means of K-theory. Since then these C∗-algebras were placed into the
wider class of twisted Zn-algebras by M. Rieffel in the mid 1980’s ([20]) and from
this point of view were relabeled as non-commutative tori. The Zn-analogs have
played a key role in the non-commutative geometry of A. Connes ([3]), and the
class of C∗-algebras has been widened to include twisted C∗-algebras associated
to arbitrary compactly generated locally compact Abelian groups ([8]). However,
up to this point, the study of twisted group C∗-algebras associated to Abelian
groups that are not compactly generated has been left somewhat untouched.

There are a variety of reasons for this lack of study, perhaps the foremost be-
ing that Abelian groups that cannot be written as products of Lie groups Rn and
finitely generated Abelian groups are much more complicated and best under-
stood by algebraists; furthermore, the study of extensions of such groups can
touch on logical conundrums. One could also make the related point that such
groups require more technical algebraic expertise and are of less overall interest
in applications than their compactly generated counterparts. On the other hand,
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it can also be said that discrete Abelian groups that are not finitely generated
have begun to appear more frequently in the literature, including in algebra in
the study of the two-relation Baumslag-Solitar groups, where they appear as nor-
mal Abelian subgroups, in the study of wavelets, where these groups and their
duals, the solenoids, have appeared increasingly often in the study of wavelets
[6, 7, 5, 1, 2]. We thus believe it is timely to study the twisted C*-algebras of the
groups Q2

N where QN is the group of N -adic rational numbers for arbitrary nat-
ural number N > 1 and in homage to M. Rieffel, we call such C∗-algebras non-
commutative solenoids.

In this paper, we present the classification of noncommutative solenoids up to ∗-
isomorphism using methods from noncommutative topology. They are interesting
examples of noncommutative spaces, and in particular, they can be seen as non-
commutative orbit spaces for some actions of the N -adic rationals on solenoids,
some of them minimal. Thus, our classification provides a noncommutative topo-
logical approach to the classification of these actions as well. Our work is a first
step in the study of the topology of these new noncommutative spaces. Our clas-
sification result is based on the computation of the K-theory of noncommutative
solenoids. We prove that the K0 groups of noncommutative solenoids are exactly
the groups given by Abelian extensions of Z by QN , which follows from a care-
ful analysis of such extensions. We relate the class of noncommutative solenoids
with the group Ext(QN ,Z), which is isomorphic to ZN/Z where ZN is the addi-
tive group of N -adic integers [12], and we make explicit the connection between
N -adic integers and our classification problem. We also partition the class of non-
commutative solenoids into three distinct subclasses, based upon their defining
twisting bicharacter: rational periodic noncommutative solenoids, which are the
nonsimple noncommutative solenoids, and the only ones of of type I, and are fully
described as bundles of matrices over a solenoid group; irrational noncommuta-
tive solenoids, which we show to be simple and real rank zero AT-algebras in the
sense of Elliott; and last rational aperiodic noncommutative solenoids, which give
very intriguing examples.

We build our work from the following family of groups:

Definition 1.1. LetN ∈ NwithN > 1. The group ofN -adic rationals is the group:

(1.1) QN =
{ p

Nk
∈ Q : p ∈ Z, k ∈ N

}
endowed with the discrete topology.

An alternative description of the groupQN is given as the inductive limit of the
sequence:

(1.2) Z
z 7→Nz−−−−→ Z

z 7→Nz−−−−→ Z
z 7→Nz−−−−→ Z

z 7→Nz−−−−→ · · ·
From this latter description, we obtain the following result. We denote by T the
unit circle {z ∈ C : |z| = 1} in the field C of complex numbers.

Proposition 1.2. Let N ∈ N with N > 1. The Pontryagin dual of the group QN is the
N -solenoid group, given by:

SN =
{

(zn)n∈N ∈ TN : ∀n ∈ N zNn+1 = zn
}

,
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endowed with the induced topology from the injection SN ↪→ TN. The dual pairing
between QN and SN is given by:〈 p

Nk
, (zn)n∈N

〉
= zpk ,

where p
Nk
∈ QN and (zn)n∈N ∈ SN .

Proof. The Pontryagin dual of QN is given by taking the projective limit of the
sequence:

(1.3) · · · z 7→zN−−−−→ T
z 7→zN−−−−→ T

z 7→zN−−−−→ T
z 7→zN−−−−→ T.

using the co-functoriality of Pontryagin duality and Sequence (1.2). We check that
this limit is (up to a group isomorphism) the group SN , and the pairing is easily
computed. �

Using Proposition (1.2), we start this paper with the computation of the sec-
ond cohomology group of Q2

N . We then compute the symmetrizer group for any
skew-bicharacter of Q2

N , as it is the fundamental tool for establishing simplicity
of twisted group C*-algebras. The second section of this paper studies the basic
structure of quantum solenoids, defined as C∗(Q2

N , σ) for σ ∈ H2(Q2
N ). We thus

establish conditions for simplicity, and isolate the three subclasses of noncommu-
tative solenoids. We then compute the K-theory of noncommutative solenoids
and show that they are extensions of Z by QN . We then prove that the K0 groups
of noncommutative solenoids are given exactly by all possible Abelian extensions
of Z by QN . This section presents self-contained computations of the Z-valued
2-cocycles of QN corresponding to K0 groups of noncommutative solenoids and a
careful analysis of Ext(QN ,Z). We then compute an explicit presentation of ratio-
nal noncommutative solenoids.

In our last section, we classify all noncommutative solenoids in terms of their
definingT-valued 2-cocycles. Our technique, inspired by the work of [21] on ratio-
nal rotation C*-algebras, uses noncommutative topological methods, namely our
computation of the K-theory of noncommutative solenoids. We also connect the
theory of Abelian extensions of Z by QN with our *-isomorphism problem.

Our work is a first step in the process of analyzing noncommutative solenoids.
Questions abound, including queries about Rieffel-Morita equivalence of non-
commutative solenoids and the structure of their category of modules, additional
structure theory for aperiodic rational noncommutative solenoids, higher dimen-
sional noncommutative solenoids and to what extent the Connes’ noncommuta-
tive geometry can be extended to these noncommutative solenoids.

2. MULTIPLIERS OF THE N -ADIC RATIONALS

We first compute the second cohomology group ofQ2
N . A noncommutative solenoid

will mean, for us, a twisted group C*-algebra of QN ×QN for some N ∈ N, N > 1.
We shall apply the work of Kleppner [15] to determine the group H2(Q2

N ) for
N ∈ N, N > 1.

Theorem 2.1. Let N ∈ N, N > 1. We let:

ΞN = {(νn) : ν0 ∈ [0, 1) ∧ (∀n ∈ N ∃k ∈ {0, . . . , N − 1} Nνn+1 = νn + k)} .



4 FRÉDÉRIC LATRÉMOLIÈRE AND JUDITH PACKER

The set ΞN is a group for the pointwise modulo-one addition operation. As a group, ΞN is
isomorphic to SN . Let B(2)(Q2

N ) be the group of skew-symmetrized bicharacters defined
by:

B(2)(Q2
N ) = {(x, y) ∈ Q2

N 7→ ϕ(x, y)ϕ(y, x)−1 : ϕ ∈ B(Q2
N )}

where B(Q2
N ) is the group of bicharacters ofQ2

N . Then ϕ ∈ B(2) if and only if there exists
α ∈ ΞN such that, for all p1, p2, p3, p4 ∈ Z and k1, k2, k3, k4 ∈ N, we have

ϕ
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
= exp(2iπ(α(k1+k4)p1p4 − α(k2+k3)p2p3)).

Moreover, α is uniquely determined by ϕ.

Proof. If α ∈ ΞN then αk ∈ [0, 1) for all k ∈ N. Indeed α0 ∈ [0, 1) and if αk ∈ [0, 1)

then αk+1 = αk+j
N with 0 ≤ j ≤ N − 1 so 0 ≤ αk+1 < 1, so our claim holds by

induction. With this observation, it becomes straightforward to check that ΞN is a
group for the operation of entry-wise addition modulo one.

By definition of ΞN , the map e : ΞN 7→ SN defined by e(α)k = exp(2iπαk) for
any α ∈ ΞN is a bijection, which is easily checked to be a group isomorphism.

Following [15], let B be the group of bicharacters of Q2
N and denote the group

B(2)(Q2
N ) simply by B(2).

The motivation for this computation is that, as a group, B(2)(Q2
N ) is isomorphic

to H2(Q2
N ) by [15, Theorem 7.1] since QN is discrete and countable. However,

we will find a more convenient form of H2(Q2
N ) in our next theorem using the

following computation:

Let Ψ ∈ B(2). Fix ϕ ∈ B such that:

Ψ : x, y ∈ Q2
N ×Q2

N 7−→ ϕ(x, y)ϕ(y, x)−1.

Now, the dual of Q2
N is S 2

N with pairing given in Proposition (1.2). The map:
p

Nk
∈ QN 7−→ ϕ

(
(1, 0),

( p

Nk
, 0
))

is a character of QN , so there exists a unique ζ ∈ SN such that:

ϕ
(

(1, 0),
( p

Nk
, 0
))

= ζpk

for all p ∈ Z, k ∈ N. Similarly, there exists η, χ, ξ ∈ SN such that for all p ∈ Z, k ∈
Nwe have:

ϕ
(

(0, 1),
( p

Nk
, 0
))

= ηpk

ϕ
(

(0, 1),
(

0,
p

Nk

))
= χpk

ϕ
(

(1, 0),
(

0,
p

Nk

))
= ξpk

Using the bicharacter property of ϕ again, we arrive at:

ϕ
(

(p1, p2) ,
( p3

Nk3
,
p4

Nk4

))
= ζp1p3k3

ηp2p3k3
χp2p4k4

ξp1p4k4
.

Now, since ϕ
((

1
Nk
, 0
)
,
(

p
Nk3

, 0
))(Nk)

= ϕ
(
(1, 0),

(
p

Nk3

))
, there exists ν ∈ SN with

ν0 = 1 such that:

ϕ

((
1

Nk
, 0

)
,
( p

Nk3
, 0
))

= νkζ
p
k+k3

,
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where we use the property that ζ(Nk)
k+k3

= ζk3 . Since ϕ(g, 0) = 1 for any g ∈ Q2
N , we

have ν = 1. By the same method, we deduce:

ϕ
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
= ζp1p3k1+k3

ηp2p3k2+k3
χp2p4k2+k4

ξp1p4k1+k4
.

Now, by setting all but one of p1, p2, p3, p4 to zero, we see thatϕ determines (η, ζ, χ, ξ) ∈
S 4
N uniquely. Thus, we have defined an injection ι from the group of bicharacters

ofQ2
N into S 4

N by setting, with the above notation: ι(ϕ) = (ζ, ξ, η, χ). It is straight-
forward that this map is a bijection.

Thus, ϑ : ι−1 ◦ e⊗4 : Ξ4
N → B(Q2

N ) is a bijection, so there exists a unique
(β, γ, µ, ρ) ∈ Ξ4

N such that for all p1, p2, p3, p4 ∈ Z and k1, k2, k3, k4 ∈ N, the value

ϕ
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
is given by:

exp

(
2iπ

[
p1 p2

] [ βk1+k3 γk1+k4

µk2+k3 ρk2+k4

] [
p3

p4

])
.

