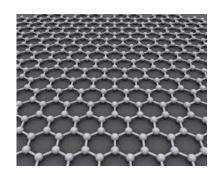
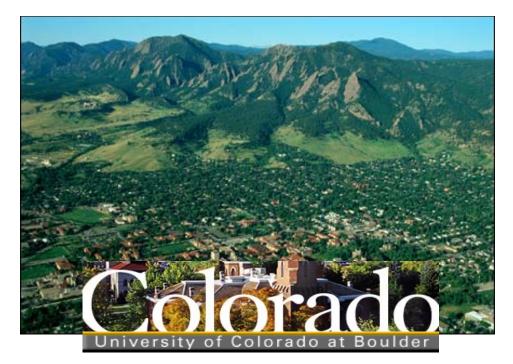
Disorder-driven quantum transition in semiconductors and Dirac semimetals





with: S. Syzranov, V. Gurarie see: PRL, PRB 2015

\$: NSF, Simons Foundation

University of Utah, May 7, 2015

<u>Outline</u>

- Motivation
- Results
- Qualitative physics
- RG for 'dirty' semiconductors and Dirac semimetals
- Critical density of states and transport
- Lifshitz tails
- Conclusions

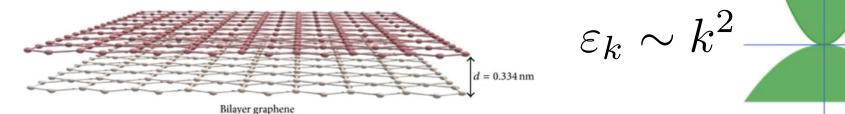
S. V. Syzranov, V. Gurarie, L. Radzihovsky, PRB 91, 035133 (2015)

S. V. Syzranov, L. Radzihovsky, V. Gurarie, PRL 114, 166601 (2015)

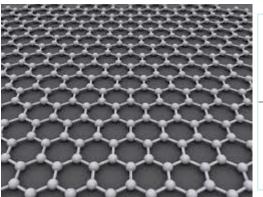
<u>Motivation</u>

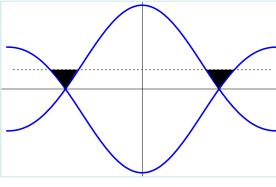
Transport in lightly-doped (E_F << W) conductors

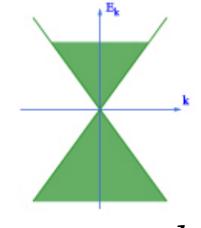
• semiconductors, bilayer graphene:



• graphene, Weyl semimetals, topological insulators:





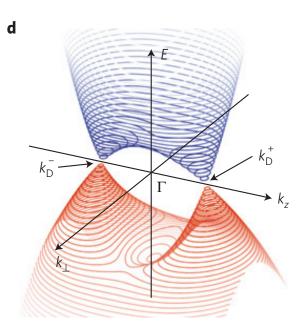


 $\varepsilon_k \sim \sigma \cdot k$

 Cd_3As_2

Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd₃As₂

Sangjun Jeon^{1†}, Brian B. Zhou^{1†}, Andras Gyenis¹, Benjamin E. Feldman¹, Itamar Kimchi², Andrew C. Potter², Quinn D. Gibson³, Robert J. Cava³, Ashvin Vishwanath² and Ali Yazdani^{1*}



study:

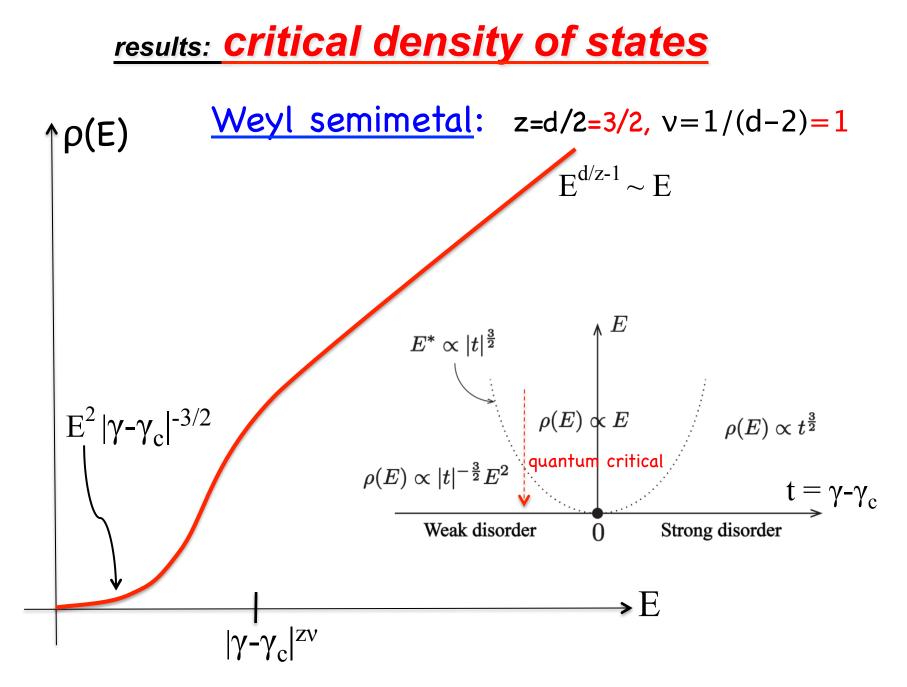
$$\varepsilon(\hat{\mathbf{p}})\psi + V(\mathbf{r})\psi = E\psi$$

