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The study of acoustics is rooted in the origins of physics, yet the dynamics of

flue-type instruments are still only qualitatively understood. Our group has developed

a measurement system, the Acoustic VNA, which can precisely determine acoustic wave

amplitudes of the lowest mode propagating in a cylindrical waveguide. I used the AVNA

to study a musical oscillator, the tenor recorder. The recorder consists of two compo-

nents, an air-jet amplifier driven by the player’s breath and a cylindrical waveguide

resonator with an effective length that may by varied by covering or uncovering finger

holes. Previous research on the recorder has focused on understanding the resonator

frequencies in some detail, but has only provided a rough understanding of the air-jet.

In particular, there is not yet a quantitative understanding of how the pitch varies

with blowing pressure for a given fingering. I designed several experiments to provide a

quantitative picture of how the air-jet behaves at different blowing pressures and discov-

ered that higher blowing pressures lead to stronger amplification at higher frequencies.

Later, using a dimensionless quantity known as the Strouhal number, I showed that

maximum amplification always occurs when the oscillating air-jet is allowed approxi-

mately one wavelength between the duct exit and the labium. This physical situation is

corroborated by Schlieren imagery done by M.P. Verge and my approximate efficiency

calculations based on the power spectra.
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Chapter 1

Why Study Acoustics?

Figure 1.1: Current acoustics research spans a wide gamut of fields and has applications
in many areas [1].

Occasionally the question of why study the recorder at all arises. Physicists may

wonder how studying a musical instrument, much less one that has been essentially

relegated to obscure baroque ensembles and elementary school classrooms, could help

advance science. The fact remains, however, that acoustics research draws inspira-

tion from a diverse set of real-world problems and has applications in a wide range of



2

fields. Fundamental work in acoustics is related to the existence of phonons, quanti-

tized vibrational modes relating to solid state physics [2]. More applied fields range

from biologists studying the physiology of hearing and comprehension to geophysicists

studying pressure wave propagation through the earth to engineers helping architects

to design buildings with certain acoustic qualities.

My research on the recorder is two-fold in importance. First, no one has a solid,

quantitative understanding of how flue instruments actually work. If an engineer were

to go work for Yamaha in the motorsports division, and he were assigned to design

a new internal combustion engine to power a new motorcycle, he could easily do so

from scratch. Thousands of papers have been published on every facet of motor design.

Everything from the cylinder wall thickness to the cam timing has been extensively

studied and the engineer could, in theory, design a novel engine from scratch simply

based on previous research. If the same engineer, however, were to go work for Yamaha’s

musical instrument division, he could not possibly hope to design even a simple recorder

from scratch. Very little research exists to demonstrate how changing different aspects

of the air-jet geometry, such as the fracWh ratio or labium position, affects the sound

radiated. Rather, flue-type instruments have been around for several thousand years

and have slowly evolved into their present form. The engineer unlucky enough to be

assigned to design a novel new flue instrument would have only tradition and a small

dash of science to aid him in his quest. Second, understanding the unstable air-jet

has potential ramifications for fluid dynamicists. Rayleigh and Helmholtz were deeply

concerned by the mechanics of an oscillating air-jet and, aside from simple models that

ignore viscosity and other real world factors like vortex shedding, we still do not have a

mathematical representation of jet behavior. Summed up honestly by B. Fabre and A.

Hirschberg, two of the field’s leading investigators, physical models of flue instruments

“are based on a strange mixture of ad-hoc assumptions, theories, and fit of experimental

results” [3]. My goal is to contribute to alleviating this cacophony of models in addition
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to helping to understand the basic science behind fluid motion.



Chapter 2

The History of Acoustics Research

Acoustics, deriving its etymology from the Greek verb akouein, to hear, is the

science of sound. The passion to understand the production and transmission of sound

has driven scientists from the earliest Classical period to the present day to study acous-

tics. While celestial motion is typically credited as the origin of physics, the same early

physicists who spent their nights observing the heavens spent their days examining

vibrating strings and probing the science behind music. Pythagoras, best known for

his right-triangle theorem and deified status among his followers, believed the roots of

mathematics were musical. He discovered certain ratios of tones were more euphonious

than others, leading him and his followers to apotheosize musical intervals. Galileo’s

characterization of a vibrating string contributed enormously to classical mechanics, as

he first recognized the relationship between frequency of vibrations and pitch. Daniel

Bernoulli, the father of fluid dynamics, worked concurrently on modeling Galileo’s vi-

brating string problem and developing his famous equations describing fluids. Joseph

Fourier originally hypothesized that the general shape of any vibrating string could be

decomposed into independent modes. He later proved this assertion true, and today

physicists use Fourier Series for everything from quantum mechanics to image analysis.

More recently, physics greats such as Helmholtz and Rayleigh have devoted significant

time to understanding acoustics [4] [5].

Lord Rayleigh published close to 450 papers in his lifetime, of which 128 deal
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Figure 2.1: Pythagoras was fascinated with bells and devoted considerable thought to
understanding acoustics [6].

Figure 2.2: Galileo sought to characterize the vibrating string. His quest eluded him
and was not completed until centuries later.
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with acoustics. Upon these papers, he based his seminal treatise The Theory of Sound,

which, for the first time, accurately described the production and propagation of sound.

He focuses on vibrating strings, bars, and membranes and the propagation of sound

through fluids, setting the stage for the modern acoustic research upon which I base my

thesis [4].

After World War II, physicists re-discovered flue-instrument acoustics. J. Colt-

man, A. Benade, and A. Powell focused on qualitatively describing air-jets, edge tones,

and resonator tubes [3]. A real breakthrough occurred in 1968 when John Coltman

published “Sounding mechanisms in the flute and organ pipe” in Journal of the Acous-

tical Society of America. With this seminal paper he laid the foundation for the next

decades of recorder research.

