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Abstract
In this set of lectures, we will introduce and discuss the grandcanonical ensemble description
of quantum and classical statistical mechanics, deriving it by considering a small grandcanonical
subsystem of a closed microcanonical one, with the complement of the system acting like a particle
and energy reservor. We will apply it to a study of some example grandcanonical systems, including
Boltzmann, lattice, and bosonic gases, with details worked out on the homework, and will compare
our findings with those derived in the microcanonical and canonical ensembles in previous two

lectures.
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I. REMINDER OF FUNDAMENTALS

Let’s begin with a review of basics from lecture 1:

e microstates: labeled by {¢;}

e ergodicity:
- time averages replaced by ensemble averages with probability P({q;})

- every microstate is equally likely to occur in a closed system (for fixed conserved

quantities, £, N, V...)

o (0) =Y,y OUaHP(a}) = Tr[Of]

e P({q:}) = f[H({q:})], dictated by Liouville’s theorem, so that probability distribution

is stationary (time independent)
- Microcanonical ensemble: fixed E,V,N — S(E,V,N) <— E(S,V,N)
- Canonical ensemble: fixed T, VN — F(T,V,N)=E - TS

- Grandcanonical ensemble: fixed T,V,u — IT,V,pu) = F = E—TS — uN (I will
use II and F interchangibly with F reminding us that it is just a free energy in the
T, i ensemble.)

All we need is P({¢;}) and from it any thermodynamic average can be computed, at

least in principle.

II. GRANDCANONICAL ENSEMBLE

In the last set of lectures we studied isolated systems closed to exchange of energy F,
particle number N and change in volume V. These were appropriately described by the
most basic microcanonical ensemble. We then generalized to a canonical ensemble where a
system is open to exchange of energy with its bath (thermal equilibrium) though not the
particles nor change in volume, thus having 7', N and V fixed.

Here we further generalize our treatment to systems that are in contact with the envi-
ronment that acts like thermal and particle reservor, i.e., a large bath at temperature 7" and

chemical potential u that set the average energy and particle number of our system - think
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of a tea pot (system) with an permeable top, cooling and exchanged molecues with the air

in the kitchen (bath).

A. Fundamentals of grandcanonical ensemble

As we will derive below, the most important key result is that a grandcanonical system
with a Hamiltonian H, = H[{¢;}], in contact with the environment (bath) at temperature
T and chemical potential p is described by the Boltzmann-Gibbs probability distribution
P, = P[{q;}] (equivalently density matrix p = P,, to be discussed in detail later in the

course),

1

where T' is the common equilibrium temperature between the bath and the system, and

Z(T,p) = Ze‘ﬁ(H‘?_“N‘Z) = ¢ F/ksT (2)
{ai}

is the grandcanonical partition function (using the same notation as for the canonical en-
semble to keep it simple), that is the normalization of P[{¢;}], and is the grandcanonical
ensemble analog of the multiplicity Q(F) of the microcanonical ensemble from last lecture.
Crucially, with the partition function Z(7, ) in hand (which can be challenging to com-
pute), at least in principle we can calculate any and all thermodynamic properties of the

system. Z’s key connection to thermodynamics is through,
F(T,p) = —kpTln 2, (3)

where F = II(T, u, V') is the grandcanonical free energy F = F — TS — uN = F — uN.
In the rest of these lectures we will derive and elaborate on these relations and utilize
them to compute thermodynamics of some standard pedagogical systems, Boltzmann, lattice

and bosonic gases.



B. Derivation of Grandcanonical Ensemble

1. From Microcanonical to Grandcanonical Ensemble
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FIG. 1: An illustration of a grandcanonical system A, thought of as a small part of a total mi-
crocanonical closed system A + B, with complementary component B the bath/environment to A.
While the total energy F = E4 + Ep and particle number N = N4 + Np are fixed, heat and
particles can freely exhange between the system A and bath B (at fixed volumes V4, Vg, and in
equilibrium will respectively settle to average values set by equality of temperatures Ty =T =T

and chemical potential ug = ug = pu.

So how do we obtain the above claimed Boltzmann-Gibbs probability distribution
P({q}) for the grandcanonical ensemble?

