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Outline 

•  routes to correlated atomic gases 
o  Feshbach resonance 
o  optical lattices 

•  two-body Feshbach resonance on a lattice 
•  many-body Feshbach resonance on a lattice 

o   reentrant BCS-BEC crossover superfluidity 
o   resonant superfluid-insulator transition 



Strong correlations via Feshbach resonance 
•  tunability (strength and sign) of interactions (sudden and adiabatic)  

Regal, et al. 

closed channel   

open channel r 

U 

•  s-wave BCS-BEC superfluidity 
•  p-wave superfluidity  
•  polarized superfluidity 

…quite well understood: 
o  quantitatively for narrow (Γ/εF <<1) resonance 
o  qualitatively for broad (Γ/εF >>1) resonance 

 mft, 1/N, ε-expansions          universality    

(see e.g., Gurarie and LR, AOP 2007) 

(see e.g., Sheehy and LR, AOP 2007) 

(Veillette, Sheehy, LR ‘07; Nikolic, Sachdev ‘07; Nishida, Son ‘06) 



•  molecular BEC (Grimm, Jin ‘03) 

•  BCS superfluid (Jin ‘04 
   Ketterle ‘04) 
 

•  BCS-BEC crossover 

T/TF=0.19, normal T/TF=0.1    superfluid 

K2 , Li2 

S-wave resonant fermionic superfluidity 

T/TF=0.2 T/TF=0.1 T/TF=0.05 

6Li 

fermionic open-channel atoms bosonic closed-channel molecules 

atom-molecule hybridization 



S-wave resonant fermionic superfluidity 

dimensionless coupling:  

•  narrow resonance 

BEC+BCS BEC BCS 
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µ = �0/2� const.

Gurarie and L.R., AOP 2007 



S-wave resonant fermionic superfluidity 

•  narrow resonance 
 
•  broad resonance               
   strongly coupled φ and ψ            MFT uncontrolled    

dimensionless coupling:  
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Gurarie and L.R., AOP 2007 

Veillette, Sheehy, LR ’07 
•  large N expansion 
•  universality 



Strong correlations via optical lattices 
•  interfering laser beams (A. Ashkin’80; I. Bloch ‘98 ) 

•  superfluid-insulator transition of bosons  
                                          (Doniach’81, Fisher, et al. ‘89) 
  realized in cold atoms (M. Greiner, et al., ’01, Jaksch, et a ’98 ) 
 

|ϕ〉 |N〉 |ϕ〉 
SF MI SF 

ac-Stark effect 



Resonant fermions in a periodic potential 
Fedichev, et al., ’04 
Zwerger, ’04 
Sa de Melo, et al ‘05 
Stoof, et al ‘06 
Zhai, Ho ’07 
Buchler, ’10   
Cui, et al., ’10 
von Stecher, et al., ‘11 
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•  2-body problem:  
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Band hybridization: periodic potential 
two atoms in a periodic potential with attractive interactions 
λ in 1D for a lattice with Vo = 4Er: �

von Stecher, Gurarie, L.R., Rey, PRL ’11 

(1,0) 

(0,0) 

Center of mass momentum in units of π/l�

+ 

+ 

K=(k1+k2) 

two atom bands 



(1,0) 

(0,0) 

Band hybridization: periodic potential 
two atoms in a periodic potential with attractive interactions 
λ in 1D for a lattice with Vo = 4Er: �
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 - band hybridization 

 - lattice induced resonances 

 - K-dependent binding 

 - threshold-free pairing at BZ 
   edges 
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Band hybridization: periodic potential 
two atoms in a periodic potential with attractive interactions 
λ in 1D for a lattice with Vo = 4Er: �

von Stecher, Gurarie, L.R., Rey, PRL ’11 

Center of mass momentum in units of π/l�

1D dimers with 40K 

H. Moritz, …,T. Esslinger PRL 2005 

two atom bands 
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Effective 2-channel model 
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Parity: even 
von Stecher, Gurarie, L.R., Rey, PRL ’11 
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Parity: odd 
von Stecher, Gurarie, L.R., Rey, PRL ’11 
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Parity: odd vs even dimers 
von Stecher, Gurarie, L.R., Rey, PRL ’11 

