Axioms for an Ordered Field

Department of Mathematics University of Colorado, Boulder

Mathematics 3001-02, January 15, 2016

Ordered Field Axioms

イロト イポト イヨト イヨト

3

Ordered Field Axioms

イロン 不得 とくほ とくほとう

2

Addition Axioms for $\mathbb F$

Let $\mathbb{F} = \mathbb{Q}$ or $\mathbb{F} = \mathbb{R}$.

- A1 For every $x, y \in \mathbb{F}$, $x + y \in \mathbb{F}$, and if x = w and y = z, x + y = w + z. (*Closure under addition*).
- A2 For every $x, y \in \mathbb{F}$, x + y = y + x. (Commutative Axiom).
- A3 For every $x, y, z \in \mathbb{F}$, x + (y + z) = (x + y) + z. (Associative Axiom).
- A4 There exists a unique $0 \in \mathbb{F}$ such that x + 0 = x for all $x \in \mathbb{F}$. *(Existence of additive unit).*
- A5 For every $x \in \mathbb{F}$ there exists a unique $(-x) \in \mathbb{F}$ such that x + (-x) = 0. *(Existence of additive inverse).*

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Multiplication Axioms for $\mathbb F$

- M1 For every $x, y \in \mathbb{F}$, $x \cdot y \in \mathbb{F}$, and if x = w and y = z, $x \cdot y = w \cdot z$. (*Closure under multiplication*).
- M2 For every $x, y \in \mathbb{F}$, $x \cdot y = y \cdot x$. *(Commutative Axiom).*
- M3 For every $x, y, z \in \mathbb{F}$, $x \cdot (y \cdot z) = (x \cdot y) \cdot z$. (Associative Axiom).
- M4 There exists a unique $1 \in \mathbb{F}$ such that $x \cdot 1 = x$ for all $x \in \mathbb{F}$. *(Existence of multiplicative unit).*
- M5 For every $x \in \mathbb{F} \{0\}$, there exists a unique $(1/x) \in \mathbb{F}$ such that $x \cdot (1/x) = 1$. *(Existence of multiplicative inverse).*
 - D For every $x, y, z \in \mathbb{F}$, $x \cdot (y + z) = x \cdot y + x \cdot z$. (Distributive property of multiplication over addition).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Order Axioms for ${\mathbb F}$

- O1 For every $x, y \in \mathbb{F}$, exactly one of the following holds: either x = y, x < y, or y < x.(*Trichotomy Law of Order*).
- O2 For every $x, y, z \in \mathbb{F}$, if x < y and y < z then x < z. (*Transitive Law of Order*).
- O3 For every $x, y, z \in \mathbb{F}$, if x < y then x + z < y + z (adding a constant to both sides of an inequality does not change the direction of the inequality).
- O4 For every $x, y, z \in \mathbb{F}$, if x < y and z > 0, then $x \cdot z < y \cdot z$ (multiplying boths sides of an inequality by a positive constant does not change the direction of the inequality).

イロト 不得 とくほ とくほとう