Thus, ϕ
((

p3
Nk3

, p4
Nk4

)
,
(
p1
Nk1

, q1
Nk2

))−1 is given by:

exp

(
−2iπ

[
p1 p2

] [ βk1+k3 µk1+k4

γk2+k3 ρk2+k4

] [
p3

p4

])
after transposing the matrix multiplication as the product is a scalar. So

Ψ
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
is:

(2.1) exp

(
2iπ

[
p1 p2

] [ 0 (γ − µ)(k1+k4)

(µ− γ)(k2+k3) 0

] [
p3

p4

])
though it is not in our chosen canonical form, i.e. γ−µmay not lie in ΞN — it takes
values in (−1, 1) instead of [0, 1). Let us find the unique element of Ξ4

N which is
mapped by ϑ to Ψ. Observe that we can add any integer to the entries of the matrix
in Expression (2.1) without changing Ψ. Let n ∈ N. Set εn to be 1 if γn − νn < 0, or
to be 0 otherwise. Let ω1

n = εn + γn − µn and ω2
n = (1 − εn) + µn − γn. We check

that ω1, ω2 ∈ ΞN and that ω1
n + ω2

n = 1 for all n ∈ N. We can moreover write:

Ψ
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
as:

(2.2) exp

(
2iπ

[
p1 p2

] [ 0 (ω1)(k1+k4)

(ω2)(k2+k3) 0

] [
p3

p4

])
i.e. Ψ = ϑ(0, ω1, ω2, 0). Since ω1 + ω2 is the constant sequence (1)n∈N, we have in
fact constructed a bijection from ΞN onto B2(Q2

N ) as desired.
The form for Ψ proposed in the Theorem is more convenient. We obtain it by

simply subtracting 1 from ω2
n for all n ∈ N, which does not change the value of

Expression(2.2). We thus get:

Ψ
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
=

exp

(
2iπ

[
p1 p2

] [ 0 α(k1+k4)

−α(k2+k3) 0

] [
p3

p4

])
.
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�

While [15] shows that B(2)(Q2
N ) is, as a group, isomorphic to H2(Q2

N ), a point
of subtlety is that several elements of B(2)(Q2

N ) may be cohomologous, i.e. there
are in general two non-cohomologous multipliers ofQ2

N which are mapped by this
isomorphism to two distinct but cohomologous multipliers in B(2)(Q2

N ).

Example 2.2. If N = 3, then one checks that α =
(

1
2

)
n∈N ∈ Ξ3. This element

corresponds to the element (−1)n∈N in S3. Now, if φ is given by Theorem (2.1),
then ϕ ∈ B(2)(Q2

3) is symmetric. Hence it is cohomologous to the trivial multiplier
1 ∈ B(2)(Q2

3). However, there exists two multipliers σ1, σ2 of Q2
3 which are not

cohomologous, and map, respectively, to ϕ and 1, since [15] shows that there is a
bijection from H2(Q2

3) onto B(2)(Q2
3).

This is quite inconvenient, and we prefer, for this reason, the description of
multipliers of Q2

N up to equivalence given by our next Theorem (2.3).

Theorem 2.3. LetN ∈ N, N > 1. There exists a group isomorphism ρ : H2(Q2
N )→ ΞN

such that if σ ∈ H2(Q2
N ) and α = ρ(σ), and if f is a multiplier of class σ, then f is

cohomologous to:

Ψα

(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
= exp(2iπα(k1+k4)p1p4).

Proof. Let δ : B(Q2
N ) → B(2)(Q2

N ) be the epimorphism from the group of bichar-
acters of Q2

N onto B(2)(Q2
N ) defined by:

δ(ϕ) : (x, y) ∈ Q2
N 7→ ϕ(x, y)ϕ(y, x)−1

for all ϕ ∈ B(Q2
N ). We shall define a cross-section µ : B(2)(Q2

N ) → B(Q2
N ), i.e. a

map such that δ ◦ µ is the identity on B(2)(Q2
N ).

For ϕ ∈ B(2)(Q2
N ), by Theorem (2.1) there exists a unique α ∈ ΞN such that:

ϕ
(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
=

exp

(
2iπ

[
p1 p2

] [ 0 α(k1+k4)

−α(k2+k3) 0

] [
p3

p4

])
.

Define µ(ϕ) = Ψα. We then check immediately that δ ◦ µ is the identity.
Now, denote by ζ : H2(Q2

N ) → B(2)(Q2
N ) the isomorphism from [15]. If f and

g are two multipliers of Q2
N , then ζ(f) = ζ(g) ∈ B2(Q2

N ) if and only if f, g are
cohomologous. So µ(ζ(f)) is cohomologous to f as desired. �

Remark 2.4. We thus have shown that H2(Q2
N ) is isomorphic to SN for all N ∈

N, N > 1. However, we find the identification of H2(Q2
N ) with ΞN more practical

in our proofs.

The simplicity of twisted group C*-algebras is related to the symmetrizer sub-
group of the twisting bicharacter. We thus establish, using the notations intro-
duced in Theorem (2.1), a necessary and condition for the triviality of the sym-
metrizer group of multipliers of QN for N ∈ N, N > 1. As our work will show,
it is in fact fruitful to invest some effort in working with a generalization of the
group ΞN based upon certain sequences of prime numbers.

Definition 2.5. The set of all sequences of prime numbers with finite range is de-
noted by P .
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As a matter of notation, if Λ ∈ P then its nth entry is denoted by Λn, so that
Λ = (Λn)n∈N.

Definition 2.6. Let Λ ∈P . For all k ∈ N,K > 0 we define πk(Λ) as
∏k−1
j=0 Λj , and

π0(Λ) = 1. The set {πk(Λ) : k ∈ N} is denoted by Π(Λ). Note that π defines a
strictly increasing map fromN into Π(Λ), whose inverse will be denoted by δ.

Periodic sequences form a subset of P , and if we impose a specific ordering on
the prime numbers appearing in the smallest period of such a periodic sequence,
we can define a natural embedding ofN \ {0, 1} in P . We shall use:

Notation 2.7. Given two integers n and m, the remainder for the Euclidean divi-
sion of n by m in Z is denoted by n mod m. On the other hand, given H ⊂ G and
x, y ∈ G, then x ≡ y mod H means that x and y are in the same H-coset in G.

Definition 2.8. Let Λ ∈P be a periodic sequence. If T is the minimal period of Λ ∈
P , we define ν(Λ) to be the natural number πT−1(Λ) =

∏T−1
n=0 Λn. Conversely, if

N ∈ N and N > 1, we define Λ(N) ∈P as the sequence (λn mod Ω(N))n∈N where
Ω(N) is the number of primes in the decomposition of N , λ0 ≤ . . . ≤ λΩ(N)−1 are
prime and N =

∏Ω(N)−1
j=0 λj . Thus in particular, ν(Λ(N)) = N .

A central family of objects for our work is given by:

Definition 2.9. Let Λ ∈P . The group ΞΛ is defined as a set by:

ΞΛ = {(αn)n∈N : ∀n ∈ N ∃k ∈ {0, . . . ,Λn − 1} Λnαn+1 = αn + k},
and with the operation of pointwise addition modulo 1.

The group ΞΛ(N) is isomorphic to ΞN , as defined in Theorem (2.1). An explicit
construction of an isomorphism is given by:

Proposition 2.10. Let N ∈ N with N > 1. Let Ω(N) be the minimal period of Λ(N),
i.e. the number of prime factors in the decomposition of N . The map:

ω :

{
ΞΛ(N) −→ ΞN

(νn)n∈N 7−→ (νnΩ(N))n∈N

is a group isomorphism.

Proof. Let α ∈ ΞΛ(N). Define ω(α)k = αkΩ(N) for all k ∈ N. It is immediate to
check that ω(α) ∈ ΞN and, thus defined, ω is a group monomorphism. We shall
now prove it is also surjective. Let us denote Λ(N) simply by Λ.

Let (νn∈N) ∈ ΞN . Let ηnΩ(N) = νn for all n ∈ N. Let n ∈ N. By definition of
ΞN , there exists m ∈ {0, . . . , N − 1} such that Nνn+1 = νn + m. Let r0,m0 be the
remainder and quotient for the Euclidean division of m by Λ0. More generally, we
construct mj+1, rj+1 as respectively the quotient and remainder of The Euclidean
division of mj by Λj for j = 0, . . . ,Ω(N)− 1. Set:

ηnΩ(N)+j = ΛjηnΩ(N)+j+1 − rj
for all j = 0,Ω(N)− 1. We have given two definitions of ηnΩ(N) and need to check
they give the same values:

Nη(n+1)Ω(N) = Λ0 · · ·ΛΩ(N)−1η(n+1)Ω(N)

= Λ0 · · ·ΛΩ(N)−2(η(n+1)Ω(N)−1 + rΩ(N)−1)

· · · = ηnΩ + r0 + Λ0(r1 + Λ1(r2 + · · · )) = ηnΩ(N) + k
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so our construction leads to a coherent result. Now, by construction, η ∈ ΞΛ(N),
and ω(η) = ν. Hence ω is a group isomorphism. This completes our proof. �

Remark 2.11. The group ΞΛ can be topologized as a subspace of ([0, 1]/ ∼)N where
∼ is the equivalence relation defined by x ∼ y ⇐⇒ (x = y) ∨ (x = 0 ∧ y = 1).
With this topology, the natural isomorphism e is of course an homeomorphism, so
that ΞΛ is isomorphic to:

SΛ = {(zn)n∈N ∈ TN : ∀n ∈ N zΛn
n+1 = zn}

as a topological group, though we shall not need this.

We are now ready to establish a necessary and sufficient condition for the sym-
metrizer group of a given multiplier to be nontrivial.

Theorem 2.12. Let N ∈ N, N > 1. Let α ∈ ΞN . The symmetrizer subgroup in Q2
N for

Ψα is defined by:

Sα =
{
g =

( p1

Nk1
,
p2

Nk2

)
∈ Q2

N : Ψα(g, ·) = Ψ(·, g)
}

.

The following assertions are equivalent:
(1) The symmetrizer group Sα is non-trivial,
(2) The sequence α has finite range (i.e. {αn : n ∈ N} is finite).
(3) There exists j < k ∈ N such that αj = αk,
(4) There exists k ∈ N such that (Nk − 1)α0 ∈ Z,
(5) The sequence α is periodic.
(6) The group Sα is eitherQ2

N (which is equivalent to α = 0) or there exists a nonzero
b ∈ N such that:

Sα =

{(
p1b

Nm
,
p2b

Nn

)
: p1, p2 ∈ Z, n.m ∈ N

}
.

Proof. Let us assume that sα is nontrivial and prove that the range of α is finite.
The result is trivial if α = (0)n∈N, so we assume that there exists s ∈ N such that
αs 6= 0. By definition of ΞΛ, we then have αn 6= 0 for all n ≥ s.