Using a single-channel, sliding-microphone reflectometer, he performed crude re-

flection measurements off a pressure controlled air-jet. He concluded that the air-jet is a

flat, oscillating stream on which the disturbance that excited the resonator propagates

at one-half to one-third of the original jet velocity. The disturbance on the jet then

strikes the dividing labium. This sharp edge directs approximately half the flow into

the fingered resonator tube and half out the window into the air. He showed that this

periodicity excites the resonator tube in two different ways. One, later named volume

drive and far more important in the actual operation of the recorder, involves the jet

entering the resonator at times of pressure minima and injecting actual volume. The

second, later called momentum drive, relies on the jet entering the resonator at times of

pressure maxima and, rather than the fluid from the air-jet entering the tube, it stops

and transfers its momentum. These two drive mechanisms were extensively studied in

subsequent research. However, upon further investigation volume drive was shown to

be so dominant that momentum drive can essentially be ignored, as it is in this thesis.

Finally, Coltman recognized that the air-jet/pipe-resonator system equilibrates within a

few milliseconds and settles into a steady-state oscillation frequency dependent on both
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the parameters of the resonant pipe and the oscillating air-jet [7].

Neville Fletcher elaborated on Coltman’s initial observations in his 1982 paper

“Acoustic Admittance of Organ Pipes.” While Coltman primarily studied the flute and

Fletcher the organ pipe, the mechanism driving both of these instruments is almost

identical. Only minor geometric differences separate the recorder and the organ pipe,

and research on one is often coupled to research on the other. Thus, Fletcher’s exami-

nation of the air-jet on the organ pipe is fully applicable to my work on the recorder.

Nevertheless, Fletcher attempts to empirically characterize the interaction between the

air-jet and the organ pipe using a single microphone reflectometer. He accepts Colt-

man’s assertion that a pipe can be driven by pressure and volume and coins the terms

momentum drive and volume drive. Volume drive he defines as injecting fluid into the

pipe at points of maximum compression at the driving point. Thus, the oscillating air-

jet would inject volume into the pipe in phase with its driven frequency. That is, as the

jet whipped below the labium a running pressure wave would just be reflected off the

open end of the mouth of the recorder and the air-jet would increase its amplitude.

Later research has shown volume drive is primarily responsible for sound produc-

tion in the recorder and my measurements show that extremely low pressure and fast

flow rates drive the instrument are consistent with that assertion. Momentum drive,

however, cannot be totally discounted. It is defined as the jet slowing down and trans-

ferring its momentum to the oscillating running wave thereby increasing its amplitude.

In the momentum drive mechanism the jet does not continue down the pipe, but rather

just pushes the oscillating wave at its resonance like pushing someone on a swing. Al-

though momentum drive makes a fairly small contribution to sound production in the

recorder, reed-driven instruments like the clarinet are primarily driven by this mech-

anism. Interesting to note, momentum drive and volume drive are π
2 out of phase.

Because flow is maximized where pressure is zero and a maximum pressure leads to a

minimum flow, at a blocked end for example, this out of phase behavior makes sense.
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The latest recorder research has been done by Marc-Pierre Verge, Patricio de la

Cuadra, A. Hirschberg, and B. Fabre. Much of their work relies on Schlieren imaging,

a technique in which a gas with an index of refraction different than air is passed

through the system and imaged using special optical techniques. This visualization

allows many of the rough original models proposed by Fletcher and Coltman to be

verified [8]. Because this newer technique allows the researchers to actually visualize the

jet, they are discovering that many aspects of flue instruments are not as mathematically

simple as originally thought and that new elements previously disregarded, such a vortex

shedding, play a role in sound production. For example, Fletcher’s model assumed that

saturation, that is maximum sound amplitude, would be reached due to radiation and

viscous wall loses. Schlieren imaging, however, has shown that the shedding of vortices

off the jet is responsible for far more energy loss than either radiation or wall loses [9]. In

addition, non-linear behavior, attack transients, and other subjects beyond the scope of

this thesis have been studied to a degree of detail impossible with previous experiments.

The AVNA, described in the next chapter, is yet another tool designed to accu-

rately study these questions and my research should provide another perspective that

can be compared to that already published.



Chapter 3

The Acoustic Vector Network Analyzer (AVNA)

Figure 3.1: The AVNA is a cylindrical waveguide bored out to the exact inside diameter
of a plastic Yamaha tenor recorder. The microphones sit flush with the inside of the
tube and are spaced to minimize the chance of nodes or antinodes falling on multiple
microphones. All six microphones are simultaneously sampled by a PreSonus FP10.

The AVNA consists of a compression driver coupled to a cylindrical waveguide

bored out to the same inside diameter as the head joint of a plastic Yamaha tenor

recorder. Six microphones, whose sporadic placement was determined by a Monte-

Carlo simulation, are fitted along the guide and mounted with their ends flush to the

inside of the tube, as not to disturb the wave, collect the data via a recording interface
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that simultaneously samples all six signals. In essence, the AVNA is an extension of the

sliding, single-microphone apparatus used by Fletcher and Coltmann. While acoustics

researchers in the 1960’s were limited by technology at the time, the PreSonus FP10

that our group uses simultaneously samples six signals and is available for only $400.

Using six relatively-calibrated microphones flush with the guide eliminates many of the

problems faced by earlier researchers, especially the issue of the microphone disturbing

the acoustic field. Figure 3.2 shows the apparatus Fletcher used for his 1983 Journal of

the Acoustic Society of America paper “Acoustic Admittance of Organ Pipe Jets”.

