Math 2001 - Final Exam
 May 5, 2010

1. Suppose P, Q are statements. Using any method, prove that

$$
\neg([P \wedge(P \Rightarrow Q)] \wedge \neg Q)
$$

is a tautology (i.e., is true no matter what the statements are).
Solution: We have $P \Rightarrow Q=\neg(P \wedge \neg Q)=(\neg P) \vee Q$.
Therefore

$$
P \wedge(P \Rightarrow Q)=P \wedge((\neg P) \vee Q)=(P \wedge(\neg P)) \vee(P \wedge Q)=\operatorname{FALSE} \vee(P \wedge Q)=P \wedge Q
$$

Next we have

$$
(P \wedge Q) \wedge \neg Q)=P \wedge(Q \wedge \neg Q)=P \wedge \text { FALSE }=\text { FALSE }
$$

Finally the statement we have is the negation of FALSE, which is TRUE.
Another way to do it is to write out a truth table.
2. Let A be a set.
(a) What properties must a relation R on A have in order to be a function $f: A \rightarrow A$?

Solution: If $(a, b) \in R$ and $(a, c) \in R$, then $b=c$. Also for every $a \in A$ there should be a $b \in A$ such that $(a, b) \in R$.
(b) What properties must a relation R on A have in order to be an equivalence relation on A ?

Solution: It should be reflexive (i.e., $(a, a) \in R$ for all $a \in A$). It should be symmetric (i.e., if $(a, b) \in R$ then $(b, a) \in R$). And it should be transitive (i.e., if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R)$.
(c) Define a relation on the set $A=\{1,2,3,4,5\}$ that is BOTH a function and an equivalence relation.
Solution: Since the relation must be reflexive, we must have $(a, a) \in R$ for every $a \in\{1,2,3,4,5\}$. But we can't have more than one ordered pair that has the same first entry, so this is all we can have. So the function is $f(x)=x$, the identity.
3. Suppose $A=\{1,2,3\}$ and $B=\{4,5,6,7\}$.
(a) How many distinct one-to-one functions $f: A \rightarrow B$ are there? Explain your answer.

Solution: We have four choices for $f(1)$, then three choices for $f(2)$, and two choices for $f(3)$. So in total there are $4 \times 3 \times 2=24$ such functions.
(b) How many distinct onto functions $f: A \rightarrow B$ are there? Explain your answer.

Solution: There aren't any, by the pigeonhole principle. If $|A|<|B|$, then no function can ever be onto B.
4. Consider the following theorem and its "proof."

Theorem: Every integer is divisible by 2 or 3 .
Proof: Assume, for the sake of contradiction, that every integer is not divisible by 2 or 3 . Since 6 is an integer, it follows that 6 is not divisible by 2 or not divisible by 3 . But 6 is divisible by both 2 and 3 , which is a contradiction. $\Rightarrow \Leftarrow$
What is wrong with this proof?
Solution: The negation is wrong. The negation of "every integer satisfies P " is "there is at least one integer not satisfying P," not that "every integer fails to satisfy P."
5. Prove the following statement by the method of contradiction:
"For all primes a and b, if $a+b$ is prime, then $a=2$ or $b=2$." (You may use the facts that every integer is even or odd but not both, the sum of two odd integers is even, and 2 is the only even prime.)
Solution: Assume, to get a contradiction, that a and b are primes such that $a+b$ is prime, while $a \neq 2$ and $b \neq 2$.
Since the only even prime is 2 , the fact that a is prime and not 2 means that a is not even. So a is odd. Similarly b is odd.

Now $a+b$ is the sum of two odd integers, and therefore it is even. Since $a>1$ and $b>1$, we know that $a+b>2$, so $a+b$ must be odd. The fact that $a+b$ is both even and odd is impossible, so we get a contradiction.
6. Define a sequence $a_{0}, a_{1}, a_{2}, \ldots$ by $a_{0}=1$ and

$$
a_{n+1}=1-\frac{1}{4 a_{n}}, \quad n \geq 0
$$

Prove either by induction or by the method of smallest counterexample that

$$
a_{n}=\frac{2+n}{2+2 n}
$$

Solution: Let's do proof by induction. First the base case: when $n=0$ we have $a_{0}=1$ and $\frac{2+0}{2+0}=1$, so it works.
Now suppose $a_{n}=\frac{2+n}{2+2 n}$; we want to prove that $a_{n+1}=\frac{3+n}{4+2 n}$. We have

$$
a_{n+1}=1-\frac{2+2 n}{8+4 n}=1-\frac{1+n}{4+2 n}=\frac{3+n}{4+2 n}
$$

which is what we wanted to see. So the formula is valid for all n.
7. Consider the following permutations in S_{7} :

$$
\sigma=(1,4,3)(2,7,5,6), \quad \tau=(1)(2,3,5,7)(4,6)
$$

(a) Compute $\sigma \circ \tau$.

Solution: $\sigma \circ \tau=(1,4,2)(3,6)(5)(7)$.
(b) Write σ as a product of transpositions, and determine whether σ is even or odd.

Solution: We have $\sigma=(1,4) \circ(4,3) \circ(2,7) \circ(7,5) \circ(5,6)$. That's five transpositions, so σ is odd.
8. Let A, B be events in a sample space, and suppose that A and B are independent.
(a) Express $P(A \cup B)$ in terms of $P(A)$ and $P(B)$. (Note that this question is asking for the probability of the union, not the intersection!)
Solution: We have $P(A \cup B)=P(A)+P(B)-P(A \cap B)$. Since A and B are independent, we know $P(A \cap B)=P(A) P(B)$. So

$$
P(A \cup B)=P(A)+P(B)-P(A) P(B)
$$

(b) Express $P(\bar{A} \cap \bar{B})$ in terms of $P(A)$ and $P(B)$.

