Axioms for an Ordered Field

Department of Mathematics
University of Colorado, Boulder
Mathematics 3001-02, January 15, 2016

Outline

(1) Addition Axioms
(2) Multiplication Axioms
(3) Order Axioms

Addition Axioms for \mathbb{F}

Let $\mathbb{F}=\mathbb{Q}$ or $\mathbb{F}=\mathbb{R}$.
A1 For every $x, y \in \mathbb{F}, x+y \in \mathbb{F}$, and if $x=w$ and $y=z, x+y=w+z$. (Closure under addition).
A2 For every $x, y \in \mathbb{F}, x+y=y+x$. (Commutative Axiom).
A3 For every $x, y, z \in \mathbb{F}, x+(y+z)=(x+y)+z$. (Associative Axiom).
A4 There exists a unique $0 \in \mathbb{F}$ such that $x+0=x$ for all $x \in \mathbb{F}$. (Existence of additive unit).
A5 For every $x \in \mathbb{F}$ there exists a unique $(-x) \in \mathbb{F}$ such that $x+(-x)=0$. (Existence of additive inverse).

Multiplication Axioms for \mathbb{F}

M1 For every $x, y \in \mathbb{F}, x \cdot y \in \mathbb{F}$, and if $x=w$ and $y=z, x \cdot y=w \cdot z$. (Closure under multiplication).
M2 For every $x, y \in \mathbb{F}, x \cdot y=y \cdot x$. (Commutative Axiom).
M3 For every $x, y, z \in \mathbb{F}, x \cdot(y \cdot z)=(x \cdot y) \cdot z$. (Associative Axiom).
M4 There exists a unique $1 \in \mathbb{F}$ such that $x \cdot 1=x$ for all $x \in \mathbb{F}$. (Existence of multiplicative unit).
M5 For every $x \in \mathbb{F}-\{0\}$, there exists a unique $(1 / x) \in \mathbb{F}$ such that $x \cdot(1 / x)=1$. (Existence of multiplicative inverse).
D For every $x, y, z \in \mathbb{F}, x \cdot(y+z)=x \cdot y+x \cdot z$. (Distributive property of multiplication over addition).

Order Axioms for \mathbb{F}

O1 For every $x, y \in \mathbb{F}$, exactly one of the following holds: either $x=y, x<y$, or $y<x$.(Trichotomy Law of Order).
O2 For every $x, y, z \in \mathbb{F}$, if $x<y$ and $y<z$ then $x<z$. (Transitive Law of Order).
O3 For every $x, y, z \in \mathbb{F}$, if $x<y$ then $x+z<y+z$ (adding a constant to both sides of an inequality does not change the direction of the inequality).
O4 For every $x, y, z \in \mathbb{F}$, if $x<y$ and $z>0$, then
$x \cdot z<y \cdot z$ (multiplying boths sides of an inequality by a positive constant does not change the direction of the inequality).