Figure 3.2: Fletcher used a device that could be described as a single-microphone AVNA
for some of his experiments [10].

When the AVNA is driven by our Selenium D210TI compression driver, the mi-

crophone diaphragms are variably compressed through time changing their internal ca-

pacitances and forming a potential. These electric signals are simultaneously collected

by the FP10 and imported into MATLAB as a set of complex amplitudes, phasors, that

encapsulate both amplitude and phase relative to the first microphone. Figure 3.3 helps

to visualize how these complex amplitudes are collected. Usually I drive the AVNA

over a range of frequencies to explore frequency specific behavior giving MATLAB rel-

ative phasors as a function of frequency. From the raw phasors, my MATLAB routine

assumes that only a left- and right-going wave exist in the guide and that attenuation

and phase velocity smoothly vary with frequency, based on Arthur Benade’s 1968 model
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[11]. The data are sorted into MATLAB’s nonlinear least-squares fitting routine, which

iteratively calculates left- and right-going complex amplitudes and compares calculated

phasors at the actual microphone positions. The waves calculated are of the form

Ae
i( ω

vp
−iα)xr

(3.1)

where A is the complex amplitude, ω is the angular frequency of excitation, vp and α

are the phase velocity and attenuation calculated using Benade’s model, and xr is the

user-defined reference plane. Figure 3.4 shows the high accuracy of the calculations.

The recorded phasors are off by less than one part in ten thousand. Once the routine

settles on left- and right-going waves that accurately describe the collected phasors, I

calculate the reflection coefficient by simply dividing the reflected wave by the incident

wave as in Equation 3.2 where Wr and Wi are the reflected and incident wave equations.

Γ =
Wr

Wi

(3.2)

While much of the previous recorder research has focused on acoustic impedance rather

than reflection coefficient, I chose to work with reflection coefficient because it is much

easier to visualize and, with a little algebraic manipulation, can be converted into more

familiar values. In essence, reflection coefficients allow me to most easily examine how

an air-jet affects an incident wave.

As simple as this process sounds, a significant amount of calibration is required

before meaningful data can be produced. Some acoustics labs use expensive labora-

tory microphones that are absolutely calibrated, that is a given pressure will result in

a defined signal. Our lab, however, believed that equally good data could be collected

from cheaper microphones that could be calibrated relative to each other. This choice

is strongly supported by the data, but the calibration routine is essential. Given the

inexpensive diaphragms our lab uses vary by up to 5 dB, any microphone abnormality

has to be removed else the extremely precise data collected by the AVNA would be
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useless. Figure 3.6 shows raw data collected with one dramatically less sensitive micro-

phone. I fixed the problem for consistency’s sake, but the calibration routine had no

problem correcting for the bad microphone. To overcome these differences in sensitivity

our group machined a calibration cell that mates to the driver and holds all six micro-

phones equidistant from it as shown in Figure 3.7. The MATLAB code then sounds

the driver for a 1
2 second through a range of user defined range of useful frequencies1

at constant amplitude. The end product of the calibration process is a file detailing

the exact differences in microphone sensitivity and is encapsulated in Figure 3.8. The

data collecting routines call that calibration file and software-correct the values for each

microphone given their physical differences. However, the calibration process does not

solely rely on software correction. The FP10 has volume adjustment knobs for each

channel. Before using a calibration file, I would do my best to correct out microphone

differences at the hardware level.

Once the microphones were calibrated, I tried to start collecting meaningful data.

However, I had to address one more concern. Initially we were concerned that the mi-

crophone calibration might drift during the course of the experiment, given we use

inexpensive off-the-shelf components rather than research grade acoustics equipment.

This fear was allayed by simply recalibrating the microphones several times over long

periods of time and comparing the calibration files. It turns out that the drift is negli-

gible, about 1
10% in amplitude and 1

100% in phase. Figure 3.9 displays the percentage

change over different frequencies.

After calibrating and checking for microphone drift, I need to run a few simple

experiments, all pictured in Figure 3.11 to assure myself that the AVNA actually works.

While analytical fluid mechanics is difficult and exact solutions only exist for a few

simple problems, I can duplicate a few of these simple situations and check to see that

1 When studying recorder behavior I scanned through the lower octave playable on the tenor recorder;
from C4 to C5 or from 250 Hz to 1200 Hz.
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the AVNA data agree with the analytical solution. A tube with a closed end should

have a reflection coefficient of exactly one as radiation is impossible and attenuation

is minimal. Likewise, the reflected wave should be in phase. Thus, with one end of

the waveguide blocked off, I should find reflection coefficient to be one and phase to be

zero over all frequencies. Fortunately, I produced those results. Figure 3.12 provides an

indication of error and shows that the AVNA falls within 1% or so of theory in both

phase and amplitude.

Another well-characterized situation is an open end. Unfortunately, at least for

the purpose of this experiment, the AVNA has a small flange and is not a perfect open

end, but it is close enough. Assuming the wavelength of the wave within the waveguide

is much longer than the open aperture, it will be reflected with 100% efficiency out of

phase. Thus, at low frequencies, I would expect to see a reflection coefficient of one

and a phase of π, while at higher frequencies I would expect some radiation leading

to a reflection coefficient of less than one. Figure 3.13 shows the reflection results

from an open end experiment. While not quite as precise as the closed end, they

mirror theory quite while and the relative inaccuracy could be easily chalked up to the

physical situation. Also interesting to note is that the reference plane for the open is

set six millimeters longer than that of the closed end because of end correction effects,

that is the effective length of the pipe grows. These end corrections are essential in the

correct tuning in any open end flue instrument.