at bottom of the band, $E \rightarrow 0$

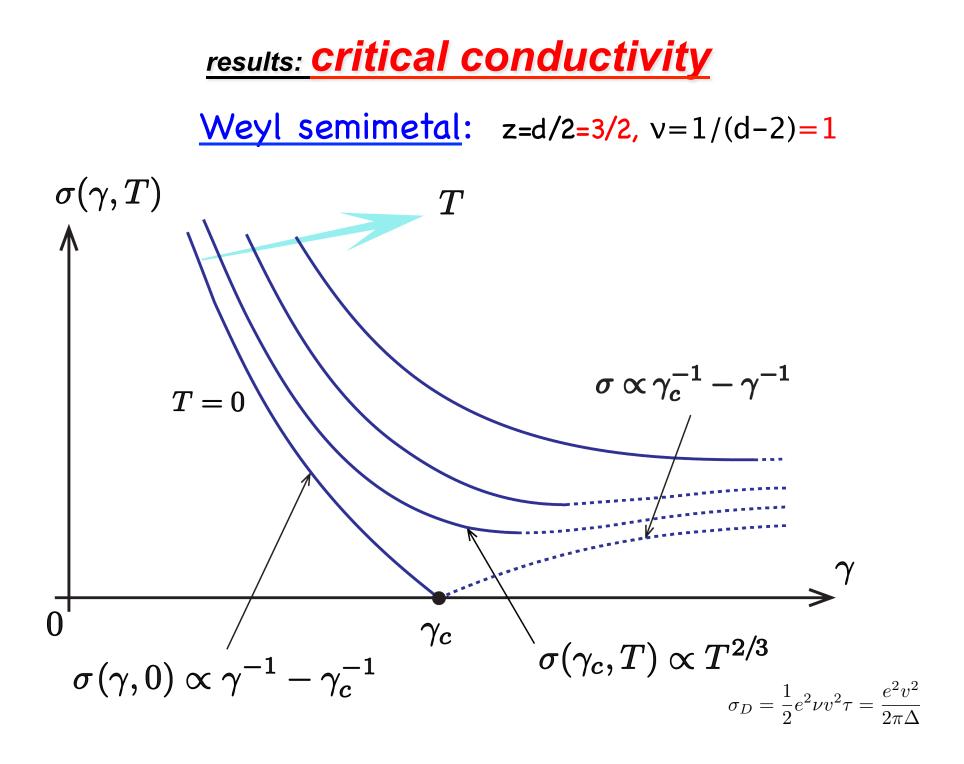
S. V. Syzranov, V. Gurarie, L. Radzihovsky, PRB 91, 035133 (2015) S. V. Syzranov, L. Radzihovsky, V. Gurarie, PRL 114, 166601 (2015)

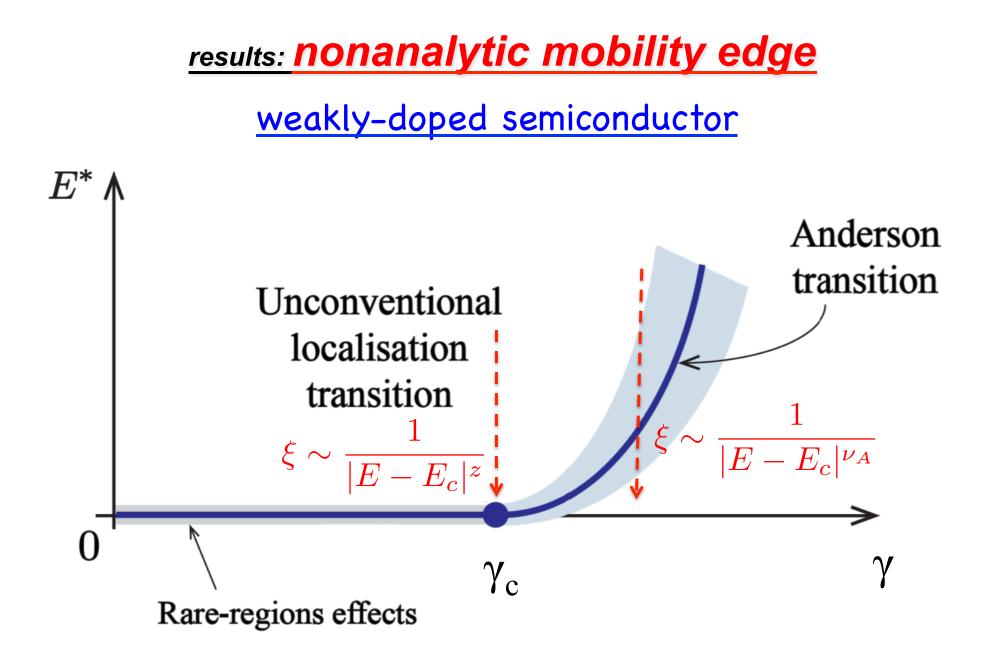
results: "phase diagram" <u>non-interacting</u> $\varepsilon_k \sim k^{lpha}$ <u>in random potential</u> $\epsilon = 2\alpha - d$ α 0 $\alpha = \frac{d}{2}$ see also: SCBA: E. Fradkin '86 2 Ominato, Koshito, '14 graphene: Conventional Quantum kicked Aleiner, Efetov, PRL '06 **Semiconductors** 1.5 rotor Ostrovsky, et al., PRB '06 WSM: Weyl Burkov, Balents PRL '11 1 Semimetal Graphene Wan, et al, PRB '11 Goswami, et al., PRL '11 Nandkishore, et al., '14 0.5 Sbierski, et al., '14 γ_c **Chains of** () trapped ions **d** 3 1 5 2

