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Acoustic vector network analysis is the acoustic analog of a measurement system

commonly used in microwave electronics. Vector network analysis (VNA) allows for a

complete characterization of an object’s acoustic properties. Using this technique, one

can determine the acoustic power reflected and transmitted from an object (the test

device, using terminology from microwave network analysis) as well as the phase shift

of reflected and transmitted waves. In this way we may determine the complex-valued

components of the test device’s scattering matrix. This allows for the characterization

of acoustic elements in a way analogous to electronic circuit elements, in terms of the

acoustic analogs of resistance and reactance.

As a first experiment I apply single-port VNA to the analysis of an acoustic

resonating cavity. I show how the measured reflection coefficient can be used to charac-

terize the resonances of the cavity. Experimental results are compared with theory and

numerical simulation, which show good agreement.

I also describe a method for extending our AcousticVNA hardware and software to

enable two-port acoustic measurements. I discuss calibration and wave-fitting methods

and give an algorithm for two-port scattering matrix calculation.



Dedication

To my parents, for their endless love and support.



v

Acknowledgements

I would like to thank John Price for his guidance and support, without which this

project would not have been possible; John Cumalat for running a top-notch honors

class and always being available and happy to help; Stephen Preston for teaching me

numerical analysis (and still being willing to sit on my honors committee); Daniel and

Justin for comradery in the acoustics lab; Stephen and Jessica for keeping me on track

and supporting me at my defense; my parents for pep talks and support at every step

of the way; the faculty, staff, and Class of 2009 of the University of Colorado Physics

Department for making the last four years an incredible experience.



vi

Contents

Chapter

1 Introduction 1

1.1 What is Acoustic Vector Network Analysis? . . . . . . . . . . . . . . . . 1

1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4

2.1 The Helmholtz Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Acoustic Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Separation of the Helmholtz Equation . . . . . . . . . . . . . . . 5

2.2.2 Solutions in cylindrical coordinates . . . . . . . . . . . . . . . . . 6

2.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.4 Solutions in a circular waveguide . . . . . . . . . . . . . . . . . . 8

2.3 Acoustic Waveguide Measurements . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 The reflection coefficient . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 The scattering matrix . . . . . . . . . . . . . . . . . . . . . . . . 11

3 AcousticVNA Hardware and Software 13

3.1 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Measurement Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.2 Acquiring data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



vii

3.2.3 Wave-fitting process . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Acoustic Cavities 17

4.1 What is Resonance? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Cylindrical Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Analytic solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.2 Experimental characterization . . . . . . . . . . . . . . . . . . . . 19

4.2.3 Numerical modeling . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Multi-Port Measurements and Future Directions 29

5.1 Calibration and Wave-Fitting for n Ports . . . . . . . . . . . . . . . . . 29

5.2 Scattering Matrix Calculation . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 33

Appendix

A Modes of a Cylindrical Cavity 34



viii

Tables

Table

2.1 Cutoff frequencies for modes of a circular waveguide with diameter d . . 9

4.1 Comparison of resonant frequencies (in Hz) calculated analytically and

estimated by the reflection coefficient (refer to Figure 4.3) . . . . . . . . 22



ix

Figures

Figure

2.1 Cross-sectional shapes of the four modes of a cylindrical waveguide with

the lowest cutoff frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Identical sections of acoustic waveguide separated by an aperture . . . . 12

3.1 AcousticVNA hardware for single-port measurements . . . . . . . . . . . 14

3.2 Microphone calibration cell used with AcousticVNA . . . . . . . . . . . 15

3.3 Schematic view of the measurement process using the AVNA Lab software 16

4.1 Plots of the pressure field at resonances of a cylindrical cavity . . . . . . 20

4.2 AcousticVNA with a cylindrical cavity center-coupled to the microphone

section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Plot of the experimentally-determined reflection coefficient versus drive

frequency at the cavity opening (with resonances labeled) . . . . . . . . 23

4.4 Plots of the reflection coefficient near the second m = 1 resonance (110) 25

4.5 Two-dimensional geometry and mesh used in the finite-element numerical

calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Finite-element numerical solution of the pressure field inside the waveg-

uide and cavity for a drive frequency of 6080 Hz, near the resonant fre-

quency of the (201) mode . . . . . . . . . . . . . . . . . . . . . . . . . . 27



x

4.7 Comparison of experimental and numerically-calculated reflection coeffi-

cient shows excellent agreement . . . . . . . . . . . . . . . . . . . . . . . 28

5.1 The AcousticVNA system configured as a two-port vector network ana-

lyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



Chapter 1

Introduction

1.1 What is Acoustic Vector Network Analysis?

In electronics, the network analyzer is a powerful measurement tool indispens-

able in microwave circuit analysis.