(1,0) molecule: 1st excited (2,0) molecule: 2nd excited 

21 sites and V0=20Er 

Molecules above and below! 
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Band hybridization: periodic potential 
two atoms in a periodic potential with attractive interactions 
λ in 1D for a lattice with Vo = 4Er: �

 - band hybridization 

 - lattice induced resonances 

 - K-dependent binding 

 - threshold-free pairing at BZ 
   edges 

Is it possible to reduce to single band resonant lattice model? 
 yes:    U =λ/lw

3 +Πn>0                      need to convert λ to as 

von Stecher, Gurarie, L.R., Rey, PRL ’11 

Center of mass momentum in units of π/l�



Band hybridization: periodic potential 
two atoms in a periodic potential with attractive interactions λ in 1D: 

von Stecher, Gurarie, L.R., Rey, PRL ’11 

The two-boson Schrödinger equation is numerically
solved for a system of L sites and periodic boundary
conditions using a plane wave expansion [11]. The con-
vergence has been extensively tested by changing
L ¼ 1; . . . ; 21, and the basis dimension. Figures 1 and 3
summarize the results for different lattices and interaction
values. States outside the scattering continuum bands
[shaded regions in Figs. 1(a) and 3] represent bound states,
while the states inside the continuum bands are either
scattering states or dimer states that decoupled from the
scattering continuum.

The single-particle energies are grouped into bands
E1a
n ðkÞ with n $ 0, which in the tight-binding regime

take the form E1a
n ðkÞ ¼ !a;n % 2Ja;n cosðkaÞ, where

!a;n ¼
R jwn;iðxÞj2H0ðxÞdx is the on-site energy and Ja;n ¼R

w&
n;iþ1ðxÞH0ðxÞwn;iðxÞdx is the nearest neighbor tunnel-

ing. Here, H0 is the noninteracting part of the H (2) and
wn;iðxÞ the Wannier function of band n centered at site i
[12]. The two-body solutions describe the scattering con-
tinuum bands [shaded regions in Fig. 1(a)] which are the
symmetrized product of the single-particle eigenstates with
energies E2a

n;mðK;kÞ¼E1a
n ðK=2þkÞþE1a

m ðK=2%kÞ, and
can be classified by the band label pair ðn;mÞ. For each
scattering continuum, we can define the typical band gap as@!nm¼minðj!a;nþ!a;m%!a;k%!a;ljÞ with fk;lg! fn;mg.

For weakly interacting atoms (jg1D=akj ( @!nm) in the
tight-binding regime, a bound state is formed in the vicinity
of each nonoverlapping scattering continuum (n;m)
with parity Pd ¼ ð%1Þnþm. A natural starting point to
capture the molecular behavior in Fig. 1 is a tight-binding
model with each of the two particles with its own

(possibly the same) hopping Jn and Jm, and an on-site
interaction Unm ¼ g1D

R jwm;iðxÞj2jwn;iðxÞj2dx (of order
of g1D=ak). This model can be solved analytically

giving a molecular spectrum Ed;tb
ðn;mÞðKÞ¼!a;nþ!a;mþ

sgnðUnmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

nmþ4J2a;nþ4J2a;mþ8Ja;nJa;mcosðKaÞ
q

. Solid

and dashed curves in Figs. 1(b) and 1(c) present,
respectively, the exact and the two-band Hubbard model

predictions of the molecular energy Ed ¼ ½Ed;tb
ðn;mÞð0Þ þ

Ed;tb
ðn;mÞð"=aÞ*=2 and the effective molecular hopping Jeffd ¼

½Ed;tb
ðn;mÞð"=aÞ % Ed;tb

ðn;mÞð0Þ*=4 for the lowest two scattering

continua E2a
0;0 and E2a

1;0. While the two-band description is

accurate at weak interaction, it clearly breaks down at
larger interaction; it misses molecular band splitting and
hybridization with lower two-particle continuum bands
and fails to capture the limit of tightly bound molecule
discussed below.
At stronger interactions (jg1D=akj+ @!nm), an accurate

description of the two-body physics requires a number of
bands of the orderOð@!nm=Ja;nÞ. The bound states formed
below each two-particle continuum at weak interactions
move downward as the interaction strength increases and
eventually cross (and in the process, hybridize with) the
lower two-particle continua [see Figs. 1(a) and 3 and [13]).
The specifics of how it hybridizes depends on which band
it came from [compare the ð1; 0Þ curves at # ¼ %3:9 and
the ð2; 0Þ curves at # ¼ %6 in Figs. 1(a), and Figs. 3(a) and
3(b)] and is the subject of our study. Close to the resonance,
the bound-state dispersion is strongly modified, changing
the sign Jeffd [Fig. 1(c)]. Figure 3 shows the spectrum for the
ð1; 0Þ and ð2; 0Þ lattice resonance deep in the tight-binding
regime. States inside E2a

