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Introduction 

This research project can be divided into two relatively independent experiments.  The first deals 
with an attempt to simulate numerically (using Matlab) the sound field measurements made on a 
cylindrical waveguide setup with a horn attachment.  The second is an experimental sampling of 
the dynamics governing air jet amplification in a recorder head.  While each of these will require 
its own introduction, the core apparatus and certain fundamental acoustical principles are basic to 
both projects and it is with these that I begin. 

 

Background 

Setup: 
Conventional measurements of the sound field produced by a musical instrument are typically 
expensive (using anechoic chambers and stressing very small microphones) or very approximate 
(complicated wall reflection or microphone scattering calculations being needed for exactness).  
The Acoustic Vector Network Analyzer (AVNA) circumvents many of these issues being 
constructed from readily available and relatively inexpensive materials and by mounting the 
microphone surfaces flush with the side of the waveguide (Fig. 1).  With multiple microphones it 
measures both phase and attenuation information as well as the standard pressure amplitudes. 
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Figure 1:  AVNA cross-section with horn termination 

und waves of the desired frequency are produced by a compression driver (seen on the left in 
g. 1), designed to feed a cylindrical waveguide.  The various sections are joined by ARS-25 
uplers consisting of two flanges and an o-ring seal (see Fig. 2a and 2b).  The electret 
crophone signals each pass through a buffer amplifier and are adapted to drive standard audio 
crophone preamplifiers.  A digitizer receives these preamp signals for analysis by the 
mputer; it also produces the driver signal.  Figure 3 shows the complete layout of the 
paratus.  
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(a)                                                                    (b) 

Figure 2:  (a) Two flanges and o-ring seal (b) Clasp 

  

Figure 3:  In the top left is the digitizer with six buffer amplifiers leading from 
each microphone.  The AVNA is shown with a closed end attachment in the foreground 

atop two stands. 
 

The AVNA software fits the time independent pressure amplitudes (phasors) to a right going and 
left going pressure wave from which the ratio of the two can be calculated and graphed to 
display reflection information. 
 
Basic Theory: 
The one-dimensional wave equation for a sound wave in a fluid with no elastic resistance to 
shear forces is given by 

 
            (1) 
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where ξ is the displacement of the medium and p is the pressure.  The velocity of the wave, c, is 
then given by c = (K/ρ)1/2 where K is the bulk modulus (roughly, the constant of proportionality 
between volume and pressure changes; specific to the medium) and ρ is the density of the 
medium. 
 At a rigid boundary we expect the normal velocity of the fluid to be zero or, equivalently, 
the normal force (which goes like the normal component of the pressure gradient) to be zero, that 
is, 
 
             (2) 
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Generalizing equations (1) and (2) to three dimensions and solving the boundary value problem 
for a cylindrical waveguide we find that a pressure wave must propagate with m angular nodes 
and n radial nodes (temporarily assuming an infinite axial direction where boundary conditions 
will eventually vary with the end attachments used).  The first four propagating modes (m,n) are 
shown below in Figure 4. 

 
Figure 4: First four propagating pressure modes (m,n) 

 
Where oscillating time solutions are assumed (p ~ eiωt), we find that the cutoff frequency for each 
mode is given by 

               
a

cqmn
c

π
ω =      (3) 

 
qmn is the nth zero of the mth Bessel function and a is the radius of the waveguide.  Below ωc, a 
mode will decay exponentially along the axis.   
 Using the dimensions of the AVNA setup (a = 1.25cm) we find that the second lowest 
mode to propagate (1,0) does not do so until 8kHz  (the lowest (plane) mode propagates for all 
frequencies (ωc = 0) ) which is well beyond the frequency range of interest for most musical 
instruments (50 to 3000Hz).  Thus for all but the most extreme cases, the microphone 
measurement at the cylinder walls reflect the pressure along the entire plane perpendicular to the 
axis at that point. 
 If we wish to represent end attachments in the boundary value problem, it pays to discuss 
the acoustical impedance, Z, given by the pressure divided by the volume flow, Z = p(x,t)/U(x,t), 

0=
∂
∂t
ξ or 0ˆ =∇⋅ pn



where p and U are analogous to voltage and current respectively in the electrical case.  As in the 
simple optical reflection problem, different acoustic regimes (differing in geometry or medium 
properties) are characterized by different impedances as different optical media are characterized 
by different indices of refraction (see Figure 5). 
 

