1. (12) For each of the following series, determine whether it is absolutely convergent, conditionally convergent, or divergent. Be sure to explain your reasoning.
(i)

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n}+1}{3^{n}-\cos n}
$$

(ii)

$$
\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{(n \log (n))^{a}}, a>1
$$

(iii)

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{n}}{(n+1)^{n}}
$$

2. (13)
(i) Suppose that $\sum_{n=1}^{\infty} a_{n}$ is convergent series of real numbers. Define $b_{n}=a_{2 n-1}$ and $c_{n}=a_{2 n}$. Is it true that both $\sum_{n=1}^{\infty} b_{n}$ and $\sum_{n=1}^{\infty} c_{n}$ are convergent? If so, prove this is the case. If not, provide a counterexample.
(ii) Fix $b>1$. Prove that the series

$$
\sum_{n=1}^{\infty} \frac{1}{1+x^{n}}
$$

is uniformly convergent on $[b, \infty)$.
3. (12) Consider the function $f:[0,1) \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{1-x}$. Let $f_{n}:[0,1) \rightarrow \mathbb{R}$ be given for $n \geq 0$ by $f_{n}(x)=\sum_{k=0}^{n} x^{k}$. Prove that $\left\{f_{n}\right\}$ converges to $f$ pointwise on $[0,1)$. Is this convergence uniform on $[0,1)$ ? Be sure to justify your answer.
4. (13) Suppose that $\left\{f_{n}: S \rightarrow \mathbb{R}\right\}_{n=1}^{\infty}$ is a sequence of functions defined on the interval $S \subset \mathbb{R}$, with each $f_{n}$ bounded on $S$ by $M_{n}>0$. Suppose also that the sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly on $S$ to a limit function $f: S \rightarrow \mathbb{R}$. Prove that $f$ is bounded on $S$.

## Name:

## University of Colorado

Mathematics 4001: First Midterm Exam

February 19, 2010

| Problem | Points | Score |
| :---: | :---: | :---: |
| 1 | 12 |  |
| 2 | 13 |  |
| 3 | 12 |  |
| 4 | 13 |  |
| Total | 50 |  |