Let Θα : (x, y) ∈ Q2
N 7→ Ψα(x, y)Ψα(y, x)−1. Now, given p1, p2, p3, p4 ∈ Z and

k1, k2, k3, k4 ∈ N, we have Θα

((
p1
Nk1

, p2
Nk2

)
,
(
p3
Nk3

, p4
Nk4

))
given by:

exp
(
2iπ

(
α(k1+k4)p1p4 − α(k2+k3)p2p3

))
.

The symmetrizer group sα is now given by:{
g =

( p1

Nk1
,
p2

Nk2

)
∈ Q2

N : Θα(g, ·) = 1
}

.

Fix
(

n
Nk1

, m
Nk2

)
∈ Sα, so that for all

(
p3
Nk3

, p4
Nk4

)
∈ Q2

N we have:

Θα

(( n

Nk1
,
m

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
= 1.

Then, by Theorem (2.3), for all p3, p4 ∈ Z and k3, k4 ∈ N:

(2.3) α(k1+k4)np4 ≡ α(k2+k3)mp3 mod Z.

Since Congruence (2.3) only depends on k1 + k4 and must be true for all k4 ∈ N,
we can and shall henceforth assume that k1 ≥ s. Without loss of generality, we
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assume n 6= 0 (if n = 0, then m 6= 0 and the following argument can be easily
adapted).

Denote by β the unique extension of α in ΞΛ(N) and denote Λ(N) simply by Λ.
Congruence (2.3) implies that for all k3, k4 ∈ N:

(2.4) βΩ(N)(k1+k4)np4 ≡ βΩ(N)(k2+k3)mp3 mod Z.

Since
∏r−1
l=j βj+r ≡ Λj mod Z for all j, r ∈ N, r > 0, we conclude that for any

k3, k4 ∈ Nwe have:

(2.5) βΩ(N)(k1)+k4np4 ≡ βΩ(N)(k2)+k3mp3 mod Z,

or, more generally, for any l1 ≥ Ω(N)k1, we have:

(2.6) βl1+k4np4 ≡ βΩ(N)(k2)+k3mp3 mod Z,

for all k3, k4 ∈ N. We shall now modify Λ and β so that we may assume that n in
Congruence (2.6) may be chosen so that n is relatively prime with N .

To do so, we write n = n1Q with n1 ∈ Z relatively prime with N and the set of
prime factors of Q ∈ N is a subset of the set of prime factors of N . Let k ∈ N be the
smallest integer such that Q divides πkΩ(N)(Λ) and k ≥ k1. Such a natural number
exists by definition of Q and Λ. Let j1 < j2 < · · · < jr ∈ N such that jr < Ω(N)k
and Q =

∏r
l=1 Λjl : such a choice of integers j1, . . . , jr exists by definition of k. We

also note that r = Ω(Q)− 1. Let z1 < z2 < · · · < zt ∈ N be chosen so that:

{z1, . . . , zt, j1, . . . , jr} = {0, . . . ,Ω(N)k − 1}.
We now define the following permutation ofN:

s

∣∣∣∣∣∣∣∣
N −→ N

x 7−→

 Ω(N)k − l if x = jl
l if x = zl
x otherwise.

Let Λ′ ∈ P be defined by Λ′j = Λs(j) for all j ∈ N. By construction, Λ and Λ′

agree for indices greater or equal than Ω(N)k. Let α be the unique sequence in ΞΛ′

such that α′kΩ(N)+j = βkΩ(N)+j for all j ∈ N. By construction, for all k3, k4 ∈ N,
we have:

(2.7) α′Ω(N)k+k4
np4 ≡ βΩ(N)(k2)+k3mp3 mod Z.

Yet n = n1Q and by construction, α′Ω(N)k+k4
Q ≡ α′Ω(N)k+k4−rn1 mod Z.

Thus, we have shows that if Sα is not trivial, then there exists Λ′ ∈ P and a
supersequence α′ ∈ ΞΛ′ of (a truncated subsequence of) α, as well as n1 ∈ Z with
the set of prime factors of n1 disjoint from the range of Λ′ and k, k2 ∈ N, such that
for all j, j′ ∈ N and p, q ∈ Z, we have:

(2.8) α′k+jn1p ≡ α′k2+j′mq mod Z.

We now set q = 0. This relation can only be satisfied if α′k ∈ Q, in which
equivalent to α′j ∈ Q for all j ∈ Q by definition of ΞΛ′ . Since Congruence (2.8)
implies that α′kn ∈ Z, we write α′k = a

b with for some b ∈ Z such that b | n1 and
b ∧ a = 1, where a ∈ {1, . . . , b− 1}.

Now, by definition of ΞΛ′ , there exists x ∈ {0, . . . ,Λ′k − 1} such that:

α′k+1 =
α′k + x

Λ′k
=
a+ xb

bΛ′k
.
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We now must have:

α′k+1n1 =
a+ bx

Λ′k

n1

b
∈ Z

which implies a+bx
Λ′k
∈ N since Λ′k and n1 are relatively prime. Hence we have:

α′k+1 ∈
{

1

b
, . . . ,

b− 1

b

}
.

By induction, using the same argument as above, we thus get that we must
have:

(2.9) {α′k+j : j ∈ N} ⊆
{

1

b
, . . . ,

b− 1

b

}
.

Hence if Sα is nontrivial, then α′ (and therefore α) must have finite range.

Remark 2.13. Condition (2.9) implies that in fact, there exists b, k ∈ N such that for
all n ≥ k, there exists a ∈ {1, . . . , b − 1} with a ∧ b = 1 such that α′n = a

b . Indeed,
since α′ has finite range, there exists K ∈ N such that α′m occurs infinitely often
in α′ for all m > K. Let r = max{K, k} and write α′r = a

b for some a, b ∈ N with
a∧b = 1. if for any n > r, we have α′n = a

b′ with a∧b′ = 1 and b′ | b, then Condition
(2.9) implies that b′α′m ∈ Z for all m > n. By assumption on r, α′r occurs again for
some r′ > n. Condition (2.9) then implies that b | b′, so b = b′.

It is obvious that if α has finite range, then there exists j < k such that αj = αk.

Let us now prove that if α takes the same value at least twice, then there exists
k ∈ N such that (Nk − 1)α0 ∈ Z. Thus there exist j, k ∈ N such that αj+k = αj ,
yet by definition of ΞN we have Nkαj+k ≡ αj mod Z, so (Nk− 1)αj ≡ 0 mod Z,
and since (Nk − 1)α0 ≡ N j(Nk − 1)αj mod Z ≡ 0 mod Z , we conclude that
(Nk − 1)α0 ∈ Z.

Let us now assume that there exists k ∈ N such that (Nk − 1)α0 ∈ Z and show
that α is periodic. If αj = a

b for some j ∈ N and some a, b ∈ N nonzero and
relatively prime, then αk+j = d

b for some d ∈ {1, . . . , b− 1} and:

Nkαk+j =
Nkd

b
=

(Nk − 1)d

b
+
d

b
≡ d

b
mod Z,

while we must have Nkαk+j ≡ a
b mod Z, which implies d = a. Hence by induc-

tion, αk+j = αj for all j ∈ N, as desired.

Let us assume that α is periodic, which of course implies α0 = a
b for some

relatively prime a, b ∈ Z, or α = 0. In the former case, we simply have:

Ψα

(( n

Nk1
,
m

Nk2

)
,
( p2

Nk3
,
q2

Nk4

))
= exp

(
2iπ

b
ak1+k4nq2

)
where αj =

aj
b for aj ∈ {1, . . . , b − 1} and all j ∈ N, using Remark (2.13). The

computation of Sα is now trivial. It is also immediate, of course, if α = 0. In
particular, this computation shows that Sα is not trivial if α is periodic, which
concludes our equivalence. �
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Remark 2.14. We note that if the symmetrizer group of the multiplier Ψα for α ∈
ΞN is nontrivial, then α is rational valued. The converse is false, as it is easy to
construct an aperiodic α ∈ ΞN which is rational valued: for instance, given any
N > 1 we can set αn = 1

Nn for all n ∈ N. Then sα = {0}.

Example 2.15. For an example of a periodic multiplier, one can choose N = 5 and
α =

(
1
62 ,

25
62 ,

5
62 ,

1
62 , . . .

)
. The symmetrizer group is then given by{(

62n

5p
,

62m

5q

)
: n,m ∈ Z, p, q ∈ N

}
.

3. THE NONCOMMUTATIVE SOLENOID C∗-ALGEBRAS

We now start the analysis of the noncommutative solenoids, defined by:

Definition 3.1. Let N ∈ N with N > 1 and let α ∈ ΞN . Let Ψα be the skew
bicharacter defined in Theorem (2.3). The twisted group C*-algebra C∗(Q2

N ,Ψα)
is called a noncommutative solenoid and is denoted by A S

α .

The main purpose of this and the next section is to provide a classification result
for noncommutative solenoids based upon their defining multipliers. The key
ingredient for this analysis is the computation of theK-theory of noncommutative
solenoids, which will occupy most of this section. However, we start with a set of
basic properties one can read about noncommutative solenoids from their defining
multipliers.

It is useful to introduce the following notations, and provide an alternative de-
scription of our noncommutative solenoids.

Notation 3.2. Let α ∈ ΞN for some N ∈ N, N > 1. By definition, A S
α is the

universal C*-algebra for the relations

W p1

Nk1
,
p2

Nk2
W p3

Nk3
,
p4

Nk4
= Ψα

(( p1

Nk1
,
p2

Nk2

)
,
( p3

Nk3
,
p4

Nk4

))
W p1

Nk1
+

p3

Nk3
,
p2

Nk2
+

p4

Nk4

whereWx,y are unitaries for all (x, y) ∈ Q2
N , and p1, p2, p3, p4 ∈ Z and k1, k2, k3, k4 ∈

N.

Proposition 3.3. Let N ∈ N, N > 1 and α ∈ ΞN . Let θα be the action of QN on SN

defined by:
θαp
Nk

((zn)n∈N) = (exp(2iπαk+np)zn)n∈N .

The C*-crossed-product C(SN ) oθα QN is *-isomorphic to A S
α .

Proof. The C*-algebra C(SN ) of continuous functions on SN is the group C*-
algebra of the dual of SN , i.e. it is generated by unitaries Up for p ∈ QN such
that UpUp′ = Up+p′ . Equivalently, it is the universal C*-algebra generated by
unitaries un such that uNn+1 = un, with the natural *-isomorphism ϕ extending(
∀n ∈ N un 7→ U 1

Nn

)
.

The C*-crossed-product C(SN ) oθα QN is generated by a copy of C(SN ) and
unitaries Vq , for q ∈ QN , such that VqunV ∗q = θα1

Nq

(
1
Nn

)
un. Thus:

V p1

Nk1
U p2

Nk2
= θαp1

Nk1

( p2

Nk2

)
U p2

Nk2
V p1

Nk1

= exp(2iπαδ(Nk1 )+δ(Nk2 )p1p2)
( p2

Nk2

)
U p2

Nk2
V p1

Nk1
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for all p1, p2 ∈ Z and k1, k2 ∈ N. Now, the following map (using Notation (3.2)):

∀p ∈ Z, k ∈ N

{
U p

Nk
7−→ W0, p

Nk

V p

Nk
7−→ W p

Nk
,0

can be extended into a *-epimorphism using the universal property of C(SN )oθα
QN . The universal property of A S

α implies that this *-morphism is a *-isomorphism,
by showing the inverse of this *-epimorphism is a well-defined *-epimorphism.