Finally, I can test radiation behavior with a horn. An ideal horn would reflect all

frequencies below its cutoff and radiate all above. Our lab bought a HL14-15 horn with

a 600 Hz cutoff. Figure 3.14 shows that the horn behaves properly and the HL14-15

radiates much better above 600 Hz.

These three idealized physical situations provide evidence that the AVNA works

as it should. With evidence that my data closely matched analytical calculations, I felt

confident I could go on to use this apparatus to study the recorder.
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Figure 3.3: The pressure wave within the guide depresses the microphone diaphragms
creating an electric signal from which our MATLAB routine constructs left- and right-
going waves [12]
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Figure 3.4: The small x’s are the actual phasors measured by all six microphones at
303 Hz and the red dots are those predicted by the fit. This routine is very accurate as
evidenced by the scale. These data come from the recorder head being blown at 88.2
Pa.

Figure 3.5: The recorder head is mounted on the end of the AVNA with a controlled
pressure source, labeled P, driving the air-jet. The speckled section between the driver
and the microphone section is the cotton attenuator necessary to prevent multiple inci-
dent and reflected waves.
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Figure 3.6: These data show the consequences of a bad microphone. Here mic 4 is
roughly 40% low in amplitude and 10% off in phase. This particular abnormality was
caused by a small particle on the diaphragm rather than a software error, but, even with
the enormous correction factor, the data I collected using this calibration file looked fine.
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Figure 3.7: The calibration cell holds all six microphones equidistant from the driver.
The driver runs through user-defined frequencies at a constant amplitude while the
PreSonus collects phasors. These data allow MATLAB to correct for differences in
microphone sensistivity.

Figure 3.8: This is the calibration cell file I used as a standard comparison and one
which I ran many experiments. Out of the box the microphones vary around 15% and
the correction factors are shown in the normed mag plot.
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Figure 3.9: Shown are the calibration cell recorded phasors approximately 24 hours
apart. Despite their small price tag, the microphones used drift an inconsequential
amount. This table would look almost identical after even six months and most of the
small changes can be attribute to error rather than microphone drift.
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Figure 3.10: The closed end raw data look like this. Each line represents a microphone
and the subplots track their relative phase and amplitude through frequency. This
plot already provides some idea of wave within the guide. We can see that at higher
frequencies the microphones’ amplitudes increase, demonstrating that once the wave-
length gets short enough, there is a strong chance of a wave anti-node falling exactly on
a microphone.
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Figure 3.11: The horn, closed end, and open end are all well characterized and provide
a check on the function of the AVNA [13].
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(a) Reflection coefficient amplitude and phase
separated

(b) Reflection coefficient on complex plane

(c) Reflection coefficient of complex plane cen-
tered on data

Figure 3.12: There are two equivalent ways of presenting reflection coefficient data,
in the case reflection off a closed end. The first, as seen in Subfigure (a), is easy to
understand and shows the phase and amplitude of the reflection coefficient separately
as functions of frequency. The second uses a complex plane. The distance from the
origin is the magnitude of the reflection coefficient and the angle between the positive
x-axis and the point is the phase. Subfigure (b) shows the entire plane and the cluster
of points is just visible at (1,0) while Subfigure (c) gives an indication of precision.
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(a) Open end reflection coefficients (b) Open end reflection coefficients in the com-
plex plane

Figure 3.13: The open end clearly is not as useful a metric as the closed end, but the
predicted behavior is visible. At higher frequencies the pipe begins to radiate and at
lower frequencies the reflection coefficient sits around (-1,0) on the complex plane.
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Figure 3.14: The 600 Hz horn starts radiating at around 600 Hz. Some kind of reso-
nance exists at 600 Hz and the higher frequency harmonics, causing the periodic dips
in reflection coefficient.



Chapter 4

Review of Lumped Element Models

When approaching a new problem, it is necessary to settle on a level of complexity

detailed enough to provide enough understanding to answer the questions being asked,

but not so detailed as to burden the researcher with unnecessary complications. For ex-

ample, to return to the engineer assigned to design a new engine for Yamaha, he cannot

study internal combustion from the perspective of a black box in which fuel is converted

to work, but he also cannot examine the electron orbital interactions of every atom. The

same complexity versus practicality concern arises in the study of the recorder. There

are two real schools of thought. One, called the integral approach, involves approaching

the assembled recorder as a black box of sorts in which an experimentalist can con-

trol air flow or pressure into the mouthpiece and fingering and measure the resulting

acoustic spectrum. Figure 4.2 shows a simple integral experiment. Volume flow, and

thus blowing pressure, is varied for three different fingerings and the frequency of the

strongest fundamental is measured. Through this experiment, I confirmed suspicions

that frequency rises with blowing pressure for a given fingering and that, given the right

conditions, a note can be overblown to the next octave. Aside from such simple con-

clusions, studying the recorder through integral methods is extremely difficult. More

information can be teased out of a complete power spectrum, but designing a produc-

tive experiment that isolates one variable still challenges scientists. If, for example, I

attached the entire assembled recorder to the end of the AVNA to try to determine some
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kind of behavior I would run into multiple incident and reflected waves. After summing

the waves, I would find that the incident wave is no longer linearly related to the re-

flected wave. Rather , when the system is spontaneously oscillating, an incident wave

can exist without the presence of a reflected one and vice-versa. Taking reflection data

for an oscillating system is therefore meaningless. Just for fun, I mounted the recorder

head onto the end of the AVNA without the attenuator inline and took “reflection data”

while the system was oscillating to see what kind of phasors the MatLAB routine would

find. Figure 4.1 shows that the calculated phasors are nowhere near the actual values

and convinced me that I had to be very careful to throw out any data points taken when

the system demonstrated even the slightest hint of spontaneous oscillation. However,

when the attenuator is properly packed and mounted inline, the reflected wave is lin-

early dependent on the incident one1 , allowing me to take meaningful reflection data.

