Construction and Initial Measurements of an Acoustic Reflectometer

William Johnston Colorado State University

John Price

Advisor

Outline

- How the Air Jet Creates a Tone
- The Acoustic Reflectometer
- Determining Reflectance
- The Reflectance of Several Materials
- Reflectance of a Recorder Mouthpiece
- Polar Plot of Air Jet Reflectance at 800 Hz
- Future Work

How the Air Jet Creates a Tone

The Acoustic Reflectometer

Determining Reflectance

- The wave measured in the tube is the sum of the incident and reflected wave
- The incident and reflected waves can be determined from the standing wave

Determining Reflectance

• The standing wave can be written as

A Cos(wt-kx) + B Cos(wt+kx + phi)

or in a more useful form

 $Re[A^{*}exp(i^{*}(wt - kx))] + Re[B^{*}exp(i^{*}(wt + kx + phi))]$

This complex form of the wave can then be plotted on a polar plot to determine reflectance

Determining Reflectance

• Plotting the standing wave pattern in the complex plane allows us to determine the incident and reflected waves, which also gives us the reflection coefficient

The Reflectance of Several Materials

Reflectance of a Recorder Mouthpiece

Magnitude of Reflectance for Recorder Mouthpiece

Polar Plot of Air Jet Reflectance at 800 Hertz

Reflectance vs Blowing Pressure