�

Remark 3.4. Let N ∈ N, N > 1 and α ∈ ΞN . The action θ of QN on SN defined in
Proposition (3.3) is minimal if and only if α is irrational-valued. However, if α has
infinite range, the orbit space of θ is still a single topological point.

We start our study of noncommutative solenoids by establishing when these
C*-algebras are simple:

Theorem 3.5. Let N ∈ N with N > 1. Let α ∈ ΞN . The following statements are
equivalent:

(1) The C*-algebra A S
α is simple,

(2) The set {αn : n ∈ N} is infinite,
(3) For all k ∈ N with k > 0, we have (Nk − 1)α0 6∈ Z,
(4) Given any j, k ∈ N with j 6= k we have αj 6= αk.

Proof. The symmetrizer group Sα of Ψα is trivial if and only if the asserted con-
dition holds, by Theorem (2.12). Since Q2

Λ is Abelian, and since the dual of Sα is
trivial, the action of Q2

Λ/Q
2
Λ on Ŝα is free and minimal. Thus A S

α is simple by [17,
Theorem 1.5]. �

As our next observation, we note that noncommutative solenoids carry a trace,
which will be a useful tool for their classification.

Theorem 3.6. Let N ∈ N, N > 1 and α ∈ ΞN . The C*-algebra A S
α has an invariant

tracial state for the dual action of S 2
N . Moreover, if A S

α is simple, then this is the only
tracial state of A S

α .

Proof. For any α ∈ ΞN for N ∈ N, N > 1, the group S 2
N acts ergodically and

strongly continuously on A S
α by setting, for all (z, w) ∈ SN and (x, y) ∈ Q2

N :

(z, w) ·Wx,y = 〈z, x〉 〈w, y〉Wx,y

and extending · by universality of A S
α , using Notation (3.2). This is of course the

dual action of S 2
N onC∗(Q2

N ,Ψα). Since S 2
N is compact, the existence of an invari-

ant tracial state τ is due to [13]. Moreover, A S
α is simple if and only if Ψ2

α(g, ·) = 1
only for g = 0, by Theorem (3.5). If τ ′ is any tracial state on A S

α , we must have
(using Notation (3.2)):

τ ′(WgWh) = Ψ2
α(g, h)τ ′(WhWg)

for all g, h ∈ Q2
N . Hence if A S

α is simple, we have τ(WgWh) = 0 for all g, h ∈ Q2
N ,

except for h ∈ {g, g−1}. So ker τ = ker τ ′ and τ(1) = 1 = τ ′(1), so τ = τ ′ as
desired. �



NONCOMMUTATIVE SOLENOIDS 13

As our next observation, the C*-algebras A S
α (α ∈ ΞN , N ∈ N, N > 1) are

inductive limit of rotation algebras. Rotation C*-algebras have been extensively
studied, with [19, 10] being a very incomplete list of references. We recall that
given θ ∈ [0, 1), the rotation C*-algebra Aθ is the universal C*-algebra for the re-
lation V U = exp(2iπθ)UV with U, V unitaries. It is the twisted group C*-algebra
C∗(Z2,Θ) where Θ((n,m), (p, q)) = exp(iπθ(nq −mp)). The unitaries associated
to (1, 0) and (0, 1) in C∗(Z2,Θ) will be denoted by Uθ and Vθ and referred to as the
canonical unitaries of Aθ. Of course, {Uθ, Vθ} is a minimal generating set of Aθ.
We now have:

Theorem 3.7. Let N ∈ N with N > 1 and α ∈ ΞN. For all n ∈ N, let ϕn be the unique
*-morphism from Aα2n into Aα2n+2 extending:{

Uα2n 7−→ UNα2n+2

Vα2n 7−→ V Nα2n+2

Then:
Aα0

ϕ0−−−−→ Aα2

ϕ1−−−−→ Aα4

ϕ2−−−−→ · · ·
converges to A S

α , where Aθ is the rotation C*-algebra for the rotation of angle 2iπθ.

Proof. We use Notations (3.2). Consider the given sequence of irrational C*-algebra.
Fix k ∈ N. Define the map:

υk :

{
Uα2k

7→ W 1

Nk
,0

Vα2k
7→ W0, 1

Nk

By definition of Ψα, we have W0, 1

Nk
W 1

Nk
,0 = e2iπα2kW 1

Nk
,0W0, 1

Nk
.

By universality of Aα2k
, the map υk extends to a unique *-morphism, which we

still denote υk, fromAα2k
into A S

α . It is straightforward to check that the diagram:

Aα0

ϕ0−−−−→ Aα2

ϕ1−−−−→ Aα4

ϕ2−−−−→ · · ·yυ0 yυ1 yυ2 · · ·

A S
α A S

α A S
α · · ·

commute. So by universality of the inductive limit, there is a morphism from
lim−→(Aα2k

, ϕk)k∈N to A S
α . Now, since A S

α is in fact generated by
⋃
k∈N υk(Aα2k

),
we conclude that A S

α is in fact lim−→(Aα2k
, ϕk)k∈N, as desired. �

We can use Theorem (3.7) to compute the K-theory of the C*-algebras A S
α for

N ∈ N, α ∈ ΞN .

Theorem 3.8. Let N ∈ N with N > 1, and let α ∈ ΞN . Define the subgroup Kα of Q2
N

by:

Kα =

{(
z +

pJαk
Nk

,
p

Nk

)
: z, p ∈ Z, k ∈ N

}
where (Jαk )k∈N = (Nkαk −α0)k∈N and by convention, Jk = 0 for k ≤ 0. We then have:

K0(A S
α ) = Kα, and K1(A S

α ) = Q2
N .

Moreover, if τ is a tracial state of A S
α , then we have:

(3.1) K0(τ) :

(
z +

pJαk
Nk

,
p

Nk

)
∈ Kα 7−→ z + pαk.
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In particular, all tracial states of A S
α lift to the same state of K0(A S

α ) given by (3.1).

Proof. Define jαn ∈ {0, . . . , N − 1} for n ∈ N by Nαn+1 = αn + jαn , so that by
definition:

Jαn =

n−1∑
k=0

Nkjαk .

To ease notations, we also introduce for all n ∈ N the integer rαn ∈ {0, . . . , N2 − 1}
such that N2α2n+2 = α2n + rαn . Thus rαn = Njα2n+1 + jα2n and Jα2n =

∑n−1
k=0 N

2krαk
for all n ∈ N.

As a preliminary step, we check that Kα is a group. It is a nonempty subset of
Q2
N since it contains (0, 0). Now, let

(
z +

pJαk
Nk

, p
Jαk

)
and

(
y +

qJαr
Nr ,

q
Nr

)
be elements

of Kα. Let n = max(k, r), and m1,m2 ∈ N be given so that Nkm1 = Nn and
Nrm2 = Nn. We then have:
(3.2)(
z +

pJαk
Nk

,
p

Nk

)
−
(
y +

qJαr
Nr

,
q

Nr

)
=

(
z − y +

m1pJ
α
k −m2qJ

α
r

Nn
,
m1p−m2q

Nn

)
.

Now, assume k < n, so r = n. By definition, Jαn = Jαk +Nkjαk + · · ·+Nn−1jαn−1 so
m1J

α
k = m1J

α
n − (Nnjαk +Nn+1jαk+1 + · · ·+N2n−1jαn−1), so m1pJ

α
k

Nn = −jαk − · · · −
Nn−1jαn−1 +

m1pJ
α
n

Nn . In this case, Expression (3.2) becomes:(
z − y − jαk − · · · −Nn−1jαn−1 +

(m1p−m2q)J
α
n

Nn
,
m1p−m2q

Nn

)
which lies in Kα. The computations are similar if we assume instead r < n and k =
n. Thus Kα is a subgroup of Q2

N . We remark here that the sequences (jk)k∈N and
(Jk)k∈N are closely related to the group of N -adic integers ZN ; we shall discuss
this relationship in detail at the conclusion of the proof.

We simplify our notations in this proof and denote the canonical unitaries of
the rotation C*-algebra Aα2k

as Uk and Vk for all k ∈ N. It is well known that:

K0(Aα2k
) = Z2 and K1(Aα2k

) = Z2.

Moreover, K0(Aα2k
) is generated by the classes of the identity and a Rieffel pro-

jection P of trace α2k, which we denote by (1, 0) and (0, 1) respectively. We also
know that K1(Aα2k

) is generated by the classes of Uk and Vk, denoted respectively
by (1, 0) and (0, 1).

We start with a key observation. Let P be a Rieffel projection of trace α2k in
Aα2k

, then it is of the form g(Uk)Vk + f(Uk) + h(Uk)V ∗k with f, g, h ∈ C(T) and
α2k =

∫
T
f . Hence P is mapped by ϕk to the Rieffel projection g(UNk+1)V Nk+1 +

f(UNk+1) + h(UNk+1)V Nk+1 whose trace is again α2k. We recall that with our notation:

N2α2k+2 = α2k + rαk ,

where we note that α2k+2 is the trace of the generator ofK0(A2k+2). Let k ∈ N and
let ϕk be the *-morphism defined in Theorem (3.7). The maps K0(ϕk) and K1(ϕk)
are thus completely determined, as morphisms of Z2, by the relations:

K1(ϕk) :

{
(1, 0) 7→ (N, 0)
(0, 1) 7→ (0, N)

and K0(ϕk) :

{
(1, 0) 7→ (1, 0)
(0, 1) 7→ (rα2k, N)
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We now use the continuity of K-theory groups to conclude:

K1(A S
α ) = lim−→

(
Z2

K1(ϕ0) //Z2
K1(ϕ2) //Z2

K1(ϕ2) // · · ·
)

= Q2
N ,

and

K0(A S
α ) = lim−→

(
Z2

K0(ϕ0) //Z2
K0(ϕ2) //Z2

K0(ϕ2) // · · ·
)

= lim−→

Z2

[
1 rα0
0 N2

]
//Z2

[
1 rα1
0 N2

]
//Z2

[
1 rα2
0 N2

]
// · · ·

 .

We claim that the group K0(A S
α ) is Kα. For k ∈ N we define υk : Z2 → K to be

the multiplication by the matrix:[
1 − Jαk

N2k

0 1
N2k

]
=

k∏
n=0

[
1 rαn−k
0 N2

]−1

.

We now check the following diagram is commutative:

Z2

[
1 rα0
0 N2

]
//

υ0

��

Z2

[
1 rα1
0 N2

]
//

υ1

��

Z2

[
1 rα2
0 N2

]
//

υ2

��

· · ·

Kα Kα Kα · · ·

It is now easy to check that K is indeed K0(A S
α ).