A network analyzer characterizes the relationship between the amplitude of an

input signal and the amplitude of resulting output signals at one or more points (called

ports) in a network of components (or test device). A vector network analyzer

(VNA) is capable of measuring complex amplitude ratios (which include magnitude and

phase), hence the “vector” prefix.

Vector network analyzers work by measuring the amplitudes of incident (propa-

gating toward the device) and emergent (propagating away from the device) modes at

each port. The quantity of interest is the scattering matrix, defined as the matrix

that transforms a vector of incident amplitudes into a vector of emergent amplitudes.

For example, in a two-port system, if we denote the amplitudes of the incident and

emergent modes at the first port a1 and b1 and the same quantities at the second port

a2 and b2, then the four elements of the scattering matrix are defined by b1

b2

 =

 s11 s12

s21 s22


 a1

a2

 .

Note that when there is no incident wave in the second port (a2 = 0), s11 = b1/a1

and s21 = b2/a1, so s11 is the reflection coefficient of the test device looking into the
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first port and s21 is the transmission coefficient from the first port to the second port.

Similarly (when a1 = 0), s22 is the reflection coefficient looking into the second port

and s12 is the transmission coefficient from the second port to the first port.

The individual elements of the scattering matrix, which represent reflection and

transmission coefficients, are often referred to as s-parameters. For an n-port device,

there are n2 s-parameters, elements of an n × n scattering matrix.

Though vector network analysis is frequently applied to measurements of mi-

crowave networks, the concept is applicable to any system with confined waves. Acoustic

vector network analysis is a direct analog—the goal is still to determine the scattering

matrix of an object (or test device, carrying over terminology from microwave network

analysis) but in the acoustic case we are interested the interaction of the device with

sound waves, rather than electromagnetic waves.

Acoustic vector network analysis allows for a complete characterization of an

object’s acoustic properties. Using this technique, one can determine the power re-

flected and transmitted by an acoustic component, as well as phase shift of reflected

and transmitted waves. This allows the characterization of acoustic elements in a way

analogous to electronic circuit elements, in terms of the acoustic analogs of resistance

and reactance.

1.2 Applications

In a single-port configuration, an acoustic vector network analyzer can be used

to measure the reflection coefficient of an acoustic component attached to a waveguide.

The reflection coefficient—the ratio of the complex amplitude of the incident signal to

the complex amplitude of the reflected signal—is a useful quantity in acoustic analysis.

For example, measurements of the reflection coefficient of a horn attached to an

acoustic waveguide can be used to characterize the radiation efficiency of the horn.1 In
1 Assuming negligible mechanical losses
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the frequency range where the horn is designed to operate, we would expect the reflection

coefficient to be small, so that most of the incident power is radiated away. Precise

measurements of the reflection coefficient may be used to characterize and improve the

performance of horns and other acoustic components.

Such measurements are also valuable in the field of musical acoustics. For ex-

ample, measurements of the reflection coefficient of components of wind instruments

such as the recorder have been used to study the mechanism of air-jet amplification and

forked fingering patterns [6, 11].

The reflection coefficient of an acoustic resonator such as a cavity resonator (see

Chapter 4) can be used to determine resonant frequencies and characterize behavior at

resonance. Such information is invaluable in many fields of engineering, from the design

of audio equipment to architectural acoustics [10].

Two-port measurements allow characterization of transmission as well as reflec-

tion coefficients. Measurements of this kind are useful in the characterization of the

absorption properties of solid materials, for example, sound absorbing tiles or vibration-

damping materials. For such applications it is desirable to find materials that minimize

power reflected and transmitted (and thus maximize power absorbed) in a desired fre-

quency range.



Chapter 2

Background

In this chapter I give a brief introduction to the concepts and mathematics useful

in acoustic waveguide analysis.

2.1 The Helmholtz Equation

Sound is transmitted in a medium by the propagation of pressure variations. The

difference between the pressure at a point and the average (or quiescent) pressure

is called acoustic pressure, hereafter denoted by p. It can be shown [8] that if the

acoustic pressure p is small relative to the quiescent pressure, then p (r) obeys the wave

equation:

∇2p =
1
c2

∂2p

∂t2
, (2.1)

where c is the speed of sound in the medium.

We will usually be interested in solutions with sinusoidal time dependence,

p (r, t) = p (r) exp (−iωt) , (2.2)

though we may use the tools of Fourier analysis to construct a general solution from

solutions with sinusoidal time dependence. Inserting (2.2) into (2.1) gives, with the

definition k = ω/c, (
∇2 + k2

)
p (r) = 0. (2.3)
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This is the Helmholtz equation, the partial differential equation that describes the spatial

dependence of solutions of the wave equation with sinusoidal time dependence. It is a

common starting point for problems in acoustics.