  

Figure 5:  Cylindrical waveguide reflection pro
 

Here Z0 is the characteristic impedance of the cylinder (given by ρc
the termination or end impedance.  The pressure in the pipe can be 
of a left going and right going wave as can the volume flow 
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(volume flow is measured as positive to the right thus the minus sig
amplitude).  From this and the definition of the impedance we can c
and right going pressure waves  
 

)(
)(

0

0

ZZ
ZZ

Ae
Be

E

E
ikx

ikx

+
−

=−   

  
where x in this case is evaluated at the reflection plane. 

 

Horn Simulation 

The simplest end attachments are the closed end (rigid end boundar
boundary) whose impedances we expect to be ZE = ∞ (no volume f
cross section, S) respectively.  The ratio of left and right going wav
reflection coefficient (although conventionally this term is reserved
never discuss these in this paper) – from (6) we expect to be 1 and -
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below shows a plot of R~ on the complex plane which, to within the range of experimental error, 
can be said to agree with the theoretical prediction of one. 
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Figure 6:  Reflection plane for closed end attachment 

The agreement is not so close, however, for the open ended case.  This is because the impedance 
in open space for a sound wave is not exactly zero, but has some finite value which, although 
much smaller than the Z0, is not negligible.  Figure 7a shows the reflection plane for an 
unflanged open end while 7b shows the absolute value of the reflection coefficient (top) and 
phase (bottom) versus frequency. 
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                                              (a)                                           (b) 
 

Figure 7: (a) R~ plotted on the complex plane (b) magnitude of R~  and 
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phase vs. frequency 



 
Of particular interest is the steady decline of the magnitude of R~  as a function of frequency and 
the fact that the reflection plane must be shifted by 0.702cm (theory predicts 0.76cm) from its 
actual physical end such that the reflection coefficient agrees with the ideal case (ZE=0). With 
the added complexity of an open ended attachment, theory becomes highly approximate and it 
makes sense to numerically simulate the results for comparative purposes. 

 First we wish to simulate the infinite space in which the sound wave propagates beyond 
the waveguide.  We model this as a large sphere with sound absorbing walls.  The condition for 
absorption, from (6), is that ZI = ZS where the impedance inside the sphere is equal to that on the 
sphere.  At a large radius, the sound wave is approximately planar and a plane wave has 
impedance Z = ρc (in code we set ρ and c equal to one).  Using the following relation between 
pressure and volume flow assuming oscillatory time dependence and Z=p/U 

piU rr
∇=

ωρ
     (7) 

and Z=p/U=1 we obtain the boundary condition  

        0ˆ =+∇• pikpn rr      (8) 

 

(equation (7) is nothing more than Newton’s equation where the negative pressure gradient 
represents the force and the time derivative of U the acceleration). 

 To test this absorbing-sphere approximation of infinite space we calculate numerically 
for the simple case of a pulsating sphere (which has an analytical closed form solution).  The 
PDE toolbox of Matlab allows us to draw such a geometry by hand in the graphical user 
interface (GUI) as well as define boundary conditions along its edges, mesh the geometry and 
solve the PDE at the intersections of the resulting mesh-grid.  Figure 8 shows the meshed 
geometry for the pulsating sphere case. 
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Figure 8:  Meshed geometry for pulsating sphere surrounded 

by an absorbing radius (to be rotated about the y axis). 