0;0 reveal the scattering properties of

the atoms in the lowest band. Also, resonant effects lead to
the appearance of new bound states at either the edges
[Fig. 3(a)] or the center [Fig. 3(b)] of the Brillouin zone
(BZ). As shown below, the qualitative differences between
the ð1; 0Þ and ð2; 0Þ lattice resonances are accurately cap-
tured by the K dependence of the atom-dimer coupling.
Finally, for sufficiently strong interactions (jg1D=akj ,@!nm), the tightly bound dimers which are not in resonance

with the scattering continuum bands are well described by
a particle with mass 2mmoving in a periodic potential with
depth 2V0. Our numerical calculations reproduce this
limiting behavior.
To gain more physical intuition on the lattice resonance

phenomena, we adopt a bosonic variant of an effective two-
channel lattice Hamiltonian [4]. For simplicity, we focus
on the resonant two-body physics in an energy window
around the ðn0; n0Þ two-particle continuum. More general
ðn0; m0Þ continuum bands can also be analyzed in a similar
manner. We consider the interaction regime in which the
dimer is close in energy to the ðn0; n0Þ atomic continuum
band, i.e., j!d % 2!a;n0 j ( j!a;n0þ1 % !a;n0 j, where !d is

the on-site dimer energy. The effective description explic-

itly introduces a localized bare dimer state jdii ¼ dyi j0i as
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FIG. 1 (color online). (a) Two-body spectrum for a lattice with
V0 ¼ 4Er as a function of K. Shaded regions correspond to the
scattering continuum bands [lower (green) region is E2a

0;0, and the

upper (red) region is E2a
1;0]. The curves are the ð0; 0Þ, ð1; 0Þ, and

ð2; 0Þ bound states at different interaction strengths #. On the
lattice, the ð2; 0Þ dimer state is lower in energy than the ð1; 1Þ
dimer state. (b),(c) Exact solutions (solid curves) and two-band
Hubbard model predictions (dashed curves) of the energy Ed (b)
and effective tunneling Jeff (c) for the lowest two bound states of
a lattice of V ¼ 10Er. Shaded regions in (b) correspond to E2a

0;0

and E2a
1;0 and the shaded region in (c) to the interaction regime in

which the excited dimer enters E2a
0;0.
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two particle bands (n,m) and bound states 
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 - band hybridization 

 - lattice induced resonances 

 - K-dependent binding 

 - threshold-free pairing at BZ 
   edges 

Is it possible to reduce to single band resonant lattice model? 
 yes:    U =λ/lw

3 +Πn>0                      need to convert λ to as 



 
•  interaction << band gaps (U0

 << Egap)          no band hybridization: 
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•  T-matrix:  

  - lattice induced resonances (F. Zhou) 
  - repulsively bound pairs (A. Rosch) 
  - bound states at BZ boundary for arbitrary U 

K 
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Single-band resonant lattice model: 2-body 
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Single-band resonant lattice model: many-body 
•  two-channel model: 

  
•  broad resonance, γ >> 1:   

         one-channel model: 

g ��, �0 ��, with g2/�0 fixed
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Resonant tight binding model: superfluidity 
•  narrow resonance (γ << 1): 

�k = �2t(cos kx + cos ky + cos kz) �k = �k � µ

•  two-channel: 
o  number 

o  gap  

n = 2 |B|2 +
�

k�BZ

�
1� �k�

�2
k + g2 |B|2
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closed-channel molecules open-channel atoms 

  
•  broad resonance (mft):   

         one-channel model: 
o  number 

o  gap 

g ��, �0 ��, with g2/�0,� = gB fixed

n =
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Resonant tight binding model: superfluidity 
�k = �2t(cos kx + cos ky + cos kz) �k = �k � µ