2.2 Acoustic Waveguides

2.2.1 Separation of the Helmholtz Equation

In the analysis of a cylindrical waveguide oriented in the z direction, we will be

interested in solutions to the Helmholtz equation of the form [4]

u (r) = f (R) g (z) , (2.4)

where R represents the coordinates in the transverse (yz) plane. Inserting (2.4) into

the Helmholtz equation and dividing by fg, we obtain the separated equation

− 1
f
∇2f =

1
g
g′′ + k2 = K2, (2.5)

where K2 is the separation constant. We obtain the equations

g′′ = −γ2g (2.6)

0 = ∇2f + K2f , (2.7)

where γ =
√

k2 − K2 is the propagation constant. Assuming that K2 is positive1 ,

γ will be positive real or positive imaginary.

The general solution of (2.6) is

g (z) = a exp (iγz) + b exp (−iγz) . (2.8)

The first term on the right represents a wave that propagates or decays in the +z

direction, while the second term represents a wave that propagates or decays in the −z

direction.
1 This assumption is necessary to ensure physically realizable solutions. The resulting basis is

complete, allowing for the construction of a general solution.
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2.2.2 Solutions in cylindrical coordinates

The solution of f depends on the geometry of the waveguide. In cylindrical

coordinates,

∇2f =
1
r

∂

∂r

(
r
∂f

∂r

)
+

1
r2

∂2f

∂ϕ2
+

∂2f

∂z2
. (2.9)

We will be interested in separable solutions of the form

f (R) = R (r)Φ (ϕ) . (2.10)

Substituting (2.9) and (2.10) into (2.7) and multiplying by r2/RΦ yields the separated

equation

− 1
Φ

Φ′′ =
r

R

(
R′ + rR′′) + r2K2 = m2,

where m2 is the separation constant. We obtain the equations

Φ′′ = −m2Φ (2.11)

0 = r2R′′ + rR′ +
(
r2K2 − m2

)
R. (2.12)

The general solution of (2.11) is

Φ (ϕ) = c exp (imϕ) + d exp (−imϕ) . (2.13)

We restrict our interest to solutions that are single-valued (i.e. 2π periodic in ϕ),

requiring that m is an integer.

The second equation (2.12) is Bessel’s equation of order m. The general solution

is a superposition of J and Y Bessel functions. Here we restrict our interest to solutions

that are finite at r = 0, and thus we may discard the Y term:

R (r) = Jm (Kr) = Jm

(
r
√

k2 − γ2
)

. (2.14)

Equations (2.4) and (2.10), together with (2.8), (2.13), and (2.14), give a specific solution

of the Helmholtz equation in free space. The general solution is a superposition of these

specific solutions.
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2.2.3 Boundary conditions

In order to solve the Helmholtz equation in a confined volume such as a waveguide,

we must develop a theory of the behavior of the pressure field at a boundary. For our

purposes, we need only to consider hard surface boundaries.

When effects of viscosity can be ignored, an appropriate model is the sliding

boundary condition, in which only the perpendicular component of the fluid velocity

must vanish at a surface. Because velocity is proportional to the pressure gradient, we

can write this as

n · ∇p = 0 at a hard surface, (2.15)

where n is a vector normal to the surface.

In reality, molecular scattering from surfaces is generally diffuse, meaning that the

average (fluid) velocity is zero at a surface. Were we using a more sophisticated model

(such as the Navier-Stokes equations, which model viscosity), we should really enforce

that all components of the velocity vanish at a surface. However, this condition would

produce non-physical solutions if applied to the wave equation, which does not model

viscosity. Furthermore, taking viscosity into account, it can be shown that the effect of

diffuse scattering is only significant in a thin region known as the viscous penetration

depth, δs. At a distance δs from a surface, the sliding boundary condition is an excellent

approximation.

Another complication that becomes significant in a thin region near a surface

is the transition of adiabatic conditions in the flow to nearly isothermal conditions at

the surface. Hence, the (acoustic) pressure gradient, and with it the fluid velocity,

approaches zero at a surface. However, this effect is only significant in a thin region

known as the thermal penetration depth, δh [8, 12].

In the frequency range with which we will be concerned (20 Hz to 20 kHz), both

δs and δh range from about half a millimeter to a hundredth of a millimeter [8], lengths
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much smaller than the dimensions of the waveguides we expect to use. For the purposes

of the analysis in this paper, we take the sliding boundary condition to be an excellent

approximation.

2.2.4 Solutions in a circular waveguide

When applied to the case of a circular waveguide (i.e., a cylindrical waveguide

with a circular cross-section) oriented along the z axis, the sliding boundary condition

(2.15) introduced in the previous section requires that r̂ · ∇u = 0 at r = a, where a is

the radius of the waveguide, or, equivalently,

R′ (a) = KJ ′
m (Ka) = 0. (2.16)

For m = 0, there is a nontrivial solution when K = 0 (or γ = k). This solution gives

the mode we will label (00):

u±
00 (r) = exp (±ikz) . (2.17)

This mode behaves like a plane wave and propagates at all frequencies. Note that γ = k

implies that the phase velocity is equal to the free-space phase velocity of sound.

