1. (17)
(i) Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n} e^{1-n^{2}}$ is absolutely convergent, conditionally convergent, or divergent.
(ii) Determine whether the series $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{\log (1 / n)}$ is absolutely convergent, conditionally convergent, or divergent.
(iii) Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of non-negative real numbers. If $\sum_{n=1}^{\infty} a_{n}$ converges, prove that $\sum_{n=1}^{\infty} \frac{\sqrt{a_{n}}}{n}$ converges.
2. (17)
(i) Calculate the radius of convergence r for the power series $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$. Be sure to explain your reasoning.
(ii) Does the power series in part (i) above converge at $x=r$? Does it converge at $x=-r$? Explain. (Here $r>0$ is the radius of convergence computed in part (i).)
(iii) Prove that the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{1+x^{2 n}}$ is uniformly convergent on $[\delta, \infty)$ for any fixed $\delta>1$. Does the series converge uniformly on $[1, \infty)$?
3. (16)
(i) Prove that for every $x \in \mathbb{R}$ we have

$$
\frac{d}{d x}\left[\sum_{n=1}^{\infty} \frac{1}{n^{3}\left(1+n x^{4}\right)}\right]=\sum_{n=1}^{\infty} \frac{-4 x^{3}}{n^{2}\left(1+n x^{4}\right)^{2}}
$$

(ii) Prove that

$$
\int_{0}^{1} \frac{\log (1+x)}{x} d x=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{2}}
$$

Be sure to justify your reasoning.
4. (17)
(i) Let U be a non-empty open subset of \mathbb{R}^{n}. Suppose $f: U \rightarrow \mathbb{R}^{m}$ is a function defined on U taking on values in \mathbb{R}^{m}. What does it mean to say that f is differentiable at $\vec{a} \in U$?
(ii) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x^{3}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Using the definition, find the directional derivative $D_{\vec{v}}(f)(0,0)$ for $\vec{v}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
(iii) Let f be the function defined in part (ii). Is f differentiable at (0,0)? Explain why or why not.
5. (16)
(i) Let $\vec{a} \in \mathbb{R}^{n}$, fix $\delta>0$, and let $U=B(\vec{a}, \delta)=\left\{\vec{x} \in \mathbb{R}^{n}:\|\vec{x}-\vec{a}\|<\delta\right\}$. Suppose $f: U \rightarrow \mathbb{R}$ is a differentiable function. Prove that if $\vec{b} \in U$,

$$
f(\vec{b})-f(\vec{a})=\operatorname{grad}(f)\left(\overrightarrow{x_{0}}\right) \cdot(\vec{b}-\vec{a}),
$$

for some point $\overrightarrow{x_{0}}$ on the line segment joining \vec{a} and \vec{b}. Deduce that if there exists $M>0$ such that $\|\operatorname{grad}(f)(\vec{x})\| \leq M$ for all $\vec{x} \in U$, then

$$
|f(\vec{b})-f(\vec{a})| \leq M\|\vec{b}-\vec{a}\| .
$$

(ii) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuously differentiable function. Suppose that

$$
f(t \vec{x})=t f(\vec{x}), \forall t \in \mathbb{R}, \forall \vec{x} \in \mathbb{R}^{n} .
$$

Show that for all $\vec{x} \in \mathbb{R}^{n}$,

$$
f(\vec{x})=\operatorname{grad}(f)(\overrightarrow{0}) \cdot \vec{x} .
$$

6. (17)
(i) Let $\vec{a} \in \mathbb{R}^{n}$, fix $\delta>0$, and let $U=B(\vec{a}, \delta)$ be defined as in Question 5. Suppose that $f: U \rightarrow \mathbb{R}$ is twice continuously differentiable in U. Let $\vec{h} \in \mathbb{R}^{n}$ with $\|\vec{h}\|<\delta$. Prove that there are continuous functions $\left\{g_{i, j}: U \rightarrow \mathbb{R}\right\}_{i, j=1}^{n}$ such that $f(\vec{a}+\vec{h})=f(\vec{a})+\operatorname{grad}(f)(\vec{a}) \cdot \vec{h}+\sum_{i, j=1}^{n} g_{i, j}(\vec{a}+\vec{h}) h_{i} h_{j}$. State any theorems you are using.
(ii) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=x^{4}+y^{3}-2 x^{2}+3 y^{2}+5
$$

By using part (i), or otherwise, prove that f attains a relative maximum value at $(x, y)=(0,-2)$.
(iii) Use the Implicit Function Theorem to show that the equations

$$
\begin{gathered}
x_{1} y_{2}+x_{2} y_{1}+x_{3}+y_{1}^{2}=0 \\
x_{1} x_{2} x_{3}+y_{1}+y_{2}^{3}+1=0
\end{gathered}
$$

determine y_{1} and y_{2} implicitly as continuously differentiable functions of the independent variables x_{1}, x_{2}, and x_{3} in some open set containing the point $\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right)=$ $(1,1,-1,1,-1)$. Calculate $\frac{\partial y_{1}}{\partial x_{1}}$ and $\frac{\partial y_{2}}{\partial x_{2}}$ for $\left(x_{1}, x_{2}, x_{3}\right)=(1,1,-1)$.

Name:

University of Colorado

Mathematics 4001: Final Exam

Monday, May 3, 2010

Problem	Points	Score
1	17	
2	17	
3	16	
4	17	
5	16	
6	17	
Total	100	