4



... ignoring rare regions of strong disorder Lifshitz tails

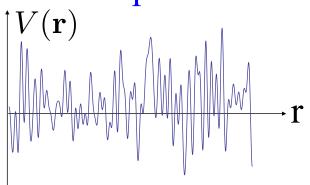




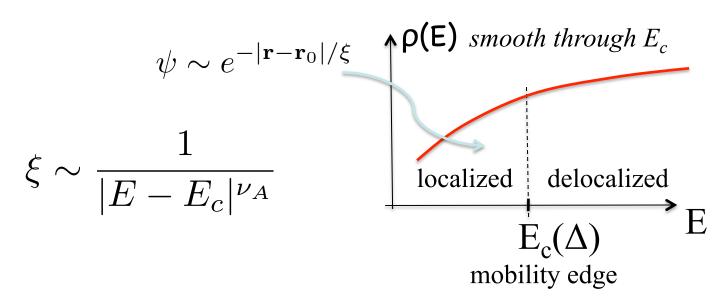
Anderson localization

• *noninteracting* quantum motion in a random potential

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V(\mathbf{r})\psi = E\psi$$



- conventional wisdom (orthogonal)
 - \circ d < 2: all states are localized
 - \circ d > 2: localization-delocalization Anderson transition



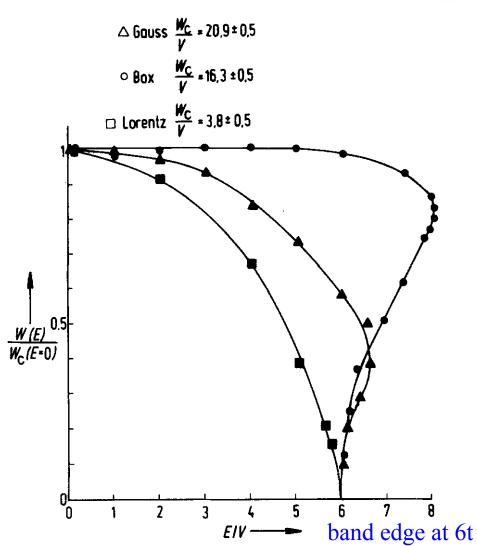


Fig. 1. Mobility edge trajectories $W_C(E)$ for the box ($\bigoplus W_C(0)/V = 16.3 \pm 0.5$), Gaussian ($\bigtriangleup W_C(0)/V = 20.9 \pm 0.5$), and the Lorentzian ($\blacksquare W_C(0)/V = 3.8 \pm 0.5$) distribution

Z. Phys. B - Condensed Matter 66, 21-30 (1987)

Localization, Quantum Interference, and the Metal-Insulator Transition

B. Bulka^{1*}, M. Schreiber², and B. Kramer¹
¹ Physikalisch-Technische Bundesanstalt, B
² Insitut für Physik, Universität Dortmund,

Received September 10, 1986

mobility edge $E_c(\Delta)$ is a <u>smooth</u> function of disorder strength $\Delta \sim V_0^2$

Model

<u>*low-density*</u> electrons in a random potential, $\mu \rightarrow 0$

^

$$\begin{split} \varepsilon(\hat{\mathbf{p}})\psi + V(\mathbf{r})\psi &= E\psi \quad \to \quad Z \sim \int [d\psi]e^{iS} \\ S &= \int_{\mathcal{C}} dt d^d r \overline{\psi} \left[\lambda i \partial_t - \varepsilon(\hat{\mathbf{p}}) - V(\mathbf{r})\right]\psi \\ \varepsilon(p) &= \kappa p^\alpha \qquad \overline{V(\mathbf{r})V(0)} = \Delta \delta^d(\mathbf{r}) \\ \varepsilon(\hat{\mathbf{p}}) &= \frac{\hat{p}^2}{2m}, \quad \text{semiconductor} \\ &= v\sigma \cdot \hat{\mathbf{p}}, \quad \text{Weyl semimetal} \end{split}$$

treat via scaling, perturbation theory, and RG with $\epsilon = (2\alpha - d) - expansion$

Related problems

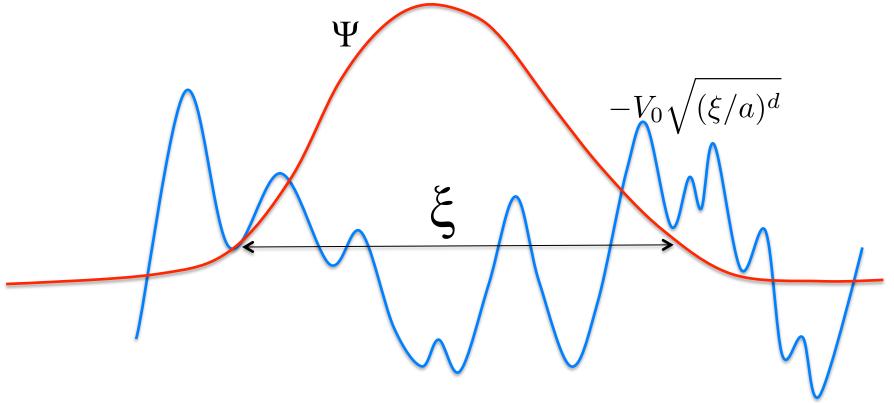
- Feynman's polaron coupled to a slow boson: • world-line \longrightarrow self-avoiding polymer (deGennes '72) $H[r(t)] = \frac{1}{2} \int dt \left(\frac{d\mathbf{r}}{dt}\right)^2 + g \int dt \int dt' \delta^d(\mathbf{r}(t) - \mathbf{r}(t'))$ • singular corrections for d < 4 (=2 α , α =2) • $R_G = (\langle r^2 \rangle)^{1/2} \sim L^{\nu}$, $\nu = 1/2 + O(4-d)$
- Interacting particles at low density (BCS-BEC):