Let τ be a tracial state of A S
α . First, we note that (1, 0) ∈ K is the image

of (1, 0) ∈ Z2 for all υk, with k ∈ N. Since τ(1) = 1 in A2k for all k ∈ N, we
conclude that K0(τ)(1, 0) = 1. On the other hand, the element

(
Jα2k
N2k ,

1
N2k

)
is the

image of (0, 1) ∈ Z2 by υk. The generator (0, 1) of K0(Aα2k
) has trace α2k, so

K0(τ)
(
Jα2k
N2k ,

1
N2k

)
= α2k for all k ∈ N. Now, since:(
J2k−1

N2k−1
,

1

N2k−1

)
=

(
−jα2k−1 +

J2kN

N2k−1
,

N

N2k−1

)
and since K0(τ) is a group morphism, we get:

K0(τ)

(
J2k−1

N2k−1
,

1

N2k−1

)
= −jα2k−1 +Nα2k = α2k−1

for all k ∈ N, k > 1. In summary, K0(τ) maps
(
Jk
Nk
, 1
Nk

)
to αk for all k ∈ N. Using

the morphism property of K0(τ) again, we obtain the desired formula. �

The group Kα defined in Theorem (3.8) is in fact an extension of QN given by:

(3.3) 0 −−−−→ Z
ι−−−−→ Kα

π−−−−→ QN −−−−→ 0,
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where ι : z ∈ Z 7→ (z, 0) is the canonical injection and π :
(
z +

pJαk
Nk

, p
Nk

)
7→ p

Nk

is easily checked to be a group morphism such that the above sequence is exact.
The class of this extension in H2(QN ,Z) is however not in general an invariant
of the *-isomorphism problem for noncommutative solenoids: as we shall explain
in the next section, we must consider a weaker form of equivalence for Abelian
extensions to construct such an invariant. It will translate into an equivalence
relation on Ext(QN ,ZN ) to be detailed after Theorem (4.2).

We now proceed to provide a description of the Z-valued 2-cocycle of QN as-
sociated to Extension (3.3) and provide a different, more standard picture for Kα.
Remarkably, we shall see that every element of Ext(QN ,Z) is given by the K-
theory of A S

α for some α ∈ ΞN . As a first indication of this connection, we note
that for a given α ∈ ΞN , the sequence (Jαk )k∈N can be seen an element of the group
ZN of N -adic integers [14]. For our purpose, we choose the following description
of ZN :

Definition 3.9 ([14]). Let N ∈ N, N > 1. Set:

ZN =

{
(Jk)k∈N : ∧

{
J0 = 0,
∀k ∈ N ∃j ∈ {0, . . . , N − 1} Jk+1 = Jk +Nkj

}
.

This set is made into a group with the following operation. If J,K ∈ ZN then
J+K is the sequence (Lk)k∈N where Lk is the remainder of the Euclidean division
of Jk +Kk by Nk for all k ∈ N. This group is the group of N -adic integers.

The connection between ΞN (or equivalently, SN ), ZN , Ext(QN ,Z) and K0

groups of noncommutative solenoids is the matter of the next few theorems. We
start by observing that the following is a short exact sequence:

0 −−−−→ ZN
ι−−−−→ ΞN

q−−−−→ T −−−−→ 0

where q : α ∈ ΞN 7→ exp(2iπα0) and ι is the natural inclusion given by:

ι : (Jn)n∈N ∈ ZN 7−→
(
Jn
Nn

)
n∈N

.

Thus, for any element α of ΞN , the sequence (Jαk )k∈N of Theorem (3.8) associated
to α is easily checked to be the unique element in ZN such that αk = q(α) + Jαk for
all k ∈ N.

We shall use the following terminology:

Definition 3.10. Let N ∈ N, N > 1. The N -reduced form of q ∈ QN is (p,Nk) ∈
Z × N such that q = p

Nk
where k is the smallest element of {n ∈ N : ∃p ∈ Z q =

q
Nn }. By standard abuse of terminology, we say that p

Nk
is q written in its reduced

form.

A fraction in N -reduced form in QN may not be irreducible in Q, so this notion
depends on our choice of N . Namely, even ifQN = QM for N 6= M , and p

Nk
∈ QN

is in N -reduced form, it may not be in M -reduced form. We shall however drop
the prefix N when the context allows it without introducing any confusion.

We now prove the following lemma:



NONCOMMUTATIVE SOLENOIDS 17

Lemma 3.11. Let N ∈ N, N > 1 and α ∈ ΞN . Let J = (Jk)k∈N ∈ ZN . Writing all
elements of QN in their N -reduced form only, the map:

ξJ

∣∣∣∣∣∣∣∣∣∣
QN ×QN 7−→ Z

(
p1
Nk1

, p2
Nk2

)
7−→


− p1
Nk1

(Jk2 − Jk1) if k2 > k1

− p2
Nk2

(Jk1 − Jk2) if k1 > k2

q
Nr (Jk1 − Jr) if ∧

{
k1 = k2
p1
Nk1

+ p2
Nk2

= q
Nr

is a Z-valued symmetric 2-cocycle of QN .

Proof. We introduce some useful notations for this proof. We defined jk ∈ {0, . . . , N−
1} for all k ∈ N by:

Jk+1 − Jk = Nkjk.
We also define Jk,m for all m, k ∈ N,m > k by:

Jk,k = 0 ∧ Jk,m =

m−1∑
r=k

Nr−kjr.

Note that Jk−JrNr = Jr,k for all r ≤ k by definition.
With this definition, we have ξJ

(
p1
Nk1

, p2
Nk2

)
equal to −p1Jk1,k2 if k1 < k2, to

−p2Jk2,k1 when k2 < k1 and qJr,k1 if k1 = k2 and p1 + p2 = Nk1−rq, with q and N
relatively prime, and with all fractions written in their reduced form in QN .

By construction, ξJ is a symmetric function. Let x, y, z ∈ QN . We wish to show
that:

(3.4) ξJ(x+ y, z) + ξJ(x, y) = ξJ(y + z, x) + ξJ(y, z).

Let us write x = px
Nkx

in its reduced form, and use similar notations for y and z.
We proceed by checking various cases.

Case 3.11.1. Assume x, y, z have the same denominator Nk in their reduced form,
and that x+ y = q

Nr in its reduced form, with r < k. Then by definition, ξJ(x, y) =
qJr,k and ξJ(x + y, z) = −qJr,k so the left hand side of Identity (3.4) is zero. Let
y + z = q′

Nn in its reduced form. If, again, n < k, the right hand side of Identity
(3.4) is zero again and we have shown that Identity (3.4) holds. If n = k then
ξJ(y, z) = 0 by definition. Moreover, x + y + z must have denominator Nk in its
reduced form. Indeed, since x, y have the same denominator Nk in reduced form,
yet their sum does not, px + py is a multiple of N . If moreover, px + py + pz is
also a multiple of N , then pz is a multiple of N , which contradicts the definition
of reduced form. Hence, x + y + z has denominator Nk in its reduced form and
ξJ(x, y + z) = 0 by definition.

Case 3.11.2. Assume now that kx > ky > kz . Then by definition:

(3.5) ξJ(x, y) + ξJ(x+ y, z) = −pyJky,kx − pzJkz,kx
while

(3.6) ξJ(y, z) + ξJ(y + z, x) = −pzJkz,ky − (Nky−kzpz + py)Jky,kx .

By definition, Jkz,ky + Nky−kzJky,kx = Jkz,kx . We then easily check that the left
and right hand side of Identity (3.4) which are given by Identities (3.5) and (3.6)
agree.
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This case also handles the situation kz > ky > kz by switching the left and right
hand side of Identity (3.4).

Case 3.11.3. Assume now that ky > kx > kz . Then the left hand side of Identity
(3.4) is given by:

ξJ(x, y) + ξJ(x+ y, z) = −pxJkx,ky − pzJkz,ky
On the other hand, the right hand side becomes:

ξJ(y, z) + ξJ(y + z, x) = −pzJkz,ky − pxJkx,ky
and thus Identity (3.4) is satisfied again. We also get by symmetry the case ky >
kx > kz .

Case 3.11.4. Assume kx > kz > ky . Then the left hand side of Identity (3.4) is:

ξJ(x, y) + ξJ(x+ y, z) = −pyJky,kx − pzJkz,kx
while the right hand side is:

ξJ(y, z) + ξJ(y + z, x) = −pyJky,kz − (Nkz−kypy + pz)Jkz,kx

and as in Case 1, both side agree. The last possible strict inequality kz > kx > ky
is handle by symmetry again.

One similarly verifies that ξJ is a cocycle for the cases ky > kx > kz , kx > kz >
ky , kx = ky > kz and kx = ky > kz .

�

Theorem 3.12. Let N ∈ N, N > 1 and α ∈ ΞN . Let ξα be the Z-valued 2-cocycle of QN
given by ξJα as defined in Lemma (3.11), where Jαk = Nkαk − α0 for all k ∈ N.

Let us define the group Qα as the set Z×QN together with the operation:(
z,

p1

Nk1

)
�
(
y,

p2

Nk2

)
=
(
z + y + ξα

( p1

Nk1
,
p2

Nk2

)
,
p1

Nk1
+

p2

Nk2

)
for all z, y, p1, p2 ∈ Z, k1, k2 ∈ N. The map:

ω

∣∣∣∣∣ Qα −→ Kα(
z, p

Nk

)
7−→

(
z +

pJαk
Nk

, p
Nk

)
.

is a group isomorphism. Thus K0(A S
α ) is isomorphic to Qα and, using ω to identify

these groups, we have:

K0(τ) : (1, 0) 7→ 1,

(
0,

1

Nk

)
7→ αk.

Proof. It is immediate that ω is a bijection. It remains to show that it is a group
morphism. Let x = px

Nkx
, y =

py
Nky

with px, py ∈ Z, kx, ky ∈ N. Let z, t ∈ Z. We
consider three distinct cases.

Case 3.12.1. The easiest case is when kx = ky and px + py is not a multiple of N .
Then ξα(x, y) = 0 so � reduces to the usual addition and we have:

ω(z, x) + ω(t, y) = (z + x, x) + (t+ y, y) = ω(z + t, x+ y) = ω((z, x) � (t, y)),

as needed.
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Case 3.12.2. Now, assume kx = ky yet px + py = Nk−rq for some q not divisible by
N and some r ∈ N, r > 0. Then:

ω(z, x) + ω(t, y) =

(
z + t+

(px + py)Jαkx
Nkx

,
px + py
Nkx

)
=

(
z + t+

qJαkx
Nr

,
q

Nr

)
.

Now, Jαkx = Jαr + NrJαr,kx by definition, as given in Theorem (3.8) and Lemma
(3.11). Hence:

ω(z, x) + ω(t, y) =

(
z + t+ qJr,kx +

qJαr
Nr

,
q

Nr

)
=

(
z + t+ ξα

( px
Nkx

,
py
Nky

)
+

q

Nr
,
q

Nr

)
= ω((z, x) � (t, y)),

as desired.

Case 3.12.3. Last, assume kx 6= ky . Without loss of generality, since our groups are
Abelian, we may assume kx < ky . Now:

ω(z, x) + ω(y, t) =

(
z + t+

pxJ
α
kx

Nkx
+
pyJ

α
ky

Nky
,
pxN

ky−kx + py
Nky

)
=

(
z + t+

pxN
ky−kxJαkx
Nky

+
pyJ

α
ky

Nky
,
pxN

ky−kx + py
Nky

)

=

(
z + t+

pxN
ky−kx(Jαky −N

kxJαkx,ky )

Nky
+
pyJ

α
ky

Nky
,
pxN

ky−kx + py
Nky

)

=

(
z + t− pxJαkx,ky +

(
pxN

ky−kx + py
)
Jαky

Nky
,
pxN

ky−kx + py
Nky

)
= ω((z, x) � (t, y)),

as expected.