  
•  one-channel model: 

o  number                                                                      Δ(U,n) 

o  gap                                                                            µ(U,n) 

n =
�

k�BZ

�
1� �k�

�2
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�

1
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=
1
2

�

k�BZ

1�
�2
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c† � c, n� 2� n, �k � ��k, µ = �µ
  
•  particle-hole symmetry: 

o  µ < 0, for n < 1           pairing of atoms  

o  µ = 0, for n = 1           no BCS-BEC crossover 

o  µ > 0, for n > 1           pairing of holes    
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o  number: 

o  gap: 
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see, Sa de Melo, et al., PRB, ‘05 
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BCS-BEC crossover: two-channel model 

Δ(U,n), µ(U,n) 
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BCS-BEC phase diagram 
two-channel model one-channel model 



SF-Insulator transition: n=2 

ν0 

µ 

0 12t 

Insulator – SF transition 

ν0c Insulator SF 

B2 number of condensed molecules 
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Experimental implications 
  
•  reentrant BCS-BEC crossover for s-wave Feshbach resonance 

•  nonmonotonic dependence of thermodynamics, Cooper pair size, … 

•  SF-Insulator transition at n=2: 
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Experimental implications 
  
•  reentrant BCS-BEC crossover for s-wave Feshbach resonance 

•  nonmonotonic dependence of thermodynamics, Cooper pair size, … 

•  superfluid-insulator transition at n=2 

•  “wedding cake” density profile 

•  vanishing compressibility: κ ~ |n - 2|2/3 

•   lattice unitary universality U* ≈ 8t :  µ = t f(n) 

     with  f(n) = -f(2-n)  

           ~ -6 + ξ (3π2n)2/3

  

  



Experimental implications   
•  nonmonotonic dependence of thermodynamics, Cooper pair size, … 

•  superfluid-insulator transition at n=2 

•  “wedding cake” density profile 

•  vanishing compressibility: κ ~ |n - 2|2/3 

•  lattice unitary universality U* ≈ 8t :  µ = t f(n)  

•  multiple topological phase transitions for  
  p-wave Feshbach resonance:   

16

µ

Below half filling

Above half filling

✏0

Q = 0

Q = +1

Q = �1

Q = 0

4t

�4t

Gurarie + L.R., AOP 2007 



Summary and outlook 
  
•  non-monotonic BCS-BEC crossover 
  and SF-Insulator transition at n=2: 

 

 

•  multi-band extensions? 

•  molecule-molecule interaction            molecular Mott insulator? 

•  Bloch oscillations? 

two-channel model 





Regal, et al. 

•  tunability (strength and sign) of interactions (sudden and adiabatic)  

S-wave Feshbach resonant scattering 

Regal, et al. 

closed channel   

open channel r 

U 



•  molecular BEC (Grimm, Jin ‘03) 

•  BCS superfluid (Jin ‘04 
   Ketterle ‘04) 
 

•  BCS-BEC crossover 

T/TF=0.19, normal T/TF=0.1    superfluid 

K2 , Li2 

S-wave resonant fermionic superfluidity 

T/TF=0.2 T/TF=0.1 T/TF=0.05 

6Li 

fermionic open-channel atoms bosonic closed-channel molecules 

atom-molecule hybridization 



•  molecular BEC (Grimm, Jin ‘03) 

•  BCS superfluid (Jin ‘04 
   Ketterle ‘04) 
 

•  BCS-BEC crossover: 

T/TF=0.19, normal T/TF=0.1    superfluid 

BEC+BCS BEC BCS 

K2 , Li2 

S-wave resonant fermionic superfluidity 

T/TF=0.2 T/TF=0.1 T/TF=0.05 

6Li 



•  scattering T-matrix relates λ to a: 

Broad resonance scattering γ >> 1 

Tk k’ = 

physical  
bound state 

virtual  
bound state 

Re E 

kF λ λc 
d 



•  molecular BEC (Regal, Jin ‘03) 

•  BCS superfluid (Regal, Jin 04 
   Zwierlein, Ketterle ‘04) 
 

•  BCS-BEC crossover: 

T/TF=0.19, normal T/TF=0.1    superfluid 

BEC+BCS BEC BCS 

K2 , Li2 

S-wave resonant fermionic superfluidity 
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6Li 