• exact T-matrix
$$\longrightarrow \frac{dg}{d\ell} = (2-d)g - g^2$$

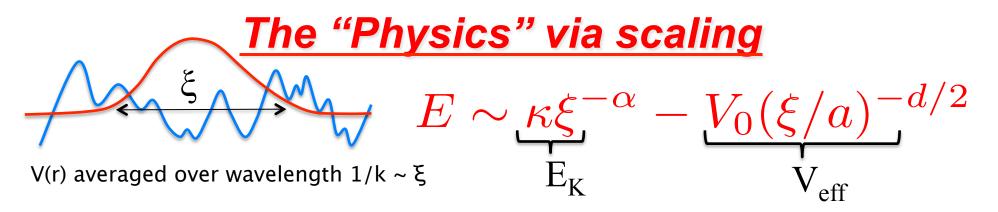
The "Physics" via scaling

(distinct from interference effects near Fermi surface: e.g. weak localization)

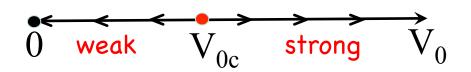
Fermi liquids are "protected" by Fermi sea, with $E_F \sim W$, qualitatively different for low doping, with $E_F << W$



bound-state formation in random potential $-V_0\sqrt{(\xi/a)^d}$ on scale ξ



- $d > 2\alpha$: weak disorder irrelevant below critical $V_{0c} = \kappa a^{-\alpha} = W$



weak-to-strong disorder quantum phase transition

• scattering rate 1/T(E):

$$\Sigma(E) \sim \int d^d q \frac{1}{(E-q^{\alpha})q^{\alpha}} \sim E^{d/\alpha-1} \sim \frac{1}{\tau(E)}$$

$$\rightarrow \quad G(E) \sim \frac{1}{E-k^{\alpha}-E^{d/\alpha-1}}$$

Perturbation theory

usually E-dependence ignored at E_F

 $S = \int_{\mathcal{A}} dt d^d r \overline{\psi} \left[\lambda i \partial_t - \varepsilon(\hat{\mathbf{p}}) - V(\mathbf{r}) \right] \psi$

• Ioffe-Regel criterion $\gamma < 1 \text{ vs } \gamma > 1$:

$$\gamma(E) \equiv \frac{\Sigma(E)}{E} \sim E^{d/\alpha - 2} \sim \frac{1}{k\ell(k)} \sim \frac{1}{kv(k)\tau(k)}$$

d < 2α: (typical) disorder *dominates* at low E
d > 2α: (typical) disorder is *irrelevant* at low E

$$\frac{\partial \gamma}{\partial \ell} = (2\alpha - d)\gamma + \dots$$

Perturbation theory $S = \int_{\mathcal{C}} dt d^{d} r \overline{\psi} \left[\lambda i \partial_{t} - \varepsilon(\hat{\mathbf{p}}) - V(\mathbf{r})\right] \psi$

• Ioffe-Regel criterion, $\gamma < 1 \text{ vs } \gamma > 1$:

$$\gamma(E) \equiv \frac{\Sigma(E)}{E} \sim E^{d/\alpha - 2} \sim \frac{1}{k\ell(k)} \sim \frac{1}{kv(k)\tau(k)}$$

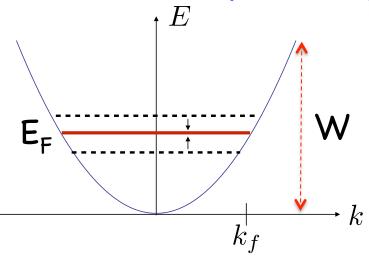
 $d < 2\alpha$: (typical) disorder *dominates* at low E

d > 2α: (typical) disorder is *irrelevant* at low E (e.g., d > 4 *new physics*)

What happens for stronger disorder for $d > 2\alpha$?

RG
$$S = \int_{\mathcal{C}} dt d^d r \overline{\psi} \left[\lambda i \partial_t - \varepsilon(\hat{\mathbf{p}}) - V(\mathbf{r}) \right] \psi$$

• "conventional" (Shankar) RG at Fermi surface



 k_f

 K_0

• "vacuum" RG down to the bottom of the band $E_{E_{F}}$ W E_{F} k

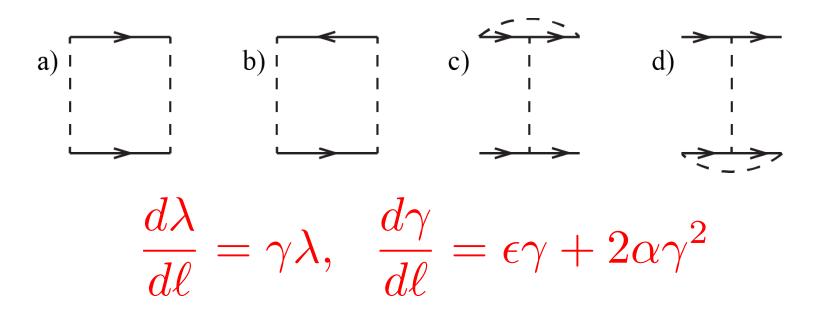
RG
$$S = \int_{\mathcal{C}} dt d^d r \overline{\psi} \left[\lambda i \partial_t - \varepsilon(\hat{\mathbf{p}}) - V(\mathbf{r}) \right] \psi$$

• rescaling and tree-level RG flow: r = r'b, $t = t'b^z$

 $\lambda(b) = \lambda, \quad \kappa(b) = \kappa \ b^{z-\alpha}, \quad \Delta(b) = \Delta \ b^{2z-d}$