This completes the proof of that ω is an isomorphism. Now, ω(1, 0) = (1, 0) and
ω
(
0, 1

Nk

)
=
(

1
Nk
, 1
Nk

)
for all k ∈ N. Using Theorem (3.8), we conclude that tracial

states lift to the given map in our theorem. �

Thus, to α ∈ ΞN , we can associate a cocycle ξα inH2(QN ,Z) such thatK0(A S
α )

is given by the extension of QN by Z associated with ξα. It is natural to ask how
much information the class of ξα in H2(QN ,Z) contains about noncommutative
solenoids. This question will be fully answered in the next section, yet we start
here by showing that the map J ∈ ZN 7→ [ξJ ] ∈ Ext(QN ,Z) is surjective with
kernel Z, where [ξ] is the class of the extensions of QN by Z (which is Abelian for
our cocycles) for the equivalence of extension relation.

First, we recall:

Lemma 3.13. Let N ∈ N, N > 1. Let z ∈ N. For all n ∈ N we define ι(z)n to be the
remainder for the Euclidean division of z by Nn in Z. Then ι(z) ∈ ZN by construction,
and there exists Kz ∈ N such that ιn(z) = ιKz (z) for all n ≥ Kz . Conversely, given any
J ∈ ZN which is eventually constant, we can associate the natural number ζ(J) = JK
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where K is the largest natural number such that JK < JK+1. One checks easily that ζ ◦ ι
is the identity onN.

The map ι extends to a group monomorphism from Z to ZN . Moreover, if z < 0 then
there exists Kz ∈ N such that ιn+1 − ιn = Nk(N − 1) for all n ≥ Kz . Conversely, if,
for some J ∈ ZN , there exists K ∈ N such that Jk+1 − Jk = (N − 1)Nk for all k ≥ K,
then there exists a unique z ∈ Z, z < 0 such that ι(z) = J .

Proof. This is well known. �

We now compute the cohomology relation for our Z-valued cocycles given by
K0 groups of noncommutative solenoids:

Theorem 3.14. Let N ∈ N, N > 1. Let J = (Jk)k∈N ∈ ZN and R = (Rk)k∈N ∈ ZN .
Let ι : Z → ZN be the monomorphism of Lemma (3.13). Let ξJ , ξR be the respective
Z-valued 2-cocycle of QN given by Lemma (3.11). Then ξJ and ξR are cohomologous if
and only if J −R ∈ ι(Z). This is equivalent to one of the following condition holding:

• There exists M ∈ N such that Jn −Rn = Nn−1(N − 1) for all n ≥M ,
• There exists M ∈ N such that Jn −Rn = Nn−1(1−N) for all n ≥M ,
• There exists M ∈ N such that Jn = Rn for all n ≥M .

In particular, if N > 1 then there exists nontrivial cocycles of the form ξα for some α ∈
ΞN .

Proof. Let σ = ξJ − ξR. For all n ∈ N, we define jn and rn as the unique integers
in {0, . . . , N − 1} such that Nnjn = Jn+1 − Jn and Nnrn = Rn+1 − Rn. Assume
there exists ψ : QN → Z such that for all x, y ∈ QN , we have:

σ(x, y) = ψ(x+ y)− ψ(x)− ψ(y).

Note that σ
(
p
Nk
, q
Nk

)
= 0 if p + q is not a multiple of N , with all fractions written

in reduced form in QN . Hence, under this condition, we have:

ψ
( p

Nk
+

q

Nk

)
= ψ

( p

Nk

)
+ ψ

( q

Nk

)
.

We now get:

−jk + rk = ψ

(
1

Nk

)
−Nψ

(
1

Nk+1

)
,

so:
jk − rk − ψ

(
1
Nk

)
N

= ψ

(
1

Nk+1

)
∈ Z

for all k ∈ N. Hence, for all k ∈ Nwe have:

ψ(1) + (Jk −Rk) ∈ NkZ.

Now:

Jk −Rk =

k−1∑
n=0

Nn(jn − rn)

Since J1 = j0 < N and if Jk < Nk then Jk+1 = Jk + Nkjk < Nk + Nk+1 −Nk =
Nk+1, we conclude by induction that Jk < Nk for all k ∈ N. Hence, ψ(1) + Jk −
Rk ∈ Zk implies that either ψ(1) + Jk −Rk = 0 or |ψ(1) + Jk −Rk| ≥ Nk.
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Case 3.14.1. Assume first that for all m ∈ N there exists k ∈ N with k > m such
that ψ(1) + Jk −Rk ≥ Nk. Then, for all k ∈ N such that ψ(1) + Jk −Rk ≥ Nk:

(3.7) ψ(1) ≥ Nk − Jk +Rk = 1 +

k−1∑
n=0

Nn(−jn + rn +N − 1)

for infinitely many k ∈ N. Since −jn + rn > −N , we have −jn + rn +N − 1 ≥ 0. If
−jn + rn +N − 1 > 0 then the right hand side of Inequality (3.7) is unbounded as
k is allowed to go to infinity, which is absurd since the left hand side is ψ(1). This
implies that there exists M ∈ N such that for all k ≥M , we have jk − rk = N − 1.
Conversely, if there exists M ∈ N such that jn− rn = N − 1 for all n ≥M , then set
ψ(1) = 1 +

∑M−1
n=0 Nn(N − 1− jn + rn). We then have:

ψ(1) + Jk −Rk = 1 +

M−1∑
n=0

Nn(N − 1− jn + rn)

+

M−1∑
n=0

Nn(jn − rn) +

k−1∑
n=M

Nn(N − 1)

= 1 +

k−1∑
n=0

(
Nk+1 −Nk

)
= Nk

as desired.

The cases for ψ(1)+Jk−Rk ≤ Nk for infinitely many k ∈ N, and ψ(1) = Rk−Jk
for infinitely many k ∈ N, are proved similarly.

�

Remark 3.15. Let α ∈ ΞN be given such that there exists ψ ∈ Z such that ψ + Jk =
Nk for all n ∈ N. Then define the map:∣∣∣∣∣ Z×QN −→ Kα(

z, p
Nk

)
7−→

(
z − pψ + pJk

Nk
, p
Nk

)
is easily checked to be a group isomorphism. Similar constructions may be used
for the other two cases of Theorem (3.14).

The following theorem shows that K0 groups of noncommutative solenoids
give all possible Abelian extensions of QN by Z.

Theorem 3.16. Given any Abelian extension:

(3.8) 0 −−−−→ Z −−−−→ Q −−−−→ QN −−−−→ 0

there exists J ∈ ZN such that the extension of Z byQN given by the cocycle ξJ of Lemma
(3.11) is equivalent to Extension (3.8). In particular, fixing any c ∈ [0, 1), there exists
α ∈ ΞN with α0 = c and such that Q is isomorphic as a group to K0(A S

α ).

Proof. The Pontryagin dual of ZN is given by the Prüfer N -group Z(N∞) defined
as the subgroup of T of all elements of order a power of N :

Z (N∞) =
{

exp
(

2iπ
p

Nk

)
: p ∈ Z, k ∈ N

}
endowed with the discrete topology. Z(N∞) is also the inductive limit of:

Z/NZ ⊂ Z/N2Z ⊂ Z/N3Z ⊂ · · ·
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and its dual pairing with ZN is given by:〈
J,

p

Nk

〉
= exp

(
2iπ

p(Jk)

Nk

)
where J ∈ ZN and p

Nk
∈ Z(N∞).

We note that from the theory of infinite Abelian groups [12, p. 219], to the short
exact sequence of Abelian groups:

0 −−−−→ Z −−−−→ QN −−−−→ Z(N∞) −−−−→ 0

there corresponds the Cartan-Eilenberg long exact sequence in Ext theory for groups:

Hom(Z(N∞),Z) // Hom(QN ,Z) // Hom(Z,Z)

ssffffffffffffffffffffffff

Ext(Z(N∞),Z) // Ext(QN ,Z) // Ext(Z,Z).

Since Hom(QN ,Z) = 0 and Ext(Z,Z) = 0, we deduce that we have a short exact
sequence:

0 −−−−→ Hom(Z,Z) −−−−→ Ext(Z(N∞),Z) −−−−→ Ext(QN ,Z) −−−−→ 0.

Since Z(N∞) is a torsion group, the group Ext(Z(N∞),Z) can be identified with
Hom(Z(N∞),Q/Z) ∼= Ẑ(N∞) [12, p. 224], which in turn can be identified with the
Pontryagin dual ofZ(N∞), namelyZN . The identification between Hom(Z(N∞),Q/Z)
and Ext(Z(N∞),Z) is constructed as follows. Let s be a cross-section of π∗ with
s(0) = 0Q in the short exact sequence:

0 −−−−→ Z −−−−→ Q
π∗−−−−→ Q/Z −−−−→ 0

where π∗ is the natural projection. Any such choice will do, and we take s(z) = x
with x ∈ Q ∩ [0, 1) uniquely defined by x ≡ z mod Z. We can then define the
two-cocycle:

ω

∣∣∣∣ Q/Z×Q/Z −→ Z

(z1, z2) 7−→ s(z1) + s(z2)− s(z1 + z2).

We can now identify ZN and Ext(Z(N∞),Z) as follows. For J = (Jn)n∈N,n>0, we
define the Z-valued 2-cocycle of QN by:

ζJ :
( p1

Nk1
,
p2

Nk2

)
∈ Q2

N 7−→ ω
(
J
[
π∗

( p1

Nk1

)]
, J
[
π∗

( p2

Nk2

)])
.

We then compute that:

s ◦ π∗(x) = [x] mod 1, x ∈ Q,

where for x ∈ Q, [x] mod 1 is defined to be that unique element of [0, 1) congruent
to x modulo 1.

Let us now fix J ∈ ZN . As before, we define (jn)n∈N by requiring for all n ∈
N, n > 0 that Jn =

∑n−1
k=0 N

kjk and jn ∈ {0, 1, · · · , N − 1}. We now calculate that
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the two-cocycle ζJ is given as follows:

ζJ

( p1

Nk1
,
p2

Nk2

)
=

ZJ
( p1

Nk1
,
p2

Nk2

)
−


(p2N

k1−k2+p1)
Nk1

Jk1 mod 1 if k1 > k2,
(p1N

k2−k1+p2)
Nk2

Jk2 mod 1 if k1 < k2,
p1+p2
Nk

Jk mod 1 if k1 = k2 = k

where ZJ
(
p1
Nk1

, p2
Nk2

)
=
[
p1Jk1
Nk1

mod 1
]

+
[
p2Jk2
Nk2

mod 1
]
. We remark that al-

though each term in the expression defining the cocycle may not be an integer,
the combination turns into an integer. We now claim that if J ∈ ZN is in the image
of ι : Z → ZN described in the Lemma (3.13), then ζJ is a coboundary. This is
to be expected from the short exact sequence giving Ext(QN ,Z) as a quotient of
Ext(Z(N∞),Z). In this case, we recall that for (Jn)n∈N,n>0 = ι(P ) for P ≥ 0, there
is M ∈ N such that Jn = P for all n ≥ M . In that case for all k1, k2 ≥ M and
p1, p2 ∈ Z:

ζJ(
p1

Nk1
,
p2

Nk2
)) =

[
p1P

Nk1
mod 1

]
+

[
p2P

Nk2
mod 1

]
−
[( p1

Nk1
+

p2

Nk2

)
P mod 1

]
.