Figure 4.1: When the system is allowed to spontaneously oscillate, the reflected wave
is no longer linearly dependent on the incident one. The ideas of reflection coefficient
and calculated right- and left-going waves are rendered meaningless. These calculated
phasors, taken without the crucial attenuator in place, totally miss their marks.

1 Once the incident wave amplitude gets closer to saturating the instrument, reflection off the air-jet
becomes non-linear, but all my experiments were solidly in the linear region.
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Figure 4.2: Here the recorder is assembled and fingered to blow either a C4 (261 Hz), a
G4 (392 Hz), or a C5 (523 Hz) and the actual frequency radiated is plotted as a function
of blowing pressure. In this plot the dotted lines show ideal values and have been lowered
to compensate for the colder-than-body-temperature air exciting the instrument.
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Instead, despite complaints from some acoustics researchers that lumped-element

models provide an overly simplistic model, I decided to separate the recorder into two

distinct elements: the fingered pipe resonator and the air-jet amplifier [3]. Since the

reflected wave from the pipe clearly must be both in phase and match amplitude with

the incident wave on the jet, I ideally could combine data obtained from each end

separately to form an integral model. While I did not get far enough in my research to

construct a model, I make several interesting observations about both the mouth and

the body that in the future could be combined.

Figure 4.3: A sample diagram representing the different elements of a recorder. De-
pending on the level of sophistication of the model some of these may be absent or
ignored [3].
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Figure 4.4: This project assumes two simplified elements: an air-jet amplifier and an
acoustic resonator.



Chapter 5

The Mechanics of a Recorder

Figure 5.1: Shown here is a simple cutaway diagram of the recorder head. Recorders
typically have a W

h
ratio of 4 while organ pipes are closer to 10. This affects the degree

of turbulence that hits the labium [3].

A recorder belongs to a family of flue instruments that includes the transverse

flute, the organ, the whistle, and many others [3]. Its basic principle of operation is as

follows: a pressure source drives air through the flue and it exits the mouth to become

an air-jet. As Rayleigh proved in the second volume of The Theory of Sound, that air-jet

is intrinsically unstable and begins to oscillate [14]. The oscillating jet next encounters

the labium, a sharp divider that may or may not be placed at the equilibrium point of

the air-jet. The labium splits the jet forcing approximately half of its volume to exit

the instrument through the duct and injecting the other half into the pipe resonator

with some periodicity. Because the mouth and body of the recorder are coupled, the

jet injects into the pipe resonator in phase with its internal oscillation that determines

the frequency of the note played. That is, as the wave in the pipe resonator begins to
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pulse in, the air-jet injects to amplify its signal. Figures 7.9 through 7.13, taken through

Schlieren imagery techniques, help visualize the motion of the air-jet a different blowing

pressures.

As discussed earlier, there are two possible drive mechanisms for a flue-instrument.

One, called momentum drive by Fletcher, relied on the momentum of the air-jet for

energy transfer to the pipe resonator. In this situation to achieve maximum efficiency

the air-jet would come to a stop at the entrance to the pipe and transfer all of its

momentum to oscillating fluid inside. A more familiar example of momentum drive can

be seen in a wind turbine. The momentum of the wind is transferred very efficiency to

the blades and slows down significantly by the time it reaches the other side. The other

possible drive mechanism Fletcher calls volume drive. In this scenario the volume flow

from the jet enters the pipe at the time of maximum compression and serves to amplify

the signal. Because momentum drive occurs at times of maximum fluid velocity and

volume drive occurs at times of maximum compression, they are π
2 out of phase and

both contribute [10]. In order to understand which mode dominates the interactions in

a recorder, researchers have performed several experiments to try to isolate the modes.

One clever one, done by Coltman in 1981, involved varying the directionality of the jet

while injecting at the middle of the pipe [15]. Coltman reasoned that momentum drive

is direction, that is changing the direction of momentum should change the phase by π,

while volume drive is a scalar interaction and a shift in direction should not affect the

phase.



Chapter 6

Experimental Procedure

After checking microphone calibration and ensuring that the closed end mea-

surements remained within 1% in both amplitude and phase, I set up my recorder

experiment. First, I had to settle on a standard reference plane. Two obvious ones

sprang to mind. I could either set the reflection plane at 0.643 meters, the point at

which the recorder head behaves most similarly to an open end, or I could set it 0.462

meters, the plane at which the recorder contacts the wave guide. In the end I could not

find an advantage to using one over the other and eventually settled on the 0.462 meter

number. If later I find that I would like to reanalyze my data at the pseudo open end,

it is a simple MatLAB procedure to switch.

Next, I had to make sure that my attenuator functioned over most useful frequen-

cies. As discussed before, it is essential to place a short attenuator tube in between the

driver and the microphone section to avoid multiple left- and right-going waves. The

MatLAB code running the AVNA is setup to assume one left-going and one right-going

wave. If the incident wave, from the driver, were allowed to reach the air-jet, get ampli-

fied and reflected, and re-reflected at the driver end, I would end up with an oscillating

system with multiple incident and reflected waves. Figure 4.1 demonstrates that no

useful data can be attained from an oscillating system. Thus, I needed an attenuator

that would absorb fairly flatly over all frequencies. This proved to be quite difficult as a

harder attenuators that absorbed better at some frequencies tended to reflect at others
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and softer attenuators absorbed at some, but transmitted at others. Fortunately, I was

aided by the fact that a sound wave only must pass through the attenuator once on

the way to the jet, but must pass twice in order to be reflected effectively doubling the

length of the attenuator where I really needed it. In the end, after experimenting with

several materials, I settled on lightly balled cotton. Figure 6.1 demonstrates cotton’s

frequency dependent attenuation characteristics. While certainly not flat, it succeeded

in preventing the system from oscillating over most frequencies. While the reflection

data show around a 90% attenuation factor, I had to make sure that was good enough

with a simple experiment. To ensure I had a good attenuator, I needed to only slowly

increase the blowing pressure while listening carefully for sound. Aside from wispy,

high-pitched edge tones, a non-oscillating system should be silent. If I heard the begin-

nings of a note, I knew I had to either repack my attenuator or ignore the data from

that blowing pressure. In the end, I learned that cotton just does not attenuate enough

around the 800 to 1200 Hertz region, depending on the pack, and I discarded the tainted

data.