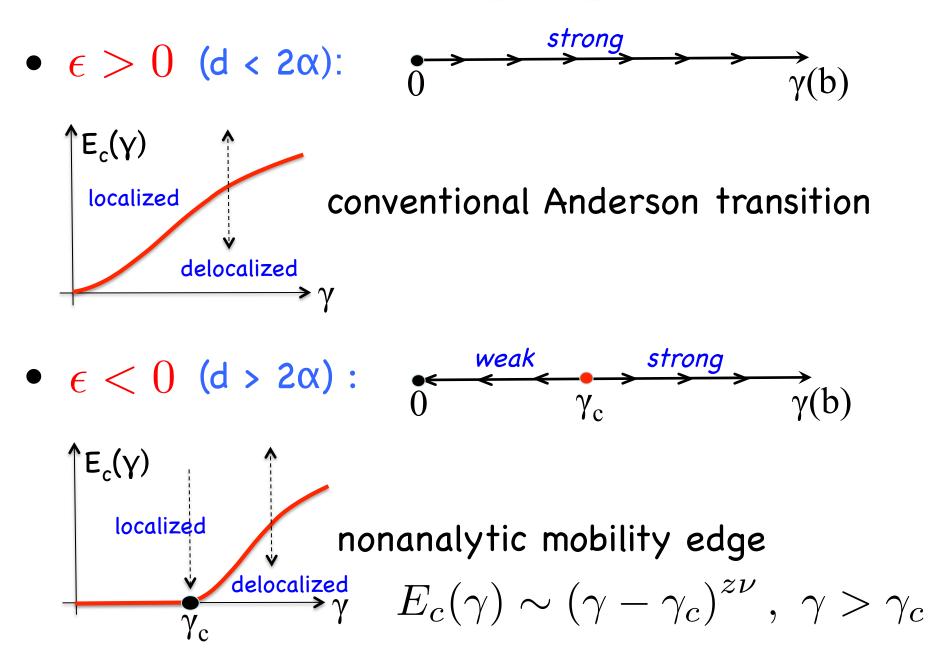
$$\longrightarrow \gamma(b) = \frac{\Delta(b)}{\kappa(b)^2} = \gamma b^{2\alpha - d} \equiv \gamma e^{\epsilon \ell}$$

• momentum-shell RG flow: integrate out $K_0/b < k < K_0$



Mobility threshold & transition $\gamma(b) = \frac{\gamma b^{\epsilon}}{1 - \gamma/\gamma_c + (\gamma/\gamma_c)b^{\epsilon}}, \quad \lambda(b) = \left[\frac{\gamma(b)}{\gamma}b^{-\epsilon}\right]^{1/2\alpha}, \quad \gamma_c = -\frac{\epsilon}{2\alpha}$ renormalized Drude conductivity ($\gamma < 1$): $\sigma_D(b) = \frac{v(b)^2}{2\pi\gamma(b)b^{-\epsilon}}$ • $\epsilon > 0$ (d < 2 α): $0 \xrightarrow{strong} \gamma(b)$ --> disorder dominates for k < $K_{loc} = K_0 \left(1 + \frac{|\gamma_c|}{\gamma}\right)^{-1/\epsilon}$ --> mobility threshold of Anderson transition

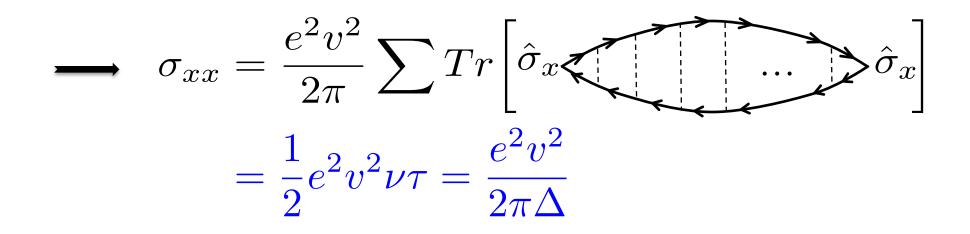
--> disorder-driven quantum transition *τ=0, μ->0*



Conductivity

$$\sigma_{ij}(\omega) = \frac{e^2}{2\pi\omega} \int dE \left[n_F(E) - n_F(E+\omega) \right] \int d^d r' \operatorname{Tr} \overline{\hat{v}_{i\mathbf{r}}} G^A(E+\omega,\mathbf{r},\mathbf{r}') \hat{v}_{j\mathbf{r}'} G^R(E,\mathbf{r}',\mathbf{r})$$

Weyl semimetal:



$$\rightarrow \tau^{-1} = -2Im\Sigma_R = -2\Delta \int \frac{1}{\varepsilon - v\vec{\sigma} \cdot \vec{k} + \frac{i}{2\tau}}$$
$$= \pi\nu\Delta$$

Scaling theory of critical transport

- $\epsilon < 0$ (d > 2 α): • $\epsilon < 0$ (d > 2 α): • γ_c • γ_c • $\gamma(b)$
 - $\xi \sim |\gamma \gamma_c|^{-\nu} \equiv |\delta\gamma|^{-\nu} \qquad \sigma \sim \xi^{2-d}$
 - $\longrightarrow \sigma(\gamma, T, \mu) = |\delta\gamma|^{\nu(d-2)} g(T|\delta\gamma|^{-z\nu}, \mu/T)$ $\sigma(\gamma, 0, 0) \sim |\gamma - \gamma_c|^{\nu(d-2)} \qquad \sigma(\gamma_c, T, 0) \sim T^{(d-2)/z}$
- comparing with RG calculation, find (for 3d WSM):