But this eventually constant sequence is a coboundary, since defining µJ : QN → Z

by:

µJ :
p

Nk
7→
[
pP

Nk
mod 1

]
− pP

Nk
,

we check that:

µJ

( p1

Nk1

)
+ µJ

( p2

Nk2

)
− µJ

( p1

Nk1
+

p2

Nk2

)
= ζJ

( p1

Nk1
,
p2

Nk2

)
for all p1

Nk1
, p2
Nk2
∈ QN . Similarly if J = ι(P ) for a negative integer P , the statement

of Lemma (3.13) shows that jn = N − 1 for all n ≥M, and one proves in a similar
fashion that ζJ is a coboundary.

We now claim that the two-cocycle of Lemma (3.11) (denoted hereafter by ξJ ) is
cohomologous to ζJ . Recall that ξJ is defined by :

ξJ

∣∣∣∣∣∣∣∣∣∣
QN ×QN 7−→ Z

(
p1
Nk1

, p2
Nk2

)
7−→


− p1
Nk1

(Jk2 − Jk1) if k2 > k1

− p2
Nk2

(Jk1 − Jk2) if k1 > k2

q
Nr (Jk1 − Jr) if ∧

{
k1 = k2
p1
Nk1

+ p2
Nk2

= q
Nr

To establish this, we first remark that for all p
Nk
∈ QN and for all m ≥ 0, we

have
[
p
Nk
· Jk mod 1

]
=
[
pNm

Nk+m
· Jk+m mod 1

]
. We establish this by recalling

that each Jk =
∑k−1
i=0 jiN

i so that Jk+m =
∑k+m−1
i=0 jiN

i, and the result is an easy
computation.

Now consider the following one-cochain, generalizing our definition given ear-
lier on this page:

µJ

∣∣∣∣ QN −→ Z
p
Nk

7−→
[
p
Nk
Jk mod 1

]
− p

Nk
Jk
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where the p
Nk

is taken in reduced form. Then the cobounding map takes −µJ to
the following two-coboundary δ(−µJ) on QN ×QN → Z given by:

δ(−µJ)(
p1

Nk1
,
p2

Nk2
) =

p1

Nk1
Jk1

−
[ p1

Nk1
Jk1 mod 1

]
+

p2

Nk2
Jk2 −

[ p2

Nk2
Jk2 mod 1

]
− (

p1

Nk1
+

p2

Nk2
)Jr +

[
(
p1

Nk1
+

p2

Nk2
)Jr mod 1

]
,

where we want p1
Nk1

+ p2
Nk2

= q
Nr in reduced form. Then one verifies that

ζJδ(−µJ) = ξJ ,

so that the cocycles ζJ and ξJ are cohomologous. �

Remark 3.17. Using Theorem (3.16) and Theorem (3.14), we have shown that Ext(QN ,Z)
is isomorphic to ZN/Zwhere we identified Zwith ι(Z) ⊆ ZN .

We now turn our attention to some properties of the C*-algebras A S
α for some

special classes ofα. There are three distinct subclasses of noncommutative solenoids
based upon their basic structure:

Definition 3.18. Let N ∈ N, N > 1. Let α ∈ ΞN .
(1) If α is a periodic sequence (and thus in particular rational), we call A S

α a
periodic rational noncommutative solenoid. These are exactly the nonsim-
ple noncommutative solenoids.

(2) If α is a sequence of rationals, though not periodic, then we call A S
α an

aperiodic rational noncommutative solenoid.
(3) If α is a sequence of irrationals (and thus can never be periodic), then we

call A S
α an irrational noncommutative solenoid.

We note that simplicity is associated to a form of finiteness, or rationality con-
dition: we need both the (eventual) periodicity of the decimal expansion of the
entries of α and the periodicity of α itself. The aperiodic rational case is the more
mysterious of the three and an interesting surprise.

We start with the case where α is irrational. We use the following well known
result [11] (see also [4] for a similar argument used for AF-algebras, which can be
applied for AT-algebras as well), whose proof is included for the reader’s conve-
nience. We refer to [16] for the foundation of the theory of AT-algebras. A circle
algebra is the C*-algebra of n × n matrix - valued continuous functions on some
connected compact subset ofT. An AT-algebra is the inductive limit of a sequence
of direct sums of circle algebras.

Lemma 3.19. The inductive limit of AT-algebras is AT.

Proof. Let (An)n∈N be a sequence of AT-algebras of inductive limit A. To simplify
notations, we identify An with a subalgebra of A for all n ∈ N. Let ε > 0, k ∈ N
with n > 0 and a1, . . . , ak ∈ A. Since A is an inductive limit, there exists K ∈ N
and b1, . . . , bk ∈ AK such that ‖aj − bj‖ ≤ 1

2ε for j = 1, . . . , k. Now, since AK
is an AT-algebra, there exists L ∈ N, a finite direct sum C of circle algebras and
c1, . . . , ck ∈ C such that ‖bj − cj‖ < 1

2ε for j = 1, . . . , k. Hence, ‖aj − cj‖ < ε. By
[16, Theorem 4.1.5], we have characterized A as an AT-algebra. �
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Proposition 3.20. Let N ∈ N, N > 1 and α ∈ ΞN . If α0 6∈ Q (or equivalently, if there
exists k ∈ N such that αk 6∈ Q), then A S

α is a simple AT-algebra of real rank 0.

Proof. This follows from [10], Theorem (3.5), Lemma (3.19) and [16]. �

We now consider α ∈ ΞN (N ∈ N, N > 1) with α0 rational periodic. By The-
orem (3.5), A S

α is not simple. It is possible to provide a full description of the
C*-algebra A S

α . We denote by Mq(C) the C*-algebra of q × q matrices with com-
plex entries, and we denote byC(X,A) the C*-algebra of continuous function from
a compact space X to a C*-algebra A.

Theorem 3.21. LetN ∈ NwithN > 1 and α ∈ ΞN . Let α0 = p
q with p, q ∈ N, nonzero,

p and q relatively prime. Assume there exists k ∈ N nonzero such that (Nk − 1)α0 ∈ Z,
and that k is the smallest such nonzero natural. Let λ = exp

(
2iπ pq

)
. We define the

following two unitaries:

uλ =


1

λ
λ2

. . . λq−1

 vλ =


0 · · · 0 1
1 0 · · · 0

0
. . . 0

0 · · · 1


and observe that vλuλ = λuλvλ. Then A S

α is the C*-algebra of continuous sections of a
bundle with base space S 2

Nk and fiber Mq(C). More precisely, A S
α is the fixed point of

C(S 2
Nk ,Mq(C)) for the action ρ of Z/qZ2 given by:

ρ(n,m)(ζ) : (z, w) ∈ S 2
N 7→ v−mλ u−nλ ζ(λ−nz, λ−mw)unλv

m
λ

for (n,m) ∈ (Z/qZ)2 and ζ ∈ C(S 2
Nk ,Mq(C)).

Proof. By Theorem (2.12), our assumption implies thatα is k-periodic. Let (βn)n∈N =
(α0)n∈N — i.e. β is constant, and moreover β ∈ ΞNk . Let θk = ϕnk ◦ . . . ϕ(n+1)k−1

for all n ∈ Nwhere we use the notations of Theorem (3.7). We have:

A S
α = lim−→(Aα2k

, ϕk) = lim−→(Aβ2k
, θk) = A S

β

as desired. We shall henceforth write β, by abuse of language, to mean the constant
value the sequence β takes — namely α0.

Let E = C(S 2
Nk ,Mq(C)) and let Eτ be the fixed point C*-subalgebra of E for

the action τ of (Z/qZ)2. It is well known that the fixed point C*-algebra Eτ of τ is
*-isomorphic to Aβ .

Let ϕ : E → E be defined by setting:

ϕ(ζ) : (z, w) ∈ T2 7→ ζ(z(Nk), w(Nk))

for all ζ ∈ E. Now, using our assumption that (Nk − 1)α0 ∈ Z so λ(Nk) = 1, we
show that ϕ and τ commute:

τ(1,0)(ϕ(f ⊗A)) : (z, w) ∈ T2 7→ f((λ−1z)(Nk), w(Nk))⊗A

= f(λ−1z(Nk), w(Nk))⊗A
= ϕ(τ(1,0)(f ⊗A)),

for all f ∈ C(T2) and A ∈Mq(C). Hence τ(1,0) ◦ϕ = ϕ◦τ(1,0) ◦ϕ by extending (3.9)
linearly and by continuity. A similar computation would show that τ(0,1) ◦ ϕ =
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ϕ ◦ τ(0,1). Hence, ϕ restricts to an endomorphism of Eτ . Now, the inductive limit
of:

E
ϕ−−−−→ E

ϕ−−−−→ E
ϕ−−−−→ · · ·

is C(S 2
Nk ,Mq(C)). Since ϕ and τ commute, the action τ extends to the inductive

limit by:
ρ(p,q)(ζ) : (z, w) ∈ S 2

N 7→ v−qλ u−pλ ζ(λ−pz, λ−qw)upλv
q
λ

for all ζ ∈ C(S 2
Nk ,Mq(C)) and moreover, the inductive limit of:

Aα = Eτ
ϕ−−−−→ Aα

ϕ−−−−→ Aα
ϕ−−−−→ · · ·

which is A S
α by Theorem (3.7) is also the fixed point of C(S 2

Nk ,Mq(C)) by the
action ρ of (Z/qZ)2 on C(S 2

Nk ,Mq(C)). Hence our theorem. �

We note that the proof of Theorem (3.21) shows that the embeddings from The-
orem (3.7) map from and to the centers of the rotation C*-algebras. This is in
contrast with the situation when α0 is rational but α is not pseudo-periodic, which
illustrates why the associated noncommutative solenoids are simple.

4. THE ISOMORPHISM PROBLEM

Our classification of noncommutative solenoids is based on our computation of
their K-theory. We start with the following simple observation:

Lemma 4.1. Let σ : QN → QN be a group isomorphism. Then there exists p ∈ Z with
p | N and p 6∈ {−N,N} and k ∈ N such that σ(1) = p

Nk
. Consequently σ

(
1
Nr

)
= p

Nk+r

for all r ∈ N.

Proof. Let us write σ(1) = pq
Nk

in its reduced form, with q relatively prime with N
and nonnegative. Note that as σ is an isomorphism, pq 6= 0 and moreover, there
exists x ∈ QN such that σ(x) = p

Nk
and we must have qx = 1. This contradicts the

relative primality of N and q. �

We now obtain the main result of our paper. We fully characterize the iso-
morphism classes of noncommutative solenoids based on the multipliers of adic
rationals.