The other nontrivial solutions must have K 6= 0. In this case, the condition (2.16)

is satisfied only if Ka is a positive root of J ′
m— each root corresponds to a different

mode. A general formula for the mode labeled (m,µ − 1) is

u±
m,µ−1 (r) = exp (imϕ) exp (±iγµz) Jm

(
j′mµ

a
r

)
, (2.18)

where

γµ =
√

k2 −
(
j′mµ/a

)2 (2.19)

Here j′mµ denotes the µth positive root of J ′
m, except when m = 0, in which case zero

is regarded as the first root [1]. Thus µ is a positive integer.

A fundamental consequence of (2.19) is the existence of cutoff frequencies, or

frequencies below which a given mode will not propagate. If k < j′mµ/a, the propagation
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Figure 2.1: Cross-sectional shapes of the four modes of a cylindrical waveguide with the
lowest cutoff frequencies

constant γµ becomes imaginary, leading to a solution that decays exponentially in z.

Thus, the cutoff frequency of the mode (m, µ − 1) is given by

fc =
c

2πa
j′mµ. (2.20)

Cross sections of the four modes with the lowest cutoff frequencies are shown in

Figure 2.1 and the cutoff frequencies are listed in Table 2.1. Note that the mode labeled

(mµ) has m angular nodal lines (zeros) and µ radial nodal lines.

The existence of cutoff frequencies is an important result for our purposes: waveg-

uide measurements are greatly simplified if we can assume that only the (00) mode,

which behaves like a simple plane wave, is propagating. By operating at frequencies

below the cutoff frequency of the (10) mode, we can ensure that only the (00) mode

propagates.

Mode fc · πd/c

00 0
10 1.841
20 3.054
01 3.832
30 4.201
40 5.318
11 5.331

Table 2.1: Cutoff frequencies for modes of a circular waveguide with diameter d
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2.3 Acoustic Waveguide Measurements

The ability to measure the amplitudes of propagating modes inside a waveguide

is useful in many instances. For example, such measurements allow us to characterize

acoustic elements in a way analogous to electronic circuit elements, in terms of the

acoustic analogs of familiar quantities in electronic circuit analysis.

All of our measurements will be conducted at frequencies below the cutoff fre-

quency of the second mode (∼ 8 kHz for our 2.5 cm diameter waveguide), so we may

assume that only the (00) mode propagates. This mode is unique in that the pres-

sure field is independent of r and ϕ. Thus, a pressure measurement at the wall of the

waveguide determines the pressure in the entire plane perpendicular to the axis at that

point.

When only the (00) mode propagates, the pressure field in the waveguide may be

written as a superposition of right- and left-going plane waves (where “left” refers to

the −z direction and “right” refers to the +z direction):

p (z) = a exp (ikz) + b exp (−ikz) . (2.21)

For the remainder of this section I implicitly assume that only the (00) mode propagates.

2.3.1 The reflection coefficient

We define reflection coefficient as the amplitude ratio of the left-going wave to

the right-going wave at the reference plane z = d:

R (z = d) =
b exp (−ikd)
a exp (ikd)

=
b

a
exp (−2ikd) . (2.22)

By calculating the reflection coefficient at a reference plane that coincides with a discon-

tinuity in the waveguide, we may obtain a useful characterization of the discontinuity.

The two simplest waveguide discontinuities are the open (no boundary) and closed

(rigid boundary) end terminations. Ideally, we expect the reflection coefficient to be −1
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at an open end and 1 at a closed end. This can be understood intuitively by considering

the behavior of the pressure field at each type of end boundary—at an open end, we

expect a pressure minimum, which can only be achieved if the incident and reflected

waves are 180 degrees out of phase at that point; at a closed end, we expect a pressure

maximum, which can only be achieved if the incident and reflected waves are in phase.

The reflection coefficient not only tells us the phase shift of the reflected wave

(which is useful in determining the impedance difference at a discontinuity) but also

the ratio of the magnitude of the reflected wave to the incident wave. The latter can be

used to determine the acoustic power reflected at a discontinuity.