$$\longrightarrow$$
 $z = 3/2, v = -1/(2\alpha - d) = 1$

see also: Goswami, Chakravarty, PRL 107, 2011

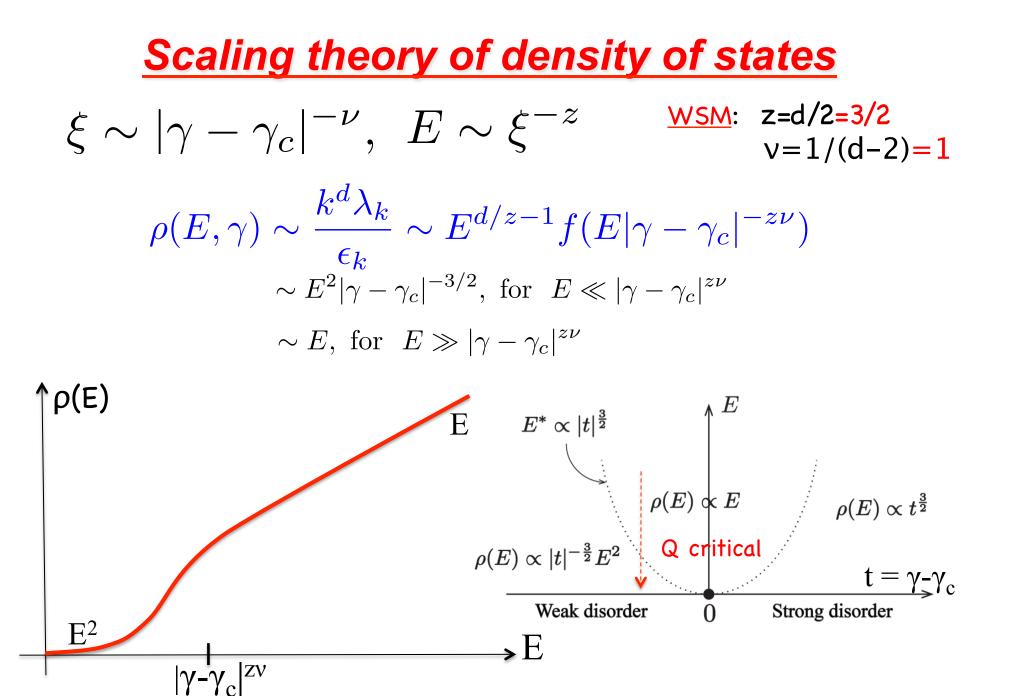
 $(E \sim k^{\alpha}/\lambda(k) \sim k^{d/2})$

Density of states

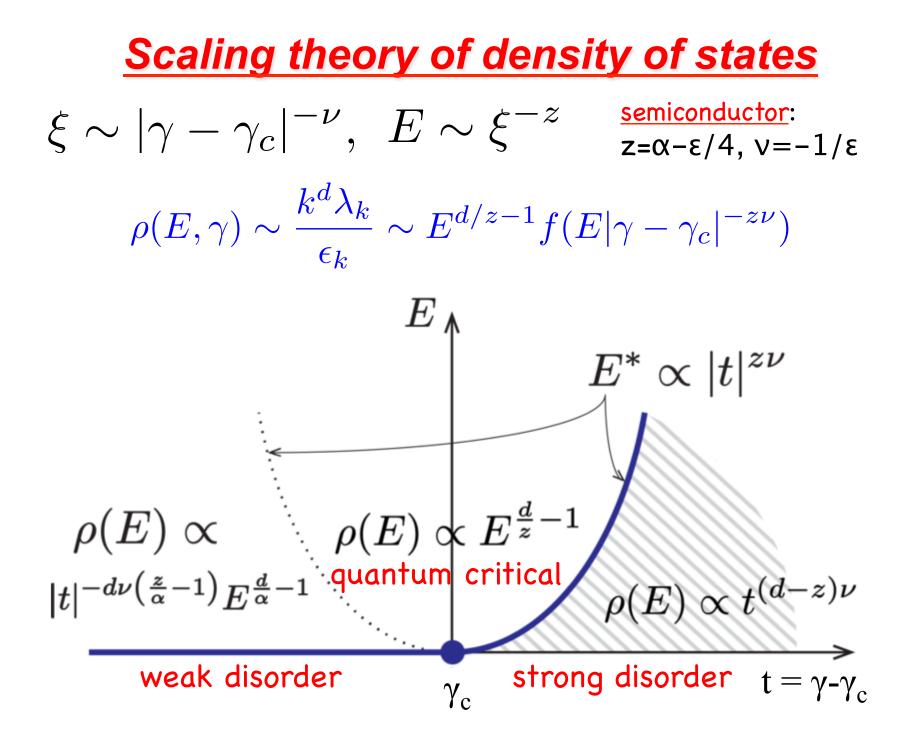
$$\rho(E) = -\frac{1}{\pi} \operatorname{Im} \int \frac{d^d r}{V} \overline{G_R(\mathbf{r}, \mathbf{r}, E)}$$
$$= \lambda(K_E) \cdot \rho_{\text{clean}}[\lambda(K_E)E]$$

where:

$$\gamma(b) = \frac{\gamma b^{\epsilon}}{1 - \gamma/\gamma_c + (\gamma/\gamma_c)b^{\epsilon}}, \quad \lambda(b) = \left[\frac{\gamma(b)}{\gamma}b^{-\epsilon}\right]^{1/2\alpha}$$
$$\lambda(K_E)E \sim \kappa K_E^{\alpha}$$