Theorem 4.2. Let N,M ∈ N with N > 1 and M > 1. Let α ∈ ΞN and β ∈ ΞM . The
following assertions are equivalent:

(1) The C*-algebras A S
α and A S

β are *-isomorphic,
(2) The integers N and M have the same set of prime factor. Let R be the the greatest

common divisor of N and M , and let µ = N
R and ν = M

R . Set α′n = µnαn
mod 1 and β′n = νnβn mod 1 for all n ∈ N and note α′, β′ ∈ ΞR. There
exists Λ ∈ P and γ ∈ ΞΛ such that both α′ and γ have a common subsequence,
and β′ or −β′ = (1 − β′n)n∈N has a common subsequence with γ. Moreover,
{Λn : n ∈ N} is the set of prime factors of R.

Proof. Assume that there exists Λ ∈ P and γ ∈ ΞΛ such that α and β have subse-
quences which are also subsequences of γ. Then a standard intertwining argument
shows that A S

α and A S
β are *-isomorphic to A S

γ . Moreover, for any irrational ro-
tation algebra Aθ, we have that Aθ is *-isomorphic to A−θ. Hence, A S

β and A S
−β

are *-isomorphic as well.
Now, let N = µR and assume the set of prime factors in µ is a subset of the set

of prime factors of N . Set α′n = µnαn for all n ∈ N.
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First, it is straightforward to show that if N and R have the same set of prime
factors, then QN and QR are isomorphic.

Second, for all n ∈ Nwe have:

Rα′n+1 ≡ Rµn+1αn+1 mod Z

≡ µnNαn+1 mod Z

≡ µnαn mod Z

≡ α′n mod Z.

Hence α′ ∈ ΞR.
Third, given pj

Rkj
=

pjµ
kj

Nkj
∈ QR for j = 1, 2, 3, 4, we have:

Ψα′

(( p1

Rk1
,
p2

Rk2

)
,
( p3

Rk3
,
p4

Rk4

))
=

= exp
(
2iπ

(
α′k1+k4p1p4

))
= exp

(
2iπ

(
αk1+k4(µk1p1µ

k4p4

))
= Ψα

((
p1µ

k1

Nk1
,
p2µ

k2

Nk2

)
,

(
p3µ

k3

Nk3
,
p4µ

k4

Nk4

))
.

Hence, Ψα = Ψ′α. Consequently, A S
α′ = A S

α . This concludes the proof that (2)
implies (1).

Conversely, let θ : A S
α → A S

β be a *-isomorphism. We shall use the notations
introduced in Theorem (3.8). If τ is a tracial state of A S

β then τ ◦ θ is a tracial state
on A S

α . Denote, respectively, by τα and τβ the lift of a tracial state of A S
α and

A S
β , and note that by Theorem (3.6), the choices of tracial state is irrelevant.
By functoriality of K-theory, we obtain the following commutative diagram:

(4.1) K0(A S
α )

K0(θ) //

τα
##GGGGGGGGG

K0(A S
β )

τβ
{{wwwwwwwww

R

where K0(θ) is the group isomorphism induced by θ. To ease notations, let us
write σ = K0(θ).

Our first observation is that τβ ◦ σ(1, 0) = τα(1, 0) = 1, which implies that
σ(1, 0) = (1, 0).

Let πβ : Kβ → QM be defined by πβ
(
z +

pJβk
Mk ,

p
Mk

)
= p

Mk . It is easily checked
that πβ is a group epimorphism. Moreover, kerπβ = {(z, 0) : z ∈ Z}. Conse-

quently, if z, z′ ∈ Z, since σ
(
z +

pJαk
Nk

, p
Nk

)
= σ(z, 0) + σ

(
pJαk
Nk

, p
Nk

)
, we observe

that:

πβ

(
σ

(
z +

pJαk
Nk

,
p

Nk

)
− σ

(
z′ +

pJαk
Nk

,
p

Nk

))
= 0.
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Consequently, we have the following commuting diagram:

Kα
σ //

πα

��

Kβ

πβ

��
QN

f // QM .

with f : QN → QM defined by setting f
(
p
Nk

)
= πβ ◦ σ

(
pJαk
Nk

, p
Nk

)
. In particular, f

is a group isomorphism, so the set of prime factors of N and M are the same and
QN = QM . As we showed in the first half of this proof, and using the definition of
our Theorem, α′, β′ ∈ ΞR and QN = QR where R is the greatest common divisor
of N,M and A S

α′ = A S
α while A S

β′ = A S
β . We shall henceforth work within QR

with α′ and β′.
Let p ∈ Z, k ∈ N be defined so that f(1) = p

Rk
and p

Rk
is in reduced form, with

p | R and p 6∈ {−R,R} by Lemma (4.1) . Since f is an isomorphism, we have
f
(

1
Rn

)
= p

Rk+n
for all n ∈ N. Using the notation Ω(R) for the number of prime

factors of R, let Λ ∈P be defined as a periodic sequence of period Ω(R) such that
ΛΩ(R)−1−j = Λ(p)Ω(R)−1−j for j = 0, . . . ,Ω(p) − 1 and πΩ(R)(Λ) = R. Any of the
(Ω(R) − Ω(p))! possible choices of order for the first Ω(R) − Ω(p) values of Λ can
be used, and we assume we pick one in the rest of this proof. We can visualize Λ
as:

Λ =

Λ0,Λ1, · · · ,

product = p︷ ︸︸ ︷
ΛΩ(R)−Ω(p), · · · ,ΛΩ(R)−1︸ ︷︷ ︸

product = R

, ΛΩ(R), · · · ,Λ2Ω(R)−1︸ ︷︷ ︸
equal to previous Ω(R) terms

, · · ·


Let γ be the (unique) extensions of β′ to ΞΛ. Thus γΩ(R)n = β′n for all n ∈ N.

Now, for any n ∈ N, there exists pn ∈ Z such that

σ

(
Jα
′

n

Rn
,

1

Rn

)
=

(
pn +

pJβ
′

n+k

Rn+k
,

p

Rn+k

)
.

Using the computation of the traces on K0 in Theorem (3.8) and the commutative
diagram (4.1), and noting that if r = Ω(p) then pβ′n = pγnΩ(R) = γnΩ(R)−r by
definition of p, Λ and γ, we thus have:

α′n = pβ′n+k + pn ≡ sign(p)γ(n+k)Ω(N)−r mod Z.

Thus, sign(p)α′ is a subsequence of γ, and β is a subsequence of γ by construc-
tion. This concludes the proof of (1) implies (2). �

Corollary 4.3. Let N,M be prime numbers. Let α ∈ ΞN and β ∈ ΞM . Then the
following assertions are equivalent:

(1) The noncommutative solenoids A S
α and A S

β are *-isomorphic,
(2) We have N = M and one of the sequence α or β is a truncated subsequence of the

other.

Proof. If N = M and α is a truncated subsequence of β then A S
α and αβ are

trivially *-isomorphic. The same holds if β is a truncated subsequence of α.
Conversely, assume A S

α and A S
β are *-isomorphic. Then as N and M are

prime, so by Theorem (4.2) we have N = M . Moreover, there exists a sequence
γ ∈ ΞN such that both α and β are subsequences of γ. Now, since α, β, γ ∈ ΞN ,
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this implies that for some n, n′ ∈ N we have αj = γn+j and βj = γn′+j for all
j ∈ N. This shows that either α is a truncated subsequence of β (if n′ ≤ n) or β is
a truncated subsequence of α. �

Theorem (4.2) relies on the invariant A S
α (α ∈ ΞN ) 7→

(
K0(A S

α ), τα
)

where
τα is the unique map given by lifting any tracial state of A S

α to its K0 group. We
would like to add an observation regarding the information on noncommutative
solenoids one can read from the K0 group seen as an Abelian extension of Z by
QN rather than as a group alone. We fix N ∈ N, N > 1.

First, note that given α ∈ ΞN , the pair (K0(A S
α ), [1]), where [1] is theK0-class of

the identity of A S
α , we can construct an Abelian extension ofZ byQN by defining

ι : z ∈ Z 7→ z[1] and noting that K0(A S
α )/i(Z) is isomorphic to QN .

Now, consider α, β ∈ ΞN such that there exists a (unital) *-isomorphism ψ :
A S
α → A S

β . Then the following diagram commutes:

(4.2) 0 // Z
ι// Qα = K0(A S

α ) //

K0(ψ)

��

QN //

σ

��

0

0 // Z
ι// Qβ = K0(A S

β ) // QN // 0

since ψ is unital, and where the arrow σ is defined and proven to be an isomor-
phism by standard diagram chasing arguments.

Conversely, we say that two Abelian extensions of Z by QN such that there
exists a commutative diagram of the form Diagram (4.2) are weakly equivalent (note
that Theorem (3.16) shows that any such extension can be obtained using the K-
theory of noncommutative solenoids). Note that weakly equivalent extensions are
isomorphic but not necessarily equivalent as extensions. The difference is that we
allow for an automorphism σ of QN . This reflects, informally, that according to
Theorem (4.2), the noncommutative solenoid A S

α only partially determines α.
Now, given two equivalent Abelian extensions of Z by QN , if one is weakly

equivalent to some other extension, then so is the other. Hence, weakly equiva-
lence defines an equivalence relation ≡ on Ext(QN ,Z) such that if α, β ∈ ΞN give
rise to *-isomorphic noncommutative solenoids, then the associated Abelian ex-
tensions of cocycle ξα and ξα (see Lemma (3.11)) in Ext(QN ,Z) are equivalent for
≡.

According to Theorem (3.16), the group Ext(QN ,Z) is isomorphic to the quo-
tient ZN/Z of the group ZN of N -adic integers by the group Z of integers. Using
Theorem (4.2), we easily see that the relation induced by ≡ on ZN/Z is given by:

[Jn]n∈N ≡ [Rn]n∈N ⇐⇒ ∃k ∈ N
(
NkJ −R ∈ Z

)
∨
(
NkR− J ∈ Z

)
where [J ] is the class in ZN/Z of J ∈ ZN and NkJ is the sequence (NkJn)n∈N for
any J ∈ ZN .

Hence, in conclusion, for a given α ∈ ΞN , the data
(
K0(A S

α ), [1], α0

)
where

α0 is the trace of any Rieffel-Powers projection in A S
α , is a complete invariant

for A S
α . Indeed, (K0(A S

α ), [1]) determines a cocycle ξJ in H2(QN ,Z), up to the
equivalence ≡, and we can recover α up to a shift using the value α0.

Our classification result has the following interesting dynamical application.
The following is easily seen:
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Corollary 4.4. Let N,M ∈ N with N,M > 1. Let α ∈ ΞN and β ∈ ΞM . If any of the
following assertion holds:

(1) N and M have distinct set of prime factors,
(2) For any Λ ∈ P such that {Λn : n ∈ N} is the set of prime factors of N , there is

no γ ∈ ΞΛ such that α′ and β′ are subsequences of γ and no γ ∈ ΞΛ such that
α′ and −β′ are subsequences of γ, where α′, β′ ∈ ΞR are defined as in Theorem
(4.2),

then the actions θα and θβ of, respectively, QN on SN and QM on SM are not topologi-
cally conjugate.
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