1. (25) For each of the following statements, either prove it is true, or provide a counterexample to show that it is false.
(i) If $S$ is a non-empty bounded subset of $\mathbb{R}$ and $c \in \mathbb{R}$, let $c S=\{c s: s \in S\}$. Then if $c<0$,

$$
\sup c S=c \inf S
$$

(ii) If $f: I \rightarrow \mathbb{R}$ is continuous on $I$, where $I \subset \mathbb{R}$ is an interval, then $f$ attains a maximum value on $I$.
(iii) If $c$ is a real number in the open interval $I$, and if $f: I \rightarrow \mathbb{R}$ is differentiable at $c$, then $f$ is continuous at $c$.
(iv) If $f:[a, b] \rightarrow \mathbb{R}$ is bounded on $[a, b]$, then $f$ is Riemann integrable on $[a, b]$.
2. (25)
(i) Let $\left(a_{n}\right)$ be a bounded sequence of real numbers, and suppose that $\left(s_{n}\right)$ is a convergent sequence of real numbers with $\lim s_{n}=0$. Prove using the definition of convergence that

$$
\lim _{n \rightarrow \infty} a_{n} s_{n}=0
$$

(ii) Define a sequence $\left(s_{n}\right)$ by $s_{1}=\sqrt{6}$ and $s_{n+1}=\sqrt{6+s_{n}}, n \geq 1$. By using an appropriate convergence theorem or otherwise, prove that $\left(s_{n}\right)$ is convergent, and calculate $\lim s_{n}$.
3. (25)
(i) Prove that the equation $x^{3}=[\cos (x)]^{2}$ has a solution in the interval $\left[0, \frac{\pi}{2}\right]$.
(ii) Is the function $f(x)=x \sin \left(\frac{1}{x}\right)$ uniformly continuous on $\left(0, \frac{1}{\pi}\right)$ ? Justify your reasoning.
4. (25)
(i) Let $f$ defined on $\mathbb{R}$ by

$$
f(x)= \begin{cases}0 & x \text { rational } \\ 3 x^{2} & x \text { irrational. }\end{cases}
$$

Prove that $f$ is continuous at one point only and differentiable at one point only, and compute the value of the derivative of $f$ at that point.
(ii) State, without proof, the Mean Value Theorem, and use it to show that if $x>0$,

$$
1+x<e^{x}
$$

5. (25)
(i) Suppose $f:[0,2] \rightarrow \mathbb{R}$ and that $f$ is twice differentiable on $[0,2]$, i.e. suppose $f^{\prime}$ and $f^{\prime \prime}$ both exist on $[0,2]$, with $f(0)=f(1)=f(2)=0$. Prove that there exists $c \in(0,2)$ with $f^{\prime \prime}(c)=0$.
(ii) Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded and suppose $f(x) \geq 0$ for all $x \in[a, b]$. Prove that $L(f) \geq 0$.
(iii) As in part (ii) above, let $f:[a, b] \rightarrow \mathbb{R}$ be bounded and satisfy $f(x) \geq 0$ for all $x \in[a, b]$, and suppose in addition that $f$ is contininous on $[a, b]$. Prove that if $L(f)=0$, then $f(x)=0$ for all $x \in[a, b]$.
[Hint: you can use the method of contradiction].
6. (25)
(i) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Suppose there exist a sequence of partitions $\left\{\mathcal{P}_{n}\right\}_{n=1}^{\infty}$ of $[a, b]$ such that

$$
\lim _{n \rightarrow \infty}\left[U\left(f, \mathcal{P}_{n}\right)-L\left(f, \mathcal{P}_{n}\right)\right]=0
$$

Prove that $f$ is Riemann integrable on $[a, b]$, with

$$
\lim _{n \rightarrow \infty} U\left(f, \mathcal{P}_{n}\right)=\int_{a}^{b} f(x) d x
$$

(ii) Define $F: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
F(x)=\int_{x}^{x^{2}} \sqrt{1+e^{-t^{2}}} d t
$$

Prove by citing the appropriate theorem(s) that $F$ is differentiable on $\mathbb{R}$, and calculate $F^{\prime}(x)$. Be sure to justify your reasoning at every stage.

## Name:

## University of Colorado

Mathematics 3001: Final Exam

May 9, 2012

| Problem | Points | Score |
| :---: | :---: | :---: |
| 1 | 25 |  |
| 2 | 25 |  |
| 3 | 25 |  |
| 4 | 25 |  |
| 5 | 25 |  |
| 6 | 25 |  |
| Total | 150 |  |