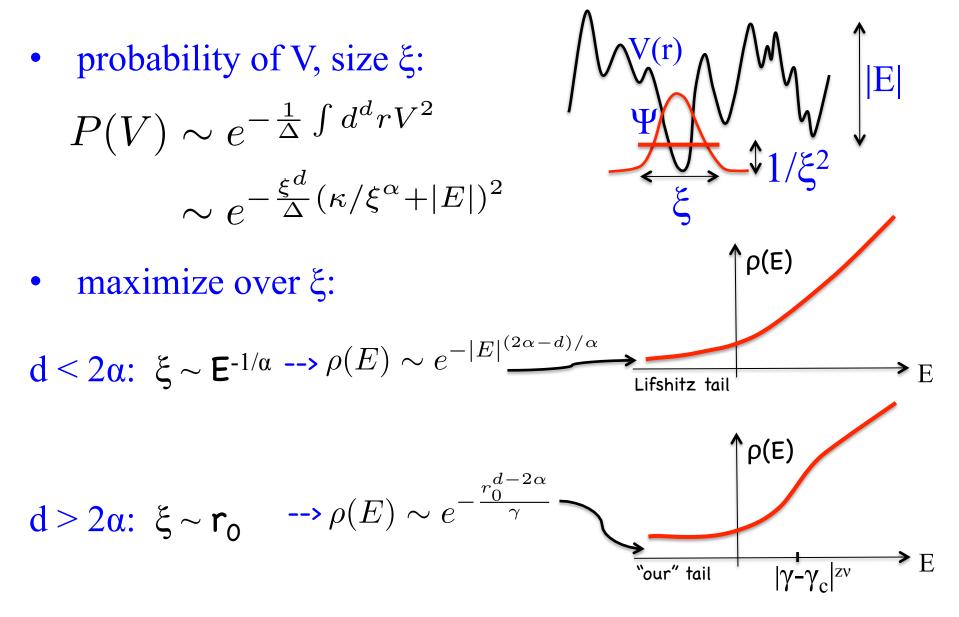


^{...}ignoring rare regions of strong disorder Lifshitz tails (Nandkishore, et al.)



<u>Lifshitz tails</u>

• deeply lying states E < 0: $\varepsilon(\hat{p})\psi + V(r)\psi = E\psi$



1d chiral model

^E(k)

k

- model: $\hat{h} = |\hat{p}|^{\alpha} \operatorname{sgn}(\hat{p}) + V(x)$
 - -> long-range hopping $J_{xx'}$

$$\hat{H} = \sum_{x,x'} J_{xx'} \hat{a}_x^{\dagger} \hat{a}_{x'} + \sum_x V_x \hat{a}_x^{\dagger} \hat{a}_x$$

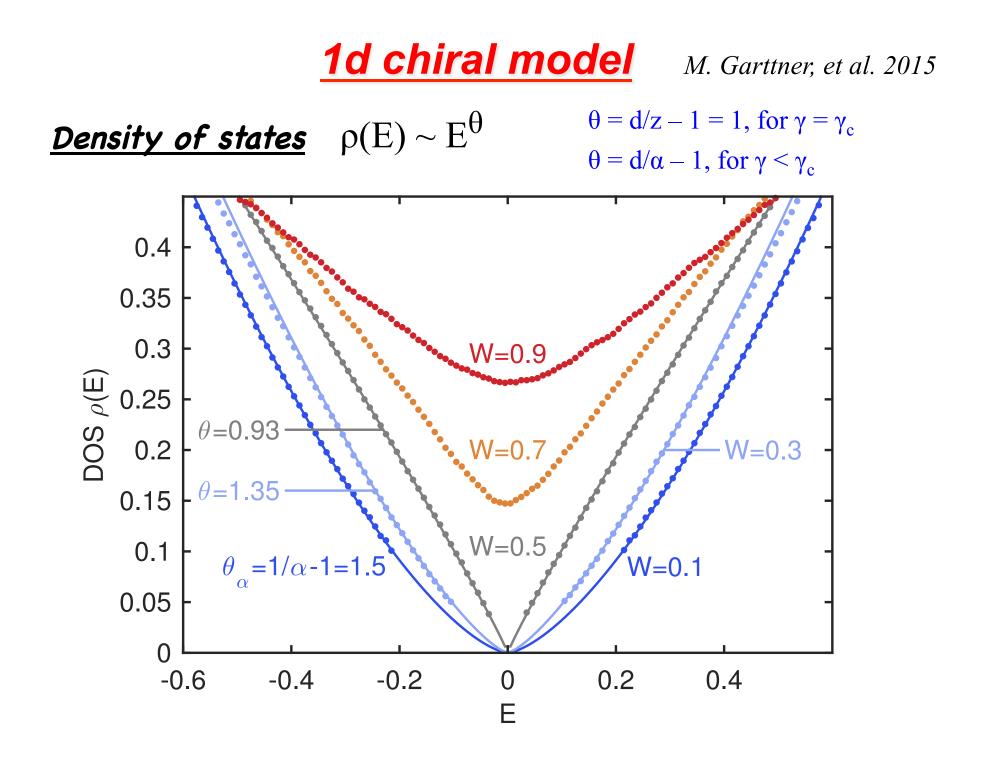
• high-d transition in 1d: $\alpha < \alpha_c = d/2 = 1/2$ o z = 1/2