After totally preparing the apparatus, I was prepared to begin the experiment.

Because I was interested in the reflection off the jet over different frequencies at different

blowing pressures, I had to run through a number of variables. I would slowly, by

approximately 1 Pa each step, measuring pressure with a Dwyer Series 475 Digital

Manometer, ramp up the blowing pressure and sound the driver from 250 to 1200

Hertz, taking reflection data at each frequency producing a series of plots of frequency

versus reflection coefficient. These graphs allowed me to examine how blowing pressure

affects the reflection coefficient at different frequencies. Figure 7.2 shows the finished

plot.
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Figure 6.1: The attenuator’s behavior over frequency is not flat, but kept the system
from oscillating over most blowing pressures. In the regions around the peak at 800 Hz,
the system would occasionally sound and I would discard those data.



Chapter 7

Results & Discussion

The results from my first experiment were quite promising. I knew from my earlier

integral experiment shown in Figure 4.2 that a blowing pressure of approximately 56

Pa was needed to properly sound a 523 Hz C5, 50 Pa a 392 Hz G4, and 25 Pa a 261 Hz

C4, also known as middle C. This suggested that a higher blowing pressure is needed

to sound higher notes and my data demonstrated this trend remarkably. Even more

interesting was the fact that at about 32 Pa the reflection coefficient maximum is at 270

Hz, at 50 Pa it is at 390 Hz, and at 56 Pa it is at 450 Hz once corrections are made for

air temperature. One would assume that the instrument would sound at approximately

the same frequency as the reflection maximum of the air-jet, and these numbers support

that trend.

After running one very careful experiment, the results seemed too good to be

true so I waited about a month and, under identical conditions, reran. Fortunately,

I was able to reproduce everything from one experiment to the next. The locations

and magnitudes of the reflection peaks stayed very stable as shown in Figure 7.1 and

even the shapes and small dips remained consistent. Figure 7.2 shows several of the

frequency versus magnitude of reflection coefficient plots at different pressures from my

second experiment. The data from the first experiment are nearly identical so are not

shown.

After obtaining frequency dependent data, I had to somehow compare my work
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Figure 7.1: Plotted are the magnitudes of the maximum reflection coefficients at dif-
ferent blowing pressures and the frequencies at which they are located for two different
experiments a month apart. The plots fall almost right on top of each other showing
strong reproducibility. The attenuator failed and the system started sounding for several
pressures so some points are omitted.

Figure 7.2: The maximum reflection coefficient smoothly moves to higher frequencies
as the blowing pressure increases. This explains why a musician must blow harder to
sound higher notes.
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to that done previously. Ideally, I would take reflection data from the fingered end and

somehow combine everything into an elegant model using boundary conditions, but the

hodge-podge of competing models and techniques made it difficult to understand where

to start. Instead, after reading M.P. Verge’s and P. De La Caudra’s theses, I focused

in on a dimensionless quantity called the Strouhal number that would more accurately

describe the physical situation [9] [8]. The Strouhal number

StW =
fW

Uj

(7.1)

takes into account the frequency of the disturbance1 , f , , the speed of the jet Uj , and

the distance from the mouth to the labium, W , which is 4.80 millimeters for a Yamaha

tenor recorder (see Figure 5.1). In essence it is half the number of wavelengths on the

jet that fit between the mouth and the labium because the disturbance on the jet travels

at about half the jet speed [16]. The relationship between the propagation speed of the

disturbance and the jet velocity is quite complicated and can only be solved numerically,

but Figure 7.3 from The Physics of Musical Instruments shows that when kb, the wave

number times the half-width of the jet (h
2 in Figure 5.1), equals one, as is approximately

true with the tenor recorder at most frequencies,

u

Uj

=
1

2
(7.2)

where u is the propigation speed of the disturbance on the jet [16].

Given I would like to represent my data with the Strouhal number as the inde-

pendent variable as to anchor them to a concrete physical situation, I needed to collect

all the elements involved. I knew the frequency of the disturbance, so I needed W and

the jet velocity. W I simply measured with a machinist’s feeler gauge to be 4.80 mm2 .

1 In the case of an assembled recorder, the acoustic oscillation inside the fingered section is the
disturbance frequency, but in the case of my experiment it is the frequency at which I drive the AVNA.

2 For those interested in where the Yamaha tenor recorder falls on the W
h

spectrum, I measured h
to be 0.80 mm, yielding a ratio of 6. This is above the 4 idealized for a recorder, but below the 10
idealized for the organ by Verge [9]. This means the jet of this tenor recorder is more turbulent than a
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Figure 7.3: This numerical solution shows the dependence of the propagation speed of
the disturbance, u, divided by the jet velocity, V , on half of the jet width, b times the
wave number of the perturbation, k. The other line shows the dependence of the growth
factor and is not entirely relevant to this thesis. In the region around kb = 1 where the
tenor recorder usually operates, u

V
(Uj is also referred to as V in some literature) varies

very slowly, so it is possible to roughly approximate the propagation speed as half the
jet velocity [16].