•  molecular BEC (Regal, Jin ‘03) 

•  BCS superfluid (Regal, Jin 04 
   Zwierlein, Ketterle ‘04) 
 

•  BCS-BEC crossover: 

T/TF=0.19, normal T/TF=0.1    superfluid 

BEC+BCS BEC BCS 

K2 , Li2 

S-wave resonant fermionic superfluidity 

T/TF=0.2 T/TF=0.1 T/TF=0.05 
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•  narrow resonance 
 
•  broad resonance               
 Strongly coupled φ and ψ            MFT uncontrolled    

S-wave resonant fermionic superfluidity 

dimensionless coupling:  
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Resonant fermions in a periodic potential 

  - band hybridization 

  - lattice induced resonances 

  - deep lattice         single band tight binding model      

  - repulsively bound pairs  

  - bound states at BZ boundary for arbitrarily weak attraction 
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•  2-body problem:  
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•  narrow resonance 
 
•  broad resonance               
 Strongly coupled φ and ψ    
        MFT uncontrolled    

S-wave resonant fermionic superfluidity 

dimensionless coupling:  
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Broad resonance superfluidity: Large N γ >> 1 

•  no small parameter for kFa ~ n1/3a >> 1 → introduce 1/N  

+ 

MFT Veillette, Sheehy, LR 
Nikolic, Sachdev 
also Nishida, Son 
ε-expansion 



Universality at unitary point γ >> 1, kFa →∞ 

•  fk= -1/(a-1 + i k) → i/k,   kF is the only scale   
check in N→∞ (BCS) limit: 

Result from 1/N 

Exp with ⁴⁰K 

T.L. Ho ‘04 

Veillette, Sheehy, LR 



Band hybridization: periodic potential 
two atoms in a periodic potential with attractive interactions λ in 1D: 

von Stecher, Gurarie, L.R., Rey, PRL ’11 

The two-boson Schrödinger equation is numerically
solved for a system of L sites and periodic boundary
conditions using a plane wave expansion [11]. The con-
vergence has been extensively tested by changing
L ¼ 1; . . . ; 21, and the basis dimension. Figures 1 and 3
summarize the results for different lattices and interaction
values. States outside the scattering continuum bands
[shaded regions in Figs. 1(a) and 3] represent bound states,
while the states inside the continuum bands are either
scattering states or dimer states that decoupled from the
scattering continuum.

The single-particle energies are grouped into bands
E1a
n ðkÞ with n $ 0, which in the tight-binding regime

take the form E1a
n ðkÞ ¼ !a;n % 2Ja;n cosðkaÞ, where

!a;n ¼
R jwn;iðxÞj2H0ðxÞdx is the on-site energy and Ja;n ¼R

w&
n;iþ1ðxÞH0ðxÞwn;iðxÞdx is the nearest neighbor tunnel-

ing. Here, H0 is the noninteracting part of the H (2) and
wn;iðxÞ the Wannier function of band n centered at site i
[12]. The two-body solutions describe the scattering con-
tinuum bands [shaded regions in Fig. 1(a)] which are the
symmetrized product of the single-particle eigenstates with
energies E2a

n;mðK;kÞ¼E1a
n ðK=2þkÞþE1a

m ðK=2%kÞ, and
can be classified by the band label pair ðn;mÞ. For each
scattering continuum, we can define the typical band gap as@!nm¼minðj!a;nþ!a;m%!a;k%!a;ljÞ with fk;lg! fn;mg.

For weakly interacting atoms (jg1D=akj ( @!nm) in the
tight-binding regime, a bound state is formed in the vicinity
of each nonoverlapping scattering continuum (n;m)
with parity Pd ¼ ð%1Þnþm. A natural starting point to
capture the molecular behavior in Fig. 1 is a tight-binding
model with each of the two particles with its own