2.3.2 The scattering matrix

Often in acoustic analysis we are interested not only in the way an object reflects

incident sound waves, but also how it transmits or absorbs them. For a simple example,

consider two identical sections of cylindrical waveguide coupled by an aperture smaller

than the waveguide diameter (see Figure 2.2). A sound wave incident on the aperture

from the left will produce a reflected wave in the first port and a transmitted wave in

the second port. Letting ai and bi denote the incoming and outgoing amplitudes at the

ith port, we define the transmission coefficient from port 1 to 2 as the amplitude

ratio of transmitted wave to the incident wave:

s21 (z1 = d1, z2 = d2) =
b2 exp (−ikd2)
a1 exp (ikd1)

=
b2

a1
exp [−ik (d1 + d2)] . (2.23)

Note that s21 is a function of d1, the reference plane in the first port, and d2, the reference

plane in the second port. If asymmetries are present, we might also be interested in the

transmission coefficient from port 2 to port 1, given by

s12 (d1, d2) =
b1

a2
exp [−ik (d1 + d2)] . (2.24)

Using this new notation, it is natural to let s11 and s22 represent reflection co-

efficients looking into the first and second ports. These s coefficients are called s-
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Figure 2.2: Identical sections of acoustic waveguide separated by an aperture (note that
each port has its own coordinates)

parameters and are the elements of the scattering matrix, defined as the matrix

that transforms a vector of incident amplitudes (the a’s) to a vector of emergent am-

plitudes (b’s). In this two-port example the scattering matrix is 2 × 2 and is defined

by  b1 exp (−ikz)

b2 exp (−ikz′)

 =

 s11 s12

s21 s22


 a1 exp (ikz)

a2 exp (ikz′)

 . (2.25)



Chapter 3

AcousticVNA Hardware and Software

AcousticVNA is an inexpensive system capable of making precise acoustic waveg-

uide measurements, developed by Dr. John Price’s group at the University of Colorado

at Boulder.

3.1 Apparatus

The apparatus consists of a compression driver (a type of speaker designed to feed

a cylindrical waveguide) coupled to a cylindrical acoustic waveguide with six embedded

electret microphones (see Figure 3.1). The microphones are connected via a set of buffer

amplifiers to a digitizer, which is capable of simultaneously sampling the six channels.

Control and data analysis is done in MATLAB using AVNA Lab v1.0, a software package

developed by John Price’s group.

In the configuration shown in Figure 3.1, AcousticVNA is capable of measuring

the complex reflection coefficient of a test object, which is coupled to the microphone

section at the end opposite to the compression driver.

3.2 Measurement Procedure

3.2.1 Calibration

The first step in the measurement process is the relative calibration of the micro-

phones. AcousticVNA uses relatively inexpensive electret microphones, which are not
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Figure 3.1: AcousticVNA hardware for single-port measurements
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Figure 3.2: Microphone calibration cell used with AcousticVNA

generally provided with absolute calibration data (so we can’t deduce absolute pres-

sure amplitude from the microphone signal), and aren’t necessarily stable (i.e. their

responsiveness varies with temperature and time)1 .

Fortunately, we require only relative microphone calibration—that is, we need

to know the differences in the amplitudes and phases recorded by each microphone when

they “hear” the same sound. To do this, we insert the microphones into the calibration

cell (shown in Figure 3.2), which ensures all the microphones are subject to the same

pressure field. One of the microphones is taken to be a reference, and its complex

amplitude divided out of the complex amplitudes of the other microphones. The result

is a set of complex amplitudes relative to the reference microphone—these amplitudes

are divided out of the microphone signals to obtain calibrated data.

As the relative amplitudes may vary with frequency, the calibration process is

carried out for a range of frequencies. This process is automated by the calibrate.m

routine2 .
1 We assume the microphone response is linear in the operating pressure range (this has been con-

firmed by experimentally).
2 See the “AcousticVNA User’s Guide” for more information.
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Figure 3.3: Schematic view of the measurement process using the AVNA Lab software
(function names are boxed, labels above the arrows indicate data structures passed from
one function to the next)

3.2.2 Acquiring data

Following calibration, the microphones are inserted into the microphone section

and the test object mounted. A series of sine-wave tones are played through the compres-

sion driver at varying frequencies and the microphone signals recorded. The microphone

signals are Fourier-transformed to extract the time independent amplitude (or phasor)

of the driven mode at each microphone. This data is stored as a set of six phasors for

each drive frequency. This process is automated by acquire.m.

3.2.3 Wave-fitting process

Here we assume that the pressure field in the waveguide may be described by

the superposition of left- and right-going plane waves at the drive frequency3 . Given

the complex amplitudes recorded at each microphone, we use a least-squares fitting

routine to determine the left- and right-going wave amplitudes, as well as the values

of other parameters (including phase velocity and attenuation) that best fit the data.

The routine wavefit.m carries out the fitting and returns the left- and right-going wave

amplitudes at each frequency. This data may be used to calculate useful quantities such

as the reflection coefficient at a given reference plane.

3 Here we must assume that only the (00) mode propagates (see Section 2.2.4). For our waveguide
(diameter 2.5 cm) this is always the case below 8 kHz.