38

Finding the jet velocity would not be so simple.

Daniel Bernoulli found that

Uj =

√

2p0

ρ
(7.3)

where Uj is the jet velocity, p0 is the pressure drop, and ρ is the fluid density, in

1738 in Hydrodynamica [17]. In an ideal world, this would be a perfectly accurate

way to calculate jet velocity and is used in much of the literature to represent the

maximum velocity. Because Bernoulli neglects the energy-robbing effects of viscosity

and compressibility, the actual jet velocity will be lower. In addition, the shape of a jet

modeled using the Bernoulli equation is that of a top hat with constant velocity within

the jet and zero velocity outside. In reality, the jet will drag on the stationary air it

encounters and will assume a parabolic velocity profile shortly after exiting the mouth

as shown in Figure 7.4. Despite these shortcomings, most of the literature computes

Strouhal number using the Bernoulli velocity. I re-plotted my reflection coefficient

data against Strouhal number and found that the peaks all collapsed on one number,

StW ≈ .22, which represents approximately half a wavelength fitting between the mouth

and the labium. This demonstrates that there is a fairly specific physical situation for

which the recorder will sound with little variation throughout its range. Figure 7.5

shows this transformation.

I was not satisfied, however, with assuming Bernoulli behavior for my jet, so I

decided to install a Dwyer RMC-101 gas flow meter in line with my pressure source. I

applied rising pressures to the head of the recorder attached to the AVNA and recorded

the flow rate. As physically necessary, the velocity computed from the measured flow

rate and cross section of the recorder head was below the Bernoulli velocity. Also as

expected, the gap grew as the blowing pressure, and therefore the jet velocity, increased

typical alto by the time it reaches the labium. This effect would account for some acoustic differences
and perhaps make the tenor sound “throatier”. In addition, because h = 0.8∗10−3

meters and therefore
b = 0.4 ∗ 10−3

meters, kb ≈ 1 for StW = 0.25.
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Figure 7.4: While the jet ideally leaves the mouth in a top hat velocity profile, as it
exits viscous drag slows down the edges and the profile assumes a parabolic shape [18].

Figure 7.5: The Strouhal number is a dimensionless value that is approximately half
as many wave lengths as fit between the mouth and the labium. Ideally, in a world
without viscous and compressible air, the Strouhal number at the reflection coefficient
maximum should be constant because it represents a specific number of wavelengths on
the jet (See Figure 7.3 for slowly varying behavior). This plot demonstrates that while
not constant, maximum reflection coefficients are reached at similar Strouhal numbers.
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because the viscous drag increases with velocity. Figure 7.6 demonstrates these trends.

Next, I redefined a new Strouhal number, which I call Measured Strouhal, StW Meas,

calculated with the measured mean velocity, and re-plotted my data. As shown in

Figure 7.7, the peaks collapse even further, which means I had come even closer to

finding the physical characterization of the conditions at which the recorder operates.

Figure 7.6: The Bernoulli velocity represents the maximum jet velocity; the measured
velocity, the mean.

After calculating that the recorder should operate at a Strouhal number around

0.18 or a Measured Strouhal number around 0.25, I decided to examine the Schlieren

images taken by M. P. Verge in his thesis to try and confirm my suspicions. He pub-

lished the fundamental frequency of the disturbance, the blowing pressure, the absolute

pressure of the first fundamental, and the Reynold’s number

Reh =
Ujh

ν
(7.4)

where Uj is the maximum jet velocity, h the jet height, and ν the kinematic

viscosity, for each image. These data are enough for me to calculate the Strouhal
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Figure 7.7: The peaks collapse even more when plotted against measured mean velocity.
The Strouhal number is now less than half the number of wavelengths between the
mouth and the labium because the average velocity is less than not only the Bernoully
maximum velocity, but also the actual maximum on the jet.
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Table 7.1: Verge’s Schlieren images allow easy visualization of different Strouhal num-
bers.

Image StW Blowing Pressure (Pa) f1 (Hz) Acoustic Efficiency Uj
m
s

Figure 7.9 0.186 59 458 0.95 10.0
Figure 7.10 0.140 108 466 1.03 13.1
Figure 7.11 0.091 265 477 0.50 21.0
Figure 7.12 0.073 412 476 0.31 26.6
Figure 7.13 0.092 1058 960 0.40 42.3

number for each set of images and, using an acoustic efficiency defined as pressure out

divided by blowing pressure, show where the instrument should operate. This fabricated

acoustic efficiency

Ea =
Pf1

Pb

(7.5)

where Pf1
is the pressure of the first fundamental and Pb is the blowing pressure, is

not a true power efficiency as usually defined in physics, but should give a rough sense

of where the instrument operates most efficienty. Also, given the recorder has very

weak harmonics relative to other instruments, Figure 7.8 compares the harmonics of the

recorder to a trained opera singer, calculating efficiency using only the first fundamental

seems reasonable. I found that Verge’s acoustic efficiency is maximized at a Strouhal

of 0.14 in Figure 7.10, which corresponds to 3
8 of a wavelength on the jet. Because

Verge used Bernoulli velocity, rather than measured mean, his Strouhal numbers should

be increased by 50-100% to match my measurements, depending on blowing pressure.

However, his images are what are important and he clearly shows a little less than half

a wave on the jet at StW = 0.18, which is approximately what I would have expected.

Table 7.1 summarizes the data behind Verge’s images.

