
1. (12 points)

Let (X, T ) be a compact Hausdorff space, and suppose that F ⊆ C(X) is a collection of functions
that is equicontinuous and pointwise bounded (i.e. for each x ∈ X, the set {f(x) : f ∈ F} is bounded).
Prove that F is uniformly bounded, i.e. prove that there exists M > 0 such that |f(x)| ≤ M for all
f ∈ F and for all x ∈ X.

Solution: The conditions of the Arzela-Ascoli Theorem are satisfied, and therefore the family F is
totally bounded. So, for any ε > 0, the family F can be covered by a finite number of ε balls. Take
ε = 1 and find N ∈ N and {f1, f2, · · · , fN} ⊂ F such that

F ⊂ ∪N
i=1B(fi, 1).

Therefore for all f ∈ F there exists some i0 with

‖f − fi0‖∞ < 1.

But then
‖f‖ − ‖fi0‖ ≤ ‖f − fi0‖∞ < 1,

so that
‖f‖ < 1 + ‖fi0‖.

Let
Mi = 1 + ‖fi‖ = 1 + supx∈X |fi(x)|, 1 ≤ i ≤ N,

and set M = max{M1,M2, · · · ,MN}. We then have for f ∈ F chosen as above

supx∈X |f(x)| < 1 + Mi0 ≤ M,

and we see that F is uniformly bounded.



2. (13 points) Let T = {z ∈ C : |z| = 1}. Recall that T given the relative topology induced from the
standard topology on C is a compact metric space. Consider the set

L = ∪∞M=0 ∪∞N=0 {P (z) =
N∑

j=−M

ajz
j : aj ∈ C, ∀j ∈ Z} ⊂ C(T).

Prove that L is dense in C(T) in the uniform norm.

Solution: Here we use the Stone-Weierstrass Theorem (complex version). The set L of “Laurent
polynomials” on the circle is easily seen to be an algebra (closed under pointwise addition, scalar
multiplication, and pointwise multiplication of two polynomials). It also contains the complex con-
stant functions, because choosing a ∈ C, then p(z) = az0 = a, ∀z ∈ T is an element of L. It also
separates points, because if we are given x, y ∈ T with x 6= y, then if we consider I(z) = z1 = z, we
have I ∈ L and I(x) = x 6= y = I(y). Finally L is closed under complex conjugation, because if we
are given P (z) =

∑N
j=−M ajz

j ∈ L, then

P (z) =
N∑

j=−M

ajzj

=
N∑

j=−M

ajzj =
N∑

j=−M

ajz
−j

=
M∑

j=−N

a−jz
j ∈ L.

Therefore the closure of L in C(T) in the uniform norm satisfies all these same properties, so that
by the Stone-Weierstrass Theorem (complex version), it must be equal to all of C(T), so that L is
dense in C(T), as desired.



3. (13 points) Let X be a normed vector space over C. Let X ∗ = L(X , C) be the space of all bounded
linear functionals from X to C. Assuming that X ∗ is a normed vector space under the operator norm,
show that it is complete, i.e. show that if {φn} is a Cauchy sequence in X ∗ in the operator norm,
then it is convergent to some element φ0 of X ∗.
Solution: Let {φn}∞n=1 be a Cauchy sequence in the operator norm on X ∗, i.e. the standard norm
for linear functionals. We now let x ∈ X and consider the sequence of complex numbers {φn(x)}∞n=1.
Since {φn}∞n=1 is Cauchy in X ∗, given ε > 0, there exists N ∈ N such that whenever n > m ≥ N,

‖φn − φm‖ < ε.

It follows that whenever n > m ≥ N,

|φn(x)− φm(x)| = |(φn − φm)(x)| ≤ ‖φn − φm‖ · ‖x‖ < ε‖x‖.

But this means that the sequence of complex numbers {φn(x)}∞n=1 is a Cauchy sequence in C, so has
a limit, which we denote by φ0(x). It is easy to check that φ0 is a linear functional and I leave that
to you. I check that φ0 is bounded, first of all. We have for n > m = N and for x ∈ X with ‖x‖ ≤ 1,

|φn(x)| − |φN (x)| ≤ |(φn − φN )(x)| ≤ ‖φn − φN‖ · ‖x‖ ≤ ‖φn − φN‖ < ε.

Therefore, for all n ≥ N, and for all x ∈ X with ‖x‖ ≤ 1,

|φn(x)| < ε + |φN (x)| ≤ ε + ‖φN‖ · ‖x‖ ≤ ε + ‖φN‖.

Letting n →∞ we get for x ∈ X with ‖x‖ ≤ 1:

|φ0(x)| = | lim
n→∞

φn(x)| = lim
n→∞

|φn(x)| ≤ ε + ‖φN‖ < ∞,

so that ‖φ0‖ = sup{|φ0(x)| : x ∈ X , ‖x‖ ≤ 1} is finite and φ0 ∈ X ∗. Finally, we have seen that for
all n > m ≥ N,, we have seen that for all x ∈ X with ‖x‖ ≤ 1,

|φn(x)− φm(x)| = |(φn − φm)(x)| ≤ ‖φn − φm‖ · ‖x‖ < ε.

Letting n →∞, and fixing m ≥ N, we obtain that for all x ∈ X with ‖x‖ ≤ 1,

|φ0(x)− φm(x)| = | lim
n→∞

(φn − φm)(x)| = lim
n→∞

|φn(x)− φm(x)| ≤ ε.

But this means that whenever m ≥ N, we have ‖φ0 − φm‖ ≤ ε, so that

lim
m→∞

φm = φ0

in X ∗ with respect to the linear functional norm, and X ∗ is complete.



4. (12 points)

(a) Prove that Q is a subset of the first category (a meager subset) of R, where R is given its usual
metric. Be sure to justify your reasoning.
Solution: Q is countable so that we can enumerate it in some fashion:

Q = {qn : n ∈ N} = ∪∞n=1{qn}.

But each point set {qn} is closed in R and has empty interior, i.e. each point set {qn} is nowhere
dense in R. Therefore, Q can be expressed as a countable union of nowhere dense sets, so it is
a subset of Q of the first category.

(b) Using part (a) and the Baire Category Theorem, prove that R \ Q is a subset of the second
category of R.

Solution: Suppose, by way of contradiction, that R \ Q is a set of the first category in R. Write
R \ Q = ∪∞m=1Bm where each Bm is nowhere dense in R. Then

R = Q ∪ [R \ Q] = ∪∞n=1{qn} ∪ ∪∞m=1Bm,

so that R is a countable union of nowhere dense sets and is therefore a set of the first category
in itself. Since R is a complete metric space, this last statement contradicts the Baire Category
Theorem, and therefore what we assumed is incorrect, and R \ Q must be a set of the second
category in R.