Chapter 4

Acoustic Cavities

The study of acoustic resonating cavities is important in a broad range of fields,

from musical acoustics to architectural engineering. In many cases, solutions of the

Helmholtz equation, using simple sliding boundary conditions, can provide adequate

predictions of the properties of a resonating cavity (such as its resonant frequencies).

One can obtain accurate numerical solutions of this problem, even for complicated

geometries, using a finite-element numerical approach. However, when higher accuracy

is needed, or when complications such as fluid viscosity or soft boundaries become

important, waveguide measurement techniques may be used to characterize resonances.

Because waveguide techniques usually require a modification of the cavity geometry (in

order to fit the cavity to a waveguide), they work best when the dimensions of the

waveguide are small in comparison to the cavity.

My objective was to use the AcousticVNA apparatus to characterize the reso-

nances of a simple resonating cavity, and then compare the measurements with analytic

and numerical calculations. I chose to use a cylindrical cavity because the analysis

follows easily from that of the circular waveguide (treated in Section 2.2.4).

Because the cylindrical cavity (and the waveguide to which it is attached) pos-

sesses axial symmetry, we expect solutions of the Helmholtz equation to have simple

sinusoidal ϕ dependence:

u (r) = f (r, z) exp (imϕ) . (4.1)
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We can thus reduce the problem to a two-dimensional partial differential equation (and

tack on ϕ dependence at the end), making finite-element numerical calculations more

feasible.

4.1 What is Resonance?

Roughly speaking, resonance occurs when a system is driven at a frequency

corresponding to a local maximum in oscillation amplitude. In an acoustic resonating

cavity, maximum (acoustic pressure) amplitude is achieved when standing waves form

inside the cavity, or when the wavelength of the drive signal approaches a dimension of

the cavity.

Standing waves have simple sinusoidal time dependence and thus their spatial

dependences are solutions of the Helmholtz equation (2.3); we can calculate standing

wave patterns in a resonating cavity by solving the Helmholtz equation subject to the

appropriate boundary conditions.

4.2 Cylindrical Cavities

4.2.1 Analytic solutions

Consider a cylindrical cavity of radius a and length b. Solving the Helmholtz

equation subject to sliding boundary conditions (see Appendix A for a derivation), we

arrive at a set of solutions indexed by nonnegative integers n, l and integer m:

unml (r, ϕ, z) = cos (nπz/b) exp (imϕ) Jm

(
r

√
k2

r − (nπ/b)2
)

(4.2)

where

k2
r = (nπ/b)2 +

(
j′m,l+1/a

)2 . (4.3)

(Let j′mµ be defined as in Section 2.2.2). Given indices n, m, and l, the solution unml

corresponds to a resonance of the cavity, that is, a solution of the wave equation that
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satisfies the cavity boundary conditions and has a simple sinusoidal time dependence.

From (4.3), we can calculate the frequency corresponding to each resonance (nml) using

the relation fr = (c/2π) kr.

4.2.2 Experimental characterization

Coupling a cylindrical cavity to the microphone section of the AcousticVNA ap-

paratus allows a measurement of the reflection coefficient at the opening of cavity. The

experimental setup is shown in Figure 4.2.

We hypothesize that two phenomena will allow us to use measurements of the

reflection coefficient to identify resonances of the cavity:

(1) The magnitude of the reflection coefficient should decrease slightly at a reso-

nance.

(2) The reflection coefficient should undergo a phase shift of 2π (centered at the

resonant frequency) near resonance.

In a model that neglects dissipation, the magnitude of the reflection coefficient at a

closed, single-port cavity should be identically one. In reality, a fraction of the incident

power is transmitted through the cavity walls or converted to heat through friction

with surfaces or viscous friction. Such losses increase with the amplitude of pressure

oscillation inside the cavity, and thus peak at resonance.

To understand the second effect we must consider the behavior of the pressure

field at the cavity opening. Far from resonance, the cavity opening is similar to an open

termination—there is a pressure node (minimum) at the opening, requiring that the

left- and right-going waves at that point are 180 degrees out of phase. This corresponds

to a reflection coefficient of −1. At resonance, however, there is a pressure antinode

(maximum) at the cavity opening, corresponding to a reflection coefficient of 1 (because

the left- and right-going waves must add in phase). Thus, as we pass by a resonance,
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(a) (130) resonance

(b) (222) resonance

Figure 4.1: Plots of the pressure field at resonances of a cylindrical cavity (the plots on
the left are slices in the xz plane, with the left edge corresponding to x = 0 and the
right edge x = a; the plots on the right are slices in the xy plane at z = b/2)
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Figure 4.2: AcousticVNA with a cylindrical cavity center-coupled to the microphone
section
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(nml) Analytic Reflectometry (±50 Hz)
100 2736 2736
110 3208 3198
001 3554 3564
030 3877 3896
101 4436 4478
011 4944 4901
200 5465 5493
210 5626 5627
220 6156 6158

Table 4.1: Comparison of resonant frequencies (in Hz) calculated analytically and esti-
mated by the reflection coefficient (refer to Figure 4.3)

the reflection coefficient goes from 1 to −1 and back to 1, a phase shift of 2π.