To answer this key question, as illustrated in Fig.1 we proceed in direct extention of the
previous lecture, where we went from microcanonical to canonical ensemble. Namely, we
consider a microcanonical (i.e., closed and isolated with fixed energy F, and other conserved
quantities like NV and V') system A + B, with its small part as our system of interest A, and
a large complementary part B that will act like a bath/environment to A. While the total
energy £ = E4 + Ep and particle number N = N4 + Np are fixed, heat and particles (but
for simplicity keeping volumes V4, Vp fixed) can freely exhange between the system A and

bath B, and as we learned in previous lectures, in equilibrium will settle to an average value
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set by equality of temperatures T4 = T = T and chemical potential us = ug = p.
To derive the E; N dependences of the Gibb’s grandcanonical probability distribution
(1), we extend the previous treatment to allow for N4, Np variation. Namely we note that

microcanonical probability distribution for total system A + B is given by

Qa(Ea, Na)Q2p(Ep, Np)

P(EAaNAaEB7NB): Q(E N) )

where Q(E, N) = Z%Azo fOE AEAQA(EA, Nao)Qp(E — Ea, N — N4), which, by definition we
call Py(Ea,N4) = P(E4,Na, E—FE4x, N—N,). We then consider In P4(E 4, N4) and Taylor
expand it to lowest order in small £4 and N4,

Qa(Ea, Na)
QB N)

8anB 8111(23
8EB ’EA:O,NA=07_NA 8NB |EA:O,NA:07

(4)

In Py(Ea, Nj) =~ m( ) +InQp(E,N) — Ey

which, using 8;‘323 =1/kgT = B, a(})rjlvgB = —u/kpT = « leads to the sought after result,

PA(EA,NA) — gA(Egy NA) e*ﬂ(EAf/JNA) ~ 676EA7CVNA7 (5)
namely a form of the Gibbs distribution in (1), with a prefactor the density of states,
ga(E 4, Na), that ensures its normalization when integrated over E4, N4, that can be fixed

after the fact and is by definition the grand partition function Z.

2. Statistics of Grandcanonical Ensemble via Lagrange multipliers

We can analyze the derivation of the above Boltzmann-Gibbs factor for the grandcanon-
ical ensemble in greater detail by considering an ensemble of N > 1 systems labelled by
microstates ¢, with the ensemble set {n,} characterizing the number n, of them that are in
each of the microstate ¢ with energy £, and number of particles N,,.

We then impose three constraints,

an:/\/, anEq:EN, anNq:NN, (6)
q q q



via Lagrange multipliers v, 8, o, with E and N the average energy and particle number in
the ensemble.

The number of configurations for a given N and set {n,} is given by the usual combi-
natorial factor

Wi = — 7)

nilnglng! ...
Maximizing W[{n,}| with above constraints over set {n,} (with details left as a home-
work exercise), we find the most probable set Ny
Since this distribution can be shown to be vanishingly narrow in the thermodynamic
limit A" — oo, above n} = (n,). This then gives the sought after grandcanonical probability

distribution P, = n’/N given in (1)

1
Fy = geoto, (8)

As we will see below, matching the predictions from statistical mechanics with those in

thermodynamics allows us to identify o = —pu/kgT and 8 = 1/kgT.

C. Properties and connection to thermodynamics

e Quantum vs Classical systems

For classical systems formulation of the previous section, e.g., (1) applies directly
as microstates are labelled by real numbers, with H, = E[{¢;}| = E, and N, the

corresponding energies and particle numbers for microstate q.

For quantum system, above statements must be understood as operators, with H the
Hamiltonian operator and N the total number operator. Equivalently, we can define a
grandcanonical Hamiltonian, H w = H— ;LN , with everything going through the same
way as for canonical ensemble . We work with the density matrix

~_ L ket

p=—=e .

Z

So, to apply the grandcanonical formulation one must first diagonalize H 4, 1.e., solve

the time-independent Schrodinger equation H,|E,) = E"|E,). The microstates are



then labelled by quantum numbers n and H}' — E, — uN,. In this basis, the density

matrix is then diagonal

1 Iz A 1 Iz
_ —(En—puNy)/kgT _ —El/kpT _ —E! kT
Prm = —€ " B m, Z = gn e B (0) == En Onne BE.(9)

Equivalently, we can work in basis-independent formulation, namely

1

p=ze kT z = Ty [e—ﬁu/kBT] . (0)="Tr [Oﬁ] . (10)

that reduce to (9) in the Hamiltonian basis.