Solution: This event is the complement of $A \cup B$, by DeMorgan's Law, so that

$$
P(\bar{A} \cap \bar{B})=1-P(A \cup B)=1-P(A)-P(B)+P(A) P(B)
$$

(c) Prove that \bar{A} and \bar{B} are independent.

Solution: We have $P(\bar{A})=1-P(A)$ and $P(\bar{B})=1-P(B)$, so that

$$
P(\bar{A}) \cdot P(\bar{B})=(1-P(A))(1-P(B))=1-P(A)-P(B)+P(A) P(B),
$$

which is the same thing we found for $P(\bar{A} \cap \bar{B})$.
9. A set of five cards is called a "flush house" if it has three cards of one suit and two cards of another suit. For example, the 3, 4, and king of diamonds and the 7 and ace of hearts would form a flush house.
What is the probability of getting a flush house from a full deck?
Solution: List the ways to choose the cards.

- First choose the suit for the triplet; there are $\binom{4}{1}$ ways to do this.
- Next choose the three faces in the triplet; there are $\binom{13}{3}$ ways to do this.
- Now choose the suit for the pair; there are $\binom{3}{1}$ ways to do this.
- Finally choose the two faces for the pair; there are $\binom{13}{2}$ ways to do this.

Since the size of the sample space is $\binom{52}{5}$, and since every hand is equally likely, we have

$$
P=\frac{\binom{4}{1}\binom{13}{3}\binom{3}{1}\binom{13}{2}}{\binom{52}{5}}=\frac{429}{4165} .
$$

10. An unfair coin obtained from Tom's Discount Word Problem Supply Shop has probability $\frac{2}{3}$ of coming up heads. Suppose the coin is tossed three times.
(a) What is the probability that it comes up tails exactly two times?

Solution: There are three ways this could happen: we get (H, T, T) or (T, H, T) or (T, T, H). The probability of each one of these is $\frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}=\frac{2}{27}$. Thus the probability of any one of the three pairwise disjoint events is $\frac{2}{9}$.
$0.9 \cdot 0.1 \cdot 0.1=0.009$. So the total probability is 0.027 .
(b) Given that at least one of the tosses is tails, what's the probability it comes up tails all three times?
Solution: The set B consisting of at least one tails is the complement of the set $\bar{B}=\{(H, H, H)\}$, which occurs with probability $\left(\frac{2}{3}\right)^{3}=\frac{8}{27}$. So the probability of B is $P(B)=1-\frac{8}{27}=\frac{19}{27}$.
The intersection $A \cap B$ is just the one element (T, T, T), and $P(A \cap B)=\left(\frac{1}{3}\right)^{3}=\frac{1}{27}$. So the conditional probability is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{\frac{1}{27}}{\frac{19}{27}}=\frac{1}{19} .
$$

11. (a) Prove that the integers $a=13, b=5$ are relatively prime by using Euclid's algorithm to compute $\operatorname{gcd}(13,5)$.
Solution: Write $13=2 \cdot 5+3$, then $5=1 \cdot 3+2$, and then $3=1 \cdot 2+1$.
We have $\operatorname{gcd}(13,5)=\operatorname{gcd}(5,3)=\operatorname{gcd}(3,2)=\operatorname{gcd}(2,1)=1$.
(b) Find integers x and y such that

$$
13 x+5 y=1
$$

Solution: We go backwards:

$$
\begin{aligned}
1 & =3-2 \\
1 & =3-(5-3) \\
& =2 \cdot 3-5 \\
1 & =2 \cdot(13-2 \cdot 5)-5 \\
& =2 \cdot 13-5 \cdot 5 .
\end{aligned}
$$

So $x=2$ and $y=-5$.
(c) Find 5^{-1} in \mathbb{Z}_{13}.

Solution: Since $1=2 \cdot 13-5 \cdot 5$, we have $1=(\ominus 5) \otimes 5$ in \mathbb{Z}_{13}. So $5^{-1}=\ominus 5=8$ in \mathbb{Z}_{13}.
(d) Compute $2 \oslash 5$ in \mathbb{Z}_{13}.

Solution: We have $2 \oslash 5=2 \otimes 5^{-1}=2 \otimes 8=3$.
12. (a) Find all solutions in \mathbb{Z}_{6} of the quadratic equation $x^{2} \ominus 3 x \oplus 2=0$ by testing each element of \mathbb{Z}_{6} directly.
Solution: We have:
0 : $x^{2} \ominus 3 x \oplus 2=2$.
1: $x^{2} \ominus 3 x \oplus 2=0$.
2: $x^{2} \ominus 3 x \oplus 2=0$.
3: $x^{2} \ominus 3 x \oplus 2=2$.
4: $x^{2} \ominus 3 x \oplus 2=0$.
$5: x^{2} \ominus 3 x \oplus 2=0$.
(b) Why does writing the equation as $(x \ominus 1) \otimes(x \ominus 2)=0$ and concluding that $x=1$ or $x=2$ not give you all the solutions?
Solution: Because 6 is not prime, we cannot say $a \otimes b=0$ in \mathbb{Z}_{6} implies that a or b have to be zero. For example $2 \otimes 3=0$ in \mathbb{Z}_{6}.