The measured reflection coefficient is plotted versus frequency (from 2.5–6.5 kHz)

in Figure 4.3. Note that the phase shifts (specifically, points where the phase is changing

most quickly) coincide with dropoffs in the magnitude (on the order of 20%) of the

reflection coefficient. This seems to suggest that our model is correct, and these points

identify resonances of the cavity. Indeed, the frequencies marked by vertical lines in

the figure match up fairly closely with those calculated using (4.3) (See Table 4.1 for

a comparison of the analytical1 and experimental results.) Note, however, that there

are dropoffs in the reflection coefficient magnitude that do not appear to coincide with

phase shifts. Interestingly, these dropoffs coincide with resonances for which m 6= 0.

Upon closer examination, we do see a small phase shift near these resonances (see

Figure 4.4, for example). Figure 4.4a is particularly useful in understanding why the

phase shift is not a full 2π in these cases. The explanation is that the nonzero-m modes

are less strongly coupled to the waveguide than are the m = 0 modes (intuitively, it

is difficult to drive axially-asymmetric modes when the system is axially symmetric).

For an example of weak coupling, imagine we were to insert an aperture at the cavity

opening. As we make the aperture smaller and smaller, we approach the limit of a
1 For the calculations I used c = 343.8 m/s and the cavity dimensions a = 5.9 cm, b = 6.3 cm.
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Figure 4.3: Plot of the experimentally-determined reflection coefficient versus drive
frequency at the cavity opening (with resonances labeled)
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closed end, for which the reflection coefficient is +1. Near a cavity resonance, we would

see only a small loop in the overall reflection coefficient (as seen in the figure) because

only a small component undergoes the expected 2π phase shift and magnitude dropoff.

We may therefore generalize our second criterion for resonance to read: “There is

a loop (i.e. a phase shift of 2π relative to some origin) in the reflection coefficient near

resonance.”

4.2.3 Numerical modeling

The cavity studied in the experiment is not a perfectly cylindrical, thanks to

the opening at which it is connected to the waveguide. In order to carefully analyze

the consistency of the waveguide measurements with the predictions of the Helmholtz

equation, we need to take into account the slightly more complicated (i.e., including the

waveguide as well as the cavity) geometry of the experimental setup. Here an analytic

solution is not possible, so we turn to numerical methods.

I utilized MATLAB’s numerical PDE toolbox to perform a finite-element solution

of the Helmholtz equation, using the geometry shown in Figure 4.5. This geometry

represents a slice of the waveguide and attached cylindrical cavity in a plane passing

through the axis of symmetry (the solid of rotation obtained by rotating about the

horizontal axis in the figure is the true three-dimensional geometry). By fixing m and

solving the Helmholtz equation with boundary conditions in this simplified geometry,

we may determine the r and z dependence in (4.1).

We used sliding boundary conditions at the surfaces of the waveguide and cavity,

and the matched driver boundary condition at the driver end of the waveguide. The

matched driver condition requires that

ẑ · ∇u = ik (2 − u) at z = 0. (4.4)

This is the sliding condition with a forcing term, which represents the driver. The
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Figure 4.4: Plots of the reflection coefficient near the second m = 1 resonance (110)
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Figure 4.5: Two-dimensional geometry and mesh used in the finite-element numerical
calculations (scale is meters)

form of the forcing term ensures that the magnitude of the wave propagating in the +z

direction (away from the driver) is always 1, which allows us to focus on resonances of

the cavity rather than those of the cavity-waveguide system.

By varying k in (4.4), I produced a series of finite-element calculations of the pres-

sure field in the waveguide at various drive frequencies. From this data I extracted com-

plex amplitudes of the pressure field at the microphone locations, and used wavefit.m

to fit right- and left-going waves. These data allowed me to plot the reflection coefficient

versus frequency, shown in Figure 4.7.

The experimental and numerical phases match almost perfectly. The only no-

ticeable inconsistency, a horizontal stretching of the experimental curve when compared

with the numerical one, can be explained by the fact that the phase velocity of sound

within the waveguide varies with frequency (from about 343.6–344 m/s in this range),

while we use a fixed phase velocity in the numerical calculation. The magnitudes we do

not expect to agree, as the numerical calculation does not account for losses.
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Figure 4.6: Finite-element numerical solution of the pressure field inside the waveguide
and cavity for a drive frequency of 6080 Hz, near the resonant frequency of the (201)
mode (units of pressure are arbitrary)
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Figure 4.7: The plot of reflection coefficient versus frequency obtained through numerical
solution of the Helmholtz equation is in excellent agreement with the measurements.