 

The standard two-dimensional Cartesian wave equation has been modified (appropriate 
coefficients chosen and angular symmetry conditions (periodic BC’s) imposed) to represent the 
3D cylindrical case (y=z and x=r in Fig. 8 above).  The remaining boundary conditions are 

for the driver (amounts to a velocity condition: sound wave traveling at c=1 from the 
speaker) and on the axis of rotation (y=0 above) amounting to a C

1ˆ =∇• pn r

0ˆ =∇• pn r 1 continuity 
condition.  Solving for this in the GUI we receive the 3D plot (with pressure as the third axis) of 
Figure 9. 
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Figure 9:  Pressure (height) vs. z and r 
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Theory predicts oscillating radial solutions that decay like 1/r (
r

epp
ikr−

0~ ).  To compare the 

numerical and analytical solutions, we write a program to average all solution values within a 
certain radial bin (of width dr) and plot average pressure vs. r (as seen in Figure 10 below).  
(Matlab’s interpolation functions do not work unless the mesh is excessively fine).  See appendix 
A for more information on this simulation. 
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Figure 10: p vs. r.  Theoretical in red, numerical in blue 

 

The theoretical and simulated results seem to agree nicely. 

 To represent more abstract geometries or to define exact proportions (in the GUI a circle 
can only be drawn to have approximately the desired radius) the GUI is no longer useful and 
geometry and boundary value programs must be written which use some of the PDE toolbox’s 
underlying inbuilt functions.  For more information on these programs see appendix B. 

 Constructing a geometry which attaches the absorbing sphere to the open end of the 
waveguide and following a procedure similar to that above (using command line functions 
instead of the GUI), we obtain the following geometry (Figure 11) and coefficient of reflection 
data (Figure 12).   
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Figure 11:  Open ended pipe geometry 
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Figure 12:  Numerical (red) vs. experimental (blue) reflection data  

(compare with Figure 7) 

 

Note in Figure 11 a small box around the tube end (this will become more prominent in the horn 
simulation below); this is used to divide the geometry into two regions for which different mesh 
fineness is desired (we care less about the precision of the solution in the absorbing sphere than 
inside the tube where the data is actually taken in the experiment).  Boundary condition (2) is 
used for the pipe walls and the constant velocity condition used for the pulsating sphere is 
imposed for the compression driver boundary. 

 The overall downward trend of the reflection magnitude agrees well with the 
experimental data as does the end correction to the reflection plane (the model behaves as if the 
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pipe were roughly 0.7cm longer in the idealized case).  Not accounted for experimentally, 
however, is the ringing of both magnitude and phase at larger frequencies.  This, we have come 
to conclude, is because the ringing is simply too small to observe for the open ended case and is 
lost in noise.  
 Ultimately, we hoped to model a horn attachment to the open pipe which, fortunately, 
exaggerates these ringing and damping effects to a level beyond apparatus noise.  The period of 
the ringing is proportional to the end radius which is much larger for a flaring horn (we should 
observe broader oscillations).  A horn is also designed to radiate meaning the reflection 
magnitude will drop more dramatically (at certain frequencies to near zero) and begin to do so at 
a lower frequency. 

 Following a similar procedure to that for the open end (only the geometry changes, not 
the boundary conditions), we achieve the meshed geometry shown in Figure 13b (compare with 
real setup 13a) and the numerical (red) vs. experimental (blue) reflection data displayed by 
Figure 14 below. 
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Figure 13: (a) Experimental setup (b) Matlab geometry 
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Figure 14: (a) Reflection plane for horn attachment 

(b) Magnitude (top) and phase (bottom) of R~  

 

 

As expected, the ringing period is notably lengthened and the drop in the reflection ratio’s 
magnitude comes sooner and more abruptly.   The numerical simulation on Matlab matches these 
features nicely.  Again for more information on the detailed workings of this program see 
appendix B. 
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Air Jet Amplification of a Recorder Head 
 