e Grandcanonical, Canonical and Microcanonical ensemble relations

— Correspondence between two ensembles is quite clear:

It is convenient to express the correspondence in terms of «, Lagrange mul-
tipliers, which of course are related to temperature and chemical potential, as
given above and demanded by thermodynamics correspondence. Utilizing the

definitions, (3), (8), we have,

QE,N) «— Z(6,a)
S(E,N)=kplnQ < F((B,p)=—-F"InZ

0ln 0lnZ

b oE toJ5;
oln 0lnZ
== T N=""5,

— Density of states and Laplace transform E — §: As with our discussion
of the canonical ensemble, here too, the [ dependence of the grandcanonical
partition function Z(/3, o) enters as the Laplace transform of Q(E, N) (the density
of states) from E to .

— Discrete Laplace transform from N — a:

We note that grandcanonical partition function is given by (2), where we sum

over all microstates ¢ corresponds to all energies E, and numbers N,. In fact



this is the convenience of the grandcanonical ensemble as performing sums that
are not constrained to a particular £ and /N is much easier, and is the way we
utilize grandcanonical ensemble. However, conceptually it is useful to think of
this summation to be done in two steps: (i) first we sum over all the microstates
q for a fixed N, which is nothing more than the canonical partition function
Z(N, ) and then (ii) follow this with a sum over all N to obtain Z(«, [3).

To make this explicit, we consider the grandcanonical partition function Z(«, ),

rewriting its standard form (2), as

o0 o0

Z(a7ﬁ) — Ze—ﬁEq—oqu — Z Z(SNJqu—ﬁEq—aNq — Z e—ozN ZéN,qu_BE

{a:} N=0 | {g:} N=0 {a:}

= i NZ(T,N) = LT,[Z(T,N)],
N=0
where we defined fugacity = = e~*. We now see that Z(«, §) is a discrete Laplace
transform (sometimes also called the z-transform) of Z(N, ) from N to « (or
equivalently to fugacity z).
Concomitantly with this relation, the corresponding thermodynamic potentials,
entropy S(N, E') and grandcanonical free energy F(a, () are related by a Legendre
transform from N, FE to «, (8 as is already clear in correspondence above and will

be elaborated on below.

Equivalence of ensembles:

Our analysis for the canonical ensemble directly generalizes to the grandcanonical
one, where one can show, that despite summation over all NV, in the thermody-
namic limit it is equivalent to the canonical and microcanonical ensemble, because

fractional fluctuations in N vanish as 1/sqrt(N) in the thermodynamic limit.

To see this we note that fractional mean-squared fluctuations in N is given by,

5 - _
- BV (o ey 10T
N N N- Oa
_ b @ @ — _kB_T 1@‘
- N \Oa) \ )y V |vOP i
kgT
L — (12)

q
9
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where kp = —%g—}’,h is the isothermal compressibility.

Thus, in the N — oo thermodynamic limit, this analysis demonstrates the equiv-

alence of the grandcanonical and the microcanonical and canonical ensembles

e Relation to thermodynamics

In addition to the key expression for the Helmholtz free energy, F(T,u,V) =
—kpTIn Z = —kgTq(a, B,V) (where we defined function ¢(c, 3,V)), here we estab-
lish other connections to thermodynamics and thereby identify the thermodynamic

meaning of «, 3, that we already anticipated in the beginning of these lectures.

We first note very useful relations,

0 dq
N = N,P,=——|InZ]=—— 1
Z oo 2] =~ (13)
0 dq
E = Zq:EqPq =-35 (n 2] = 35 (14)
(15)
Hence we observe that dg = —Nda — EdfS + SPdV, where pressure is given by,
E OF, |0V e *Na—BEq
P:_imw:_Zq o/ . (16)
ov' Z

This implies that
d(qg+ aN + BE) = adN + BdE + SPdV,

which is of the same form as dS = 1/TdE + P/TdV — u/TdN giving f = 1/kgT, o =
—u/kgT, as asserted in earlier section. Thus, this also connects ¢ to thermodynamic

potentials, ¢ = S/kgp — aN — SE and using —kgTq = F, gives,

F=E-TS—G=F—uN=-PV,

i.e., grandcanonical free energy density gives us the negative of the pressure P. Above
we used Gibbs free energy, that is given by G(T,N,P) = E —TS + PV = uN. We
also note dF = —SdT" — PdV — Ndpu.