Chapter 5

Multi-Port Measurements and Future Directions

With the addition of a second microphone section, the existing AcousticVNA

hardware can (in theory) be used as a two-port vector network analyzer (see Figure

5.1). Most of my recent work has been in extending the AVNA Lab software to support

an arbitrary number of ports and microphone channels. I have been partially successful:

I have designed and implemented a scheme for relatively calibrating an arbitrary number

of microphones, extended the wave-fitting procedure to simultaneously determine modal

amplitudes in an arbitrary number of ports, and written a program for the calculation

and visualization of s-matrix elements.

5.1 Calibration and Wave-Fitting for n Ports

Two-port measurements using AcousticVNA require the relative calibration of

twelve microphones (six per microphone section), which is slightly tricky business be-

cause the standard calibration cell (Figure 3.2) only accommodates six microphones. To

circumvent this issue we run the calibration routine multiple times, each time swapping

out all but one microphone (the reference mic) until all have had their turn in the cell.

The relative amplitudes obtained at each stage are multiplied by the factor that makes

the amplitude of the reference microphone equal to one. This process is automated by

the new routine supercal.m.

Multi-port analysis requires a modification of the wave-fitting procedure. Initially
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Figure 5.1: The AcousticVNA system configured as a two-port vector network analyzer
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we decided that the best option would be to modify the existing code to fit right- and left-

going amplitudes in all ports simultaneously, treating the phase velocity of sound and the

attenuation constant as global parameters. This method turned out to be more difficult

to implement than I had expected, and has not yet produced accurate results (almost

certainly due to bugs in the code). In retrospect, it would have been easier to perform

a separate fit in each port; although fitting to global parameters might have produced

more accurate results (because the microphone sections are essentially identical), a

separate fit would be easier to implement and would allow for small differences between

microphone sections.

5.2 Scattering Matrix Calculation

In a two-port system, the scattering matrix has four elements—to determine these

elements we will need four linear equations. Our algorithm is as follows:

(1) Drive (play a tone through the driver) the first port. Record the right- and

left-going amplitudes in each port. Using these amplitudes we can write two

linear equations:  b1

b2

 = S

 a1

a2

 .

(2) Drive the second port. Record amplitudes a′i and b′i. Now, b′1

b′2

 = S

 a′1

a′2

 .

(3) Determining the s-matrix now amounts to solving a pair of two-dimensional

linear systems:  a1 a2

a′1 a′2


 s11

s12

 =

 b1

b′1
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and  a1 a2

a′1 a′2


 s21

s22

 =

 b2

b′2

 .

This algorithm can be easily implemented in MATLAB by making use of built-in linear

algebra capabilities (see smatrix.m).

5.3 Future Directions

My most immediate goal is to re-implement the multi-port wave-fitting routine

to perform a separate fit at each port. When this is complete, I would like to fix the

problems with the current global fitting method and compare results obtained using the

two methods.

Once we have a reliable method of determining the scattering matrix, I would like

to perform several preliminary experiments for which the theory is well-understood—

this will allow us to test the accuracy of our scattering matrix measurements. One

such experiment would be to measure the scattering matrices of waveguide apertures of

different sizes—such a configuration is easily modeled using numerical PDE software.
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Appendix A

Modes of a Cylindrical Cavity

The analysis of circular waveguides in Section 2.2.4 can be extended to a simple

cylindrical cavity by imposing the additional boundary condition:

ẑ · ∇p = 0 at z = 0, b. (A.1)

Taken together, boundary conditions (2.16) and (A.1) describe a closed cylinder of

length b oriented along the z axis. Looking back to (2.4), the boundary condition (A.1)

is equivalent to

g′ (0) = g′ (b) = 0.

The first condition enforces that a = b in (2.8), that is, the amplitude of the wave

propagating in the +z direction is equal to the amplitude of the wave propagating in

the −z direction.

The second condition leads to quantization of the propagation constant, γ. Note

that in order to satisfy g′ (b) = 0, γ must be an integral multiple of π/b.

We can now write the modal z dependence

gn (z) = cos (nπz/b) , n ∈ Z. (A.2)

Combining (A.2) with (2.17) and (2.18), we can write the complete modal solution,

labeled by nonnegative integers n and l and integer m:

unml (r, ϕ, z) = cos (nπz/b) exp (imϕ) Jm

(
r

√
k2

r − (nπ/b)2
)

.
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where (using the definition of j′mµ introduced in Section 2.2.4)

k2
r = (nπ/b)2 +

(
j′m,l+1/a

)2 .