After analyzing Verge’s images, I turned to analyzing efficiency in my own data. I

suspected that there would be a small range of Strouhal numbers for which the recorder

would sound at all and an even small range for which the recorder would hit the right

note. Furthermore, I noticed that once the Strouhal number strayed from that ideal
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(a) 261 Hz Middle C Sung by Opera Singer (b) 261 Hz Middle C Played with Tenor Recorder
(uncorrected for temperature; actual frequency
255 Hz)

Figure 7.8: The opera singer’s note contains far more and stronger harmonics than the
recorder. Not only does this make the recorder a relatively easy instrument to study, but
it validates my approach to calculating acoustic efficiency based on the first harmonic.
Again, notes played using my pressure source sound lower, so had the air been at body
temperature Subfigure 7.8(b) would have had its fundamental at 261 Hz rather than
255 Hz.
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Figure 7.9: Schlieren images taken several hundred thousandths of a second apart for
a blowing pressure of 59 Pa [9]. Close to half a wavelength fits between the mouth and
the labium giving StW = 0.186. The acoustic efficiency of this configuration is almost
as good at StW = 0.140 indicating that the window of acceptable Strouhal numbers
extends up from 0.140.
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Figure 7.10: Schlieren images taken several hundred thousandths of a second apart for a
blowing pressure of 108 Pa [9]. This blowing pressure demonstrated the highest acoustic
efficiency.



46

Figure 7.11: Schlieren images taken several hundred thousandths of a second apart for
a blowing pressure of 265 Pa [9]. This is slightly above the highest blowing pressure I
ever used. At this pressure the recorder is overblown in every fingering.
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Figure 7.12: Schlieren images taken several hundred thousandths of a second apart for
a blowing pressure of 412 Pa [9].
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Figure 7.13: Schlieren images taken several hundred thousandths of a second apart for
a blowing pressure of 1058 Pa [9]. At this point the resonator tube has jumped up to
the next octave with f1 = 960Hz.
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value, my fabricated acoustic efficiency dropped. Verge did not provide enough data to

calculate true power efficiencies, but given the relative calibration of my microphones

and the fact that I can recorder both pressure and flow rate, I could run an efficiency

experiment.

I taped all the holes of the fingered section of the recorder closed in the middle

C configuration and measured power spectra from a barely audible blowing pressure

to one hard enough to overblow to the next octave. I knew that acoustic power is

pressure times flow rate, and that I could calculate relative power out by raising ten to

the measured magnitude of the first fundamental divided by ten. In numbers

Power = PbQ = k ∗ 10
f1
10 (7.6)

where Pb is pressure, Q is flow rate, k is a scaling constant necessary because the mi-

crophones are not absolutely calibrated, and f1 the magnitude of the first fundamental.

Therefore, my efficiency is shown in Equation 7.7

E =
k ∗ 10

f1
10

PbQ
(7.7)

I also knew that typical recorders have a power efficiency of about 1%, so I scaled

k to reflect that value. Subfigure 7.8(b) shows the power spectrum of at a blowing

pressure of 61.3 Pa. After calculating Measured Strouhal number, power in, and power

out for each blowing pressure, I plotted Measured Strouhal number against efficiency

and saw a peak at StW M = 0.18, close to that computed using acoustic efficiency and

Verge’s images as shown in Figure 7.14.

Remarkably, once corrected for air temperature, the blowing pressure that ex-

hibited the greatest efficiency also sounded exactly 261 Hz, the accepted frequency of

the middle C. I did not have time to extend this experiment to other fingerings, but it

suggests that efficiency and frequency are closely linked.

A final element of my investigation was into the effect, if any, of forked fingerings

on the effective length of the recorder. Recorders are fairly unique in that some notes



50

Figure 7.14: Power efficiency peaks at a StW M ≈ 0.18. Serendipitously, at that Mea-
sured Strouhal number, the note is perfectly in tune.



51

require a hole to be left open in between two closed holes as show in Figure 7.15. Using

the AVNA and tape to close different holes, I measured the reflection coefficient of the

tenor recorder’s entire bottom octave from C4 to C5. I then set the reference plane to

best approximate a closed end and recorded the values. Despite the forked fingerings

and other oddities of recorder design, there was a very linear reduction in resonator

tube length as I moved up the scale (see Figure 7.16).

Figure 7.15: Certain notes require “forked fingerings” in which a hole is left open be-
tween two closed holes.



52

Figure 7.16: As the ideal frequency of a given fingering increases, the length of the tube
decreases, despite strange forked fingerings.



Chapter 8

Conclusion

After looking at the reflection of an air-jet from a frequency, Strouhal number,

visual, and efficiency perspective, it is safe to say that recorder behavior is closely tied to

the number of wavelengths on the jet that fit between the mouth and the labium. While

the reflection data show a maximum gain at Strouhal number around 0.2, depending on

whether mean or theoretical maximum jet velocity is used, the Schlieren images taken by

Verge and my own data show a maximum efficiency at around 0.15. This puzzles me as I

would have expected the same situation that would maximize gain would also maximize

efficiency, but there is no physical law requiring it. Perhaps involved is the fact that

radiation efficiency increases rapidly with frequency. The data showing that a perfectly

sounded note occurs at a point of maximum efficiency suggest that efficiency should be

investigated further. The fact remains, however, that I have shown that under normal

operation, the Strouhal number stays somewhere between 0.12 and 0.25. It is known

that the recorder is a complicated instrument and it is quite possible that different

notes require a range of Strouhal numbers leading to varying efficiencies and blowing

pressures. While I have answered quite a few questions related to flue instruments, I

have raised even more. In the future I would like to investigate why reflection coefficient

peaks at 500 Hz, well below the typical playing range, how the width of the reflection

coefficient affects the sound, and the roles of turbulence in sound production. It is quite

possible that all these effects stem from the recorder’s long evolution, rather than a
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series of logical decisions, and exist simply because the instrument works the way it is.

Further research is certainly needed before our Yamaha engineer can finish his project.
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