(possibly the same) hopping Jn and Jm, and an on-site
interaction Unm ¼ g1D

R jwm;iðxÞj2jwn;iðxÞj2dx (of order
of g1D=ak). This model can be solved analytically

giving a molecular spectrum Ed;tb
ðn;mÞðKÞ¼!a;nþ!a;mþ

sgnðUnmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

nmþ4J2a;nþ4J2a;mþ8Ja;nJa;mcosðKaÞ
q

. Solid

and dashed curves in Figs. 1(b) and 1(c) present,
respectively, the exact and the two-band Hubbard model

predictions of the molecular energy Ed ¼ ½Ed;tb
ðn;mÞð0Þ þ

Ed;tb
ðn;mÞð"=aÞ*=2 and the effective molecular hopping Jeffd ¼

½Ed;tb
ðn;mÞð"=aÞ % Ed;tb

ðn;mÞð0Þ*=4 for the lowest two scattering

continua E2a
0;0 and E2a

1;0. While the two-band description is

accurate at weak interaction, it clearly breaks down at
larger interaction; it misses molecular band splitting and
hybridization with lower two-particle continuum bands
and fails to capture the limit of tightly bound molecule
discussed below.
At stronger interactions (jg1D=akj+ @!nm), an accurate

description of the two-body physics requires a number of
bands of the orderOð@!nm=Ja;nÞ. The bound states formed
below each two-particle continuum at weak interactions
move downward as the interaction strength increases and
eventually cross (and in the process, hybridize with) the
lower two-particle continua [see Figs. 1(a) and 3 and [13]).
The specifics of how it hybridizes depends on which band
it came from [compare the ð1; 0Þ curves at # ¼ %3:9 and
the ð2; 0Þ curves at # ¼ %6 in Figs. 1(a), and Figs. 3(a) and
3(b)] and is the subject of our study. Close to the resonance,
the bound-state dispersion is strongly modified, changing
the sign Jeffd [Fig. 1(c)]. Figure 3 shows the spectrum for the
ð1; 0Þ and ð2; 0Þ lattice resonance deep in the tight-binding
regime. States inside E2a

0;0 reveal the scattering properties of

the atoms in the lowest band. Also, resonant effects lead to
the appearance of new bound states at either the edges
[Fig. 3(a)] or the center [Fig. 3(b)] of the Brillouin zone
(BZ). As shown below, the qualitative differences between
the ð1; 0Þ and ð2; 0Þ lattice resonances are accurately cap-
tured by the K dependence of the atom-dimer coupling.
Finally, for sufficiently strong interactions (jg1D=akj ,@!nm), the tightly bound dimers which are not in resonance

with the scattering continuum bands are well described by
a particle with mass 2mmoving in a periodic potential with
depth 2V0. Our numerical calculations reproduce this
limiting behavior.
To gain more physical intuition on the lattice resonance

phenomena, we adopt a bosonic variant of an effective two-
channel lattice Hamiltonian [4]. For simplicity, we focus
on the resonant two-body physics in an energy window
around the ðn0; n0Þ two-particle continuum. More general
ðn0; m0Þ continuum bands can also be analyzed in a similar
manner. We consider the interaction regime in which the
dimer is close in energy to the ðn0; n0Þ atomic continuum
band, i.e., j!d % 2!a;n0 j ( j!a;n0þ1 % !a;n0 j, where !d is

the on-site dimer energy. The effective description explic-

itly introduces a localized bare dimer state jdii ¼ dyi j0i as
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FIG. 1 (color online). (a) Two-body spectrum for a lattice with
V0 ¼ 4Er as a function of K. Shaded regions correspond to the
scattering continuum bands [lower (green) region is E2a

0;0, and the

upper (red) region is E2a
1;0]. The curves are the ð0; 0Þ, ð1; 0Þ, and

ð2; 0Þ bound states at different interaction strengths #. On the
lattice, the ð2; 0Þ dimer state is lower in energy than the ð1; 1Þ
dimer state. (b),(c) Exact solutions (solid curves) and two-band
Hubbard model predictions (dashed curves) of the energy Ed (b)
and effective tunneling Jeff (c) for the lowest two bound states of
a lattice of V ¼ 10Er. Shaded regions in (b) correspond to E2a

0;0

and E2a
1;0 and the shaded region in (c) to the interaction regime in

which the excited dimer enters E2a
0;0.
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Center of mass momentum in units of π/l�

two particle bands (n,m) and bound states 
(1,0) 

(0,0) 

K 

 - band hybridization 
 - lattice induced resonances 

Possible to reduce to single band resonant lattice model? 
 yes:    U =λ/lw

3 +Πn>0                      need to convert λ to as 

Buchler, Arxiv ’09 