As an aside we recall the following calculation of Gibbs free energy. Namely, be-
cause it is extensive and only extensive variable is N, it must be the case that
G(T,P,N) = Ng(T,P). We also note that u = (0G/ON);p = p, finding that
g(T,P) = p. Thus, indeed G = uN, i.e., chemical potential is Gibbs free energy
per particle. Similar analysis (independent of the derivation in the preceeding para-
graph) gives that F (T, u, V) =V f(T, p), which implies that f = — P, and thus indeed
F = —PV  i.e., grand canonical free energy density is —P. The rest of thermodynam-

ics follows from above expressions.

We reiterate that F is easier to calculate because it is free of £ and N constraints and
also is closer to real physical systems and thus experiements that are typically done

(at least in condensed matter systems) at fixed 7', u rather than fixed £, N.

Thus, with grandcanonical partition function Z(7,u,V) and the correspond-
ing grand free energy F(T,u,V) = —kgT'In Z in hand, we can compute any ther-
modynamic property! (at least in principle, though it may be difficult.)

The problem thus reduces to a computation of the partition function Z(T, u, V). Below
we will sketch out such computations for a few canonical examples, relegating the details of

the derivation to homework 3.

III. APPLICATIONS OF GRANDCANONICAL STATISTICAL MECHANICS

Having established the foundation of grandcanonical ensemble statistical mechanics, we
now discuss the associated thermodynamics for a few pedagogical examples with details

relegated to the homework.
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A. Boltzmann gas
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FIG. 2: An illustration of a Boltzmann (noninteracting, classical) gas of N particles, confined to a

closed box of volume V' and in contact with a surrounding bath at temperature T'.

We now revisit statistical mechanics of a Boltzmann gas of NV identical noninteracting
(low density) classical particles, confined to a 3-dimensional box of linear size L. To make
it a bit more interesting, we consider the particles to be diatomic molecules (e.g., Oy in the
air), which can translate, rotate and vibrate. The corresponding Hamiltonian is given by

H = Zf\il [Hy + Hyor + Hyip, with single particle Hamiltonians

Hi = p2/2m7 (17>
2 2
Dy P
Hoot = a7 0 18
ST T (18)
1
Hyip, = p2/2m + §mwgrf, (19)

with Iy = mr? I, = mr?sin®6, and it is crucial to note that in the vibrational part of
the energy, only the radial component is involved. To get this from a more microscopic
description of two atoms, one can start out with a single diatomic molecule Hamiltonian,
H = p?/2m+ p?/2m + V(|r; —ra]), where the potential has a minimum at a nonzero value
of the average bond length ¢, with V(|r|) ~ smwi(r — ()? = %mwg(\/m—f)Z, and
so only quadratic in radial coordinates. The corresponding integration measure keeps track
of the 3d nature of the integral [r2dr..., but because of a nonzero bond length ¢ at low T,
such that r,.,,s < ¢ reduces to an effective 1d integral ~ f Cdr ..., and (as discussed below)

giving 7 rather than 9 quadratic degrees of freedom of a diatomic molecule[12]. However, at
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high 7" such that r.,s > ¢, the result crosses over to a 3d integral and one again recovers 9
quadratic degrees of freedom, as for a spring where ¢ is neglected and analysis can be done
using Cartesian coordinates, where it is just 9 Gaussian integrals. Of course physically, the
molecule will likely dissociate thermally long before this limit is reached.

From our discussion above, the grandcanonical partition functon is given by

> > zz, v, 7)Y
2V = Y Nz VT =Y 24 A‘f/' g
N=0 N=0 )
_ ezZ(l,V,T)’ (20)

where we used the fact that for N noninteracting degrees of freedom, the canonical parti-
tion function is Nth power of the single particle partition function, Z(N) = ZY¥/N!. This
gives us F = —kgT'In Z = —kgTz27, = —kgTq, and the rest of thermodynamics follows by
differentiation with respect to dependent variables. In particular, with N = —(dq/0a)s v
and E = —(0q/08)ay = %NdokaT, we immediately recover the ideal gas law and equipar-
tition. While the former does not depend on any details, the latter requires a calculation
of Z(1,T). A detailed Gaussian integrals calculation verifies that Ny, = 7N corresponding
to 3 center-of-mass translational kinetic (p,,py,p.), 2 rotational (pg,ps), and 2 vibrational

(pr, 1) quadratic degrees of freedom per molecule.