Background 
Rayleigh calculates that a disturbance in an air jet will propagate with half the jet speed and will 
grow exponentially with time along the jet.  Such a disturbance is caused in a recorder where an 
air jet emerging from the flue-slit (part B in Figure 15) is moved by an oscillating flow from the 
air column (the tube on the recorder), the oscillating air flow can be written as 
 

   tievih ω

ω
⎟
⎠
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⎜
⎝
⎛−=1      (9) 

 
where v is the flow velocity, ω its frequency and h1 the vertical disturbance of the jet.  In itself,  
this flow (which is constant over the opening) would simply move the entire jet up and down, but 
the jet is constrained by the flue-slit, thus, the vertical disturbance here must be zero and another 
term must be added to (9).  It is this term that propagates along the air jet causing it to oscillate 
about the sharp edge (part C of Figure 15) and inject a volume flow into the air column. 
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Here µ is the disturbance growth constant and u is the disturbance velocity.  The injected volume 
flow from the air jet occurs at the same frequency as the original column flow, the net effect of 
the recorder head is to amplify the incoming signal and create a sustained oscillation if multiple 
passes are allowed (reflections back from the open end). 
 

 
Figure 15:  Recorder head cross section 

 
 
Experiment 
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The objective of this experiment was to measure the amplification (single pass) of an incoming 
signal by the recorder head.  We expect the amplification to vary as a function of the signal 
frequency, ω, and the air jet velocity (2u) which is determined by the pressure applied to the 
mouth.  We wish to prevent sustained oscillations such that the right going wave (away from the 
driver) is only that imposed by the driver and the left going wave a mixture of the reflected wave 
and the air jet volume flow.   



To prevent multiple passes (i.e. a twice reflected component traveling right) we construct 
an attenuator after the driver and before the microphone section (see the cross section below in 
Figure 16).  This is accomplished by stuffing a tube section with cotton.  Pressure flow to the 
recorder mouth is controlled using a vinyl tubing setup running from a compressed air valve 
through an attenuating valve into a buffer volume and into the recorder mouth.  A manometer 
attached in parallel to the setup measures the applied pressure in mmH2O (1mmH2O ≈ 10pascal).  

 
 

 

 
Figure 16:  Experimental setup cross section 

 
 
 
 
Accuracy of the manometer was good to roughly ±0.5mm.  Thirteen test runs were made varying 
from 11 to 53mmH2O air pressure (experimentally the range appears to lie between 3 and 
85mmH2O) with steps between 3 and 4mm (it is recommended for more accurate testing that the 
manometer be tilted at some small angle from the horizontal and the water-level reading be 
multiplied by the sine of the angle).  The input signal ranged from 350 to 2100Hz which is 
roughly the span for the alto recorder.  Figure 17 below shows three graphs of the reflection 
coefficient magnitude and phase versus frequency for blowing pressures 14, 29 and 45mmH2O. 
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Lawson 13 

 



200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

0.5

1

1.5

2

frequency (Hz)

m
ag

ni
tu

de
 o

f r
ef

l. 
co

ef
.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
-2

0

2

4

6

frequency (Hz)

ph
as

e 
of

 re
fl.

 c
oe

f.

 
(c) 

 
Figure 18:  Reflection magnitude and phase data vs. frequency 

For 14 (a), 29(b) and 45mmH2O (c) 
 
 

As will be noted from the figures, for each blowing pressure there is a frequency of maximum 
response (resonance) which occurs at larger frequencies for larger blowing pressures (high note 
resonances require greater air pressure).  The net amplification at this resonance frequency 
decreases slightly as a function of blowing pressure, yet remains roughly around a factor of two 
within the recorder range.  Deviating slightly from this frequency, the recorder head has a 
damping effect (we expect a magnitude of one without the air jet since the recorder behaves 
approximately like an open end in this configuration).   In the low and high frequency limits the 
reflection magnitude approaches one signifying little to no amplification.  Also of interest is the 
relative broadening of the amplifier’s spike and dip as blowing pressure is increased.  (Pressure 
resolution was not sufficiently high to plot reflection data as a function of blowing pressure.  
General trends however can be ascertained from the graphs above).   For more information on 
these data files see Appendix C.  For information on air jet amplifier theory see Fletcher in 
references. 
 