$$\circ v = 1/(1-2\alpha)$$

$$\circ \rho(E) \sim E^{\theta}$$

$$\theta = d/z - 1 = 1$$
, for $\gamma = \gamma_c$

$$\circ \quad \theta = d/\alpha - 1, \text{ for } \gamma < \gamma_c$$

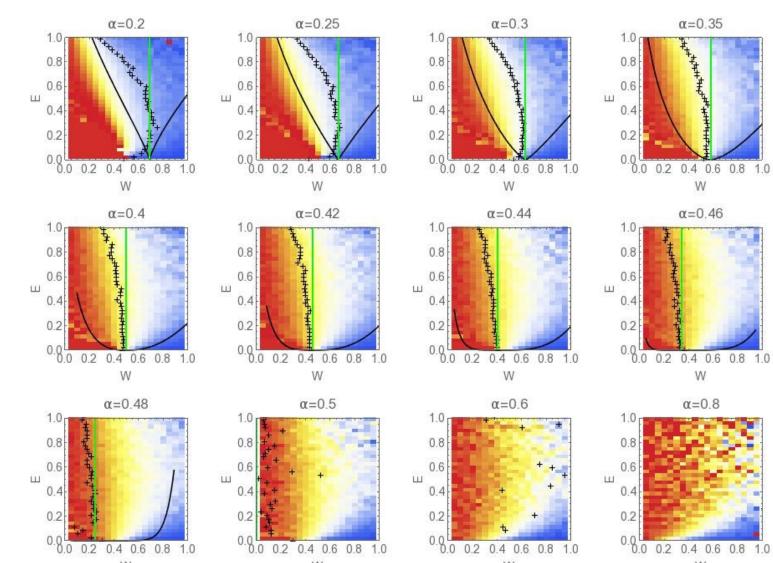


1d chiral model

M. Garttner, et al. 2015

W

<u>Density of states:</u> $\rho(E) \sim E^{\theta}$



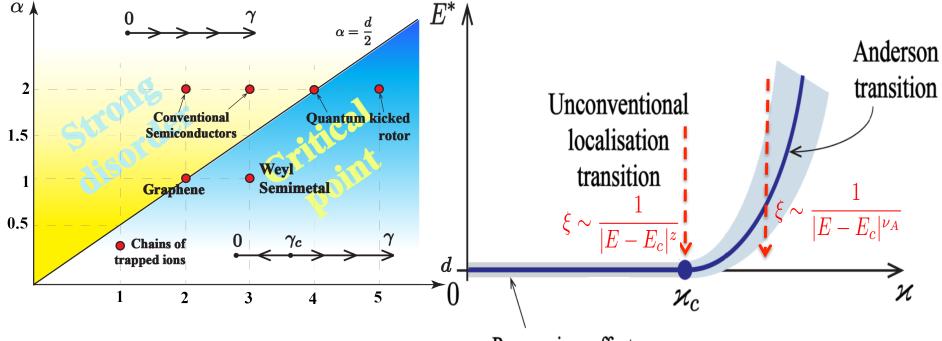
W

W

W

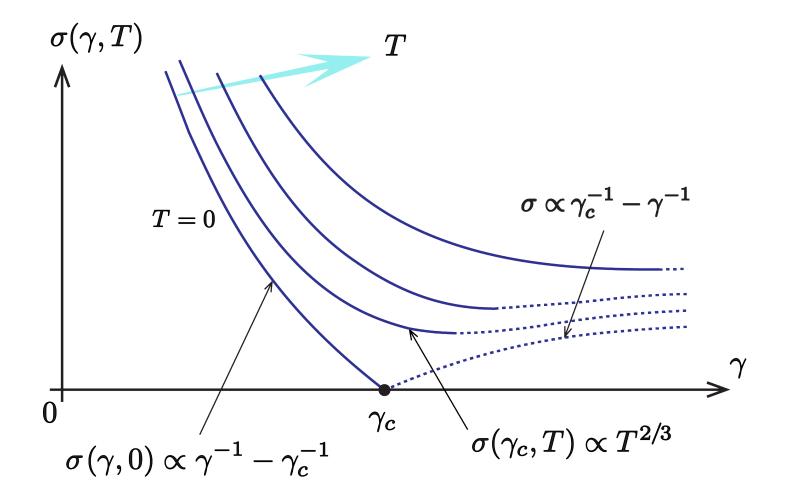
Summary and open questions

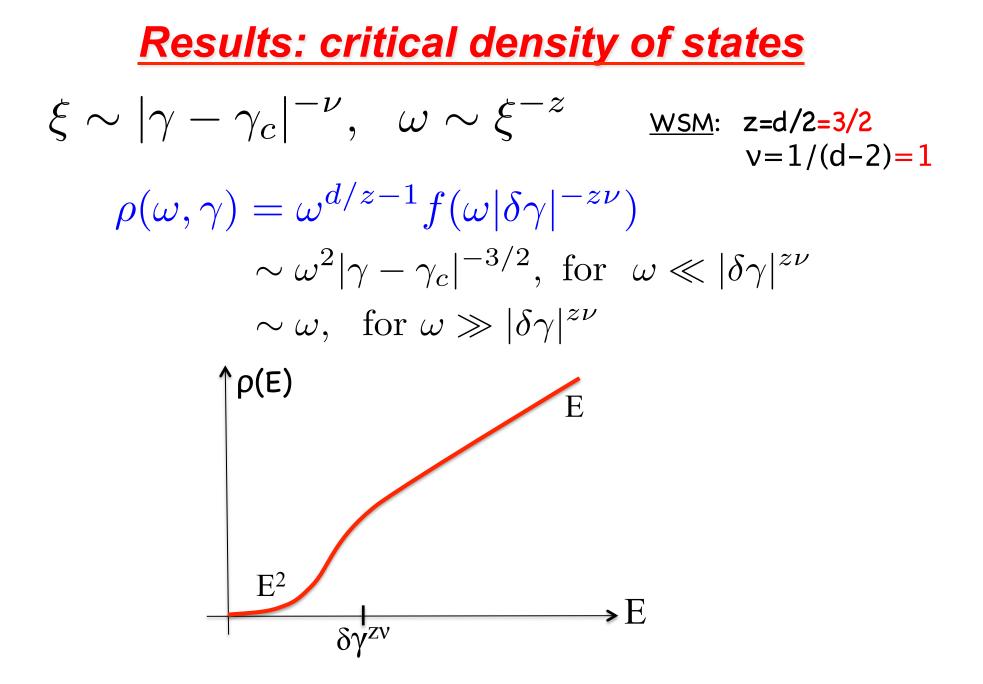
- studied transport in lightly-doped semiconductors, semimetals
- new weak-to-strong disorder-driven quantum phase transition
- RG and scaling theory --> conductivity, density of states



• numerics, experiments ?

- Rare-regions effects
- role of rare regions near critical point ?
- interplay with conventional Anderson localization ?
- Coulomb impurities ?





... ignoring rare regions of strong disorder Lifshitz tails (Nandkishore, et al.)