B. Lattice gas

We now consider (what’s commonly called) a “lattice gas”, where there are Ny non-
interacting absorption sites in the presence of a noninteracting Boltzmann gas, with 2d
schematic illustrated in Fig.(3). This toy model can be a good representation of a chemical
vapor deposition and adhesion, or even oxygen O, attachment to Fe?t in hemoglobin of the
blood.

Physically we would like to calculate the coverage, i.e., occupation of Ny possible ab-

sorption sites by the atoms.
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FIG. 3: An illustration of a lattice gas with N atoms occupying Ny absorption sites at temperature

T.

We first focus on the simplest case of only single occupancy, where each site can only
at most accomodate one atom inside its single state of attractive energy —eo. Thus there
are two states at each site 0 (unoccupied) and —e( (occupied by one atom), as illustrated
in Fig. (3). One can think of this as a “fermionic” version of lattice gas. Although this is
a classical problem, because of the descreteness of the states on each absorption site, much
of the analysis and results resembles closely a quantum problem of spins and of harmonic

oscillators.

1. “Fermionic”

The thermodynamics can be computed using the canonical or the grandcanonical en-

semble, latter being significantly simpler. In the former case the partition function is a
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constrained sum, with the occupations ) ."°, n; = N constrained to N, namely we have,

!/

N!
_ _5232'(_5 ni _ 0 —BNe
Z(N,T) = Z c 0 _N!(NO—N)!e K (21)
{n;=0,1}

where we recognized that all fixed-N occupations have identical energy —Ne(, with degener-
acy given by the familiar binomial coefficient. To connect to the more physical grandcanon-
ical treatment, we can compute the chemical potential @ = (0F/ON )7y .

Alternatively, but equivalently, we can compute the grandcanonical partition function,

No / No
Z(/L,T) _ Z ZN Z 6*521(*50)%’ — Z ZNZ(N), (22)
N=0  {n;=0,1} N=0
No No
— H [Z eBleotmni | _ [Z 65(€0+M)n¢] : (23)
i=1 |n;=0,1 n;=0,1

where in the second line, we were able to transform to a much simpler unconstrained sum
(discussed above), which reduces to a product of Ny of identical sums over n; = 0, 1 giving the
final result. Simple analysis then gives Z(u, T'), from which we can obtain the grandcanonical
free energy, which gives us pressure P(p, 1) = F/V, entropy S(p,T) = —(0F/0T),v, and
coverage

_ Ny
N(,uaT) = —(a./_"/aﬂ)T,V - 1 4+ e—(eot+u)/ksT"

(24)

We observe that for the chemical potential ranging from large negative < 0 to large positive
i > 0 the coverage N ranges from zero and Ny, respectively, as expected. Furthermore,
consistent with intuition increasing the absorption energy ey increases coverage. Indeed
N(u,T) looks like the Fermi function that we will discuss later in the course on Fermi gas
- this connection here is purely of a mathematical origin. We also note that the expression
for Z above can be equivalently obtained by performing the N summation in the first line
of (23) using (21).

Finally we note that the adsorbed atoms are in thermal and chemical equilibrium with
the Boltzmann vapor above it, with a common temperature 7" and chemical potential pu.
Thus, to get the more useful physical result, this allows us to express the chemical potential
of the adsorbed lattice gas in terms of the pressure P of the Boltzmann vapor above it,

giving us pressure and temperature dependent coverage N(P,T), with the details of this
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interesting and technologically relevant problem left for the homework.

2. “Bosonic”

As another example, one can consider a “bosonic” version, where atoms don’t interacting

and thus each site can accomodate arbitrary number of absorbed atoms all at same energy

—&p.

A simple generalizaton of this, which crudely accounts for interactions (sites can

get full) is allowing a site filling of only up to a maximum number of m. As we will see

on the homework, such bosonic model exhibits a “catastrophy” of sorts when its coverage

discontinuously jumps to infinity.

With this lecture discussion, amplified by your detailed homeowork analysis we are now

experts in micro-, canonical and grand statistical mechanics. In the next lecture we will turn

to some important applications.
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