 
 
 
 
 
 
 
 
 
 
 

Lawson 14 

 



Lawson 15 

 

 
 
 
Appendices 
 
For all of the programs below, knowledge regarding basic pdetool operation and AVNA software 
use is assumed.  For additional information on these topics see Matlab help and the AVNA Users 
Guide respectively. 
  
Appendix A 
 
sphericalpulser.m 
Simply run this program to reproduce the meshed geometry and pressure solution results of 
figures 8 and 9. 
 
rvpplotter.m 
The Matlab program rvpplotter requires no inputs.  It does, however, require you to load both 
mesh information (variables p, e and t) as well as the solution values (u in pdetool) into the 
workspace after running sphericalpulser.m.  This can be done easily in the pdetool GUI by 
clicking on the Mesh and Solve menus.   
 The pdetool solver stores x and y values as the first and second rows of the mesh matrix 
p; rvpplotter calculates the values for r (spherical radial distance) by r = (x2 + y2)1/2.  It then finds 
the location (in the p matrix) of all r values within a certain range (r to r+dr) and averages the 
corresponding u values.  The program runs from the smallest r value (in our case the pulsing 
sphere radius) to its largest value (the absorbing sphere radius).   After the binning procedure has 
run over all r’s rvpplotter plots u vs. r alongside the theoretically calculated pressure which goes 
like an oscillating term over r. 
 While it may seem easier to use one of Matlab’s inbuilt interpolation functions to achieve 
these results, an extremely fine mesh is required to achieve results similar to figure 10.  Running 
such a mesh takes a good deal of time.  
 
 
 
 
Appendix B 
 
defaults.m 
Similar to the defaults.m of the AVNA software this file stores all parameter values (i.e. mic 
locations, pipe length etc.).  See the program for an explanation of each parameter. 
 
hornling.m 
For more complex geometries or to input exact dimensions, the GUI cannot be used and a 
program describing the desired geometry must be written.  hornling.m offers two methods for 
inputting the geometry.  A set of measured data points can be input into the defaults file in which 
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case matlab will interpolate between points for meshing purposes or an analytical function can be 
defined for the horn geometry (in the function file geo.m).   

Both the open end and the horn can be simulated using this file where the geometry is 
simply altered to fit each end attachment.  The geometry function hornling.m is used by the 
inbuilt PDE solve function (you will never type it in the command line) thus its inputs, bs and s, 
need not concern us.  For additional help see pdegeom in Matlab help and comments in the 
program. 
 
geo.m 
This function file defines the two methods mentioned above in the geometry program 
hornling.m.  This is where the user can alter the analytical function defining horn geometry or 
the method of interpolation from the measured data in defaults.m 
 
hornsolvemult.m 
The following matlab program meshes the geometry defined in hornling.m then solves at the 
mesh points for a range of k values defined in the input arguments.  It then interpolates from the 
solution values onto a grid of specified axial values (for this case we use the microphone 
positions from the experiment).  The output datafile can then be fed into the wavefit.m program 
of the AVNA software whose output may, in turn, pass through the reflect.m program for 
reflection graphs.  For additional information on constructing a boundary value matrix see 
assemb in Matlab help and see assempde for more information on the general format of this 
program. 
 
compare.m 
This file comparing two wave solutions (for example Figure14) is only a slightly modified 
version of the AVNA file reflect.m. 
 
 
 
 
Appendix C 
 
All data files for the air jet amplifier experiment are stored as 'datrec(pressure value)mm' 
where pressure value is a number such as 11 (i.e. 'datrec11mm').  Wave files are saved as 
'wavrec(pressure value)mm' and reflection files as 'reflrec(pressure value)mm'. 
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