Resonant atomic gases

Leo Radzihovsky

for details see: *Gurarie*, *L.R.*, *Annals of Physics*, 322, 2-119 (2007) *Sheehy*, *L.R.*, *Annals of Physics*, 322, 1790 (2007)

\$: NSF

Giorgini, et al., RMP, 80, 885 (2008) Ketterle and Zwierlein, Varenna lectures (2006)

Mysore, India, Dec 2010

Feshbach resonances

- O. K. Rice, JCP 1, 375 (1933) basic treatment of how a bound state autoionizes into a degenerate continuum
- U. Fano, Nuovo Cimento 12, 156 (1935) shows that quantum interference has opposite signs above and below the resonance, leading to asymmetric line profiles analogous to anomalous dispersion
- G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936) Basic formula developed for symmetric resonance profile when only the "bound part" of the reaction dominates
- H. Feshbach, Ann. Phys. 5, 357 (1958) and 19, 287 (1962) developed general projection operator formalism that cleanly separates "bound" and "continuum" subspaces and systematically treats their interaction
- U. Fano, Phys. Rev. 124, 1866 (1961) more elegant reformulation of his 1935 theory of asymmetric line profiles from discrete-continuum interactions
- P. Anderson, Phys. Rev. 124, 41 (1961) model of localized impurity state in a continuous band

Feshbach resonances

Feshbach resonances in neutron-sulfur scattering, from Blatt&Weisskopf, 1950s

FIG. 2.2. Total neutron cross section for sulfur; experimental data taken from Adair (49) and Peterson (50).

Alkali atoms

Li

K

1	1 H	IIA		P	'er	io	IIIA	IVA	٧A	γia	YIIA	2 He						
2	3 Li	₄ Be		I	of	Ε	ler	5 B	° C	7 N	8 0	9 F	10 Ne					
3	11 Na	12 Mg	ШB	IVB	٧B	ΥIB	VIIB		— VII —		IB	IB	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	³⁸ Sr	39 Y	⁴⁰ Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	⁸⁸ Ra	89 +AC	104 Rf	105 Ha	106 106	107 107	108 1 0 8	109 109	110 110								/

• Li 6: $2S_{1/2}$ $|n=2,l=0,s=1/2,s_z>|i=1,i_z>$

• K40: 4S_{1/2} $|n=4,l=0,s=1/2,s_z>|i=4,i_z>$

Hyperfine interaction in a B field

$$H_{HF} = \alpha_{HF}\vec{I}\cdot\vec{S} - (g_I\mu_N\vec{I} + g_S\mu_B\vec{S})\cdot\vec{B}$$

• Li 6: $2S_{1/2}$ |n=2, l=0, s = 1/2, s_z>|i=1, i_z> $\longrightarrow \frac{1}{2} \otimes 1 = \frac{3}{2} \oplus \frac{1}{2}$ |n=2, l=0, f, m_f> (B=0)

• K40: $4S_{1/2}$ |n=4,1=0,s=1/2,s_z>|i=4,i_z> $\longrightarrow \frac{1}{2} \otimes 4 = \frac{9}{2} \oplus \frac{7}{2}$ |n=4, 1=0, f, m_f> (B=0)

Hyperfine states of Li6

Atomic Feshbach resonances

A magnetic-field tunable atomic scattering resonance

Channels are coupled by the hyperfine interaction

microscopics: project quantum chemistry short-scale calculation of $V^{s/t}(r)$ onto hyperfine states at long scales \rightarrow *diagonalize 36 X 36 (e.g., for Li6)*

 $V_{\alpha\beta}(r) = \langle \alpha_1 \alpha_2 | \hat{V}_s + \hat{V}_t | \beta_1 \beta_2 \rangle$

- atom loss via enhanced three-body decay rate: $\Gamma_3 \sim \frac{\hbar^2}{-a^4 n^2}$

80

• bound state Rabi oscillations (Ramsi fringes):

energy

Rb85-Rb85 Feshbach resonance

Li7-Li7 s-wave Feshbach resonance

Pollack, Dries, Junker, Chen, Corcovilos, Hulet, PRL 102, 090402 (2009)

K40-K40 s-wave Feshbach resonance

K40-K40 p-wave Feshbach resonance

Regal, et al. '03

S-wave Feshbach resonant scattering

• tunability (strength and sign) of interactions (sudden and adiabatic)

two-channel model:
("bare") detuning
$$\mathcal{H}_{2ch} = \psi_{\sigma}^{\dagger} \frac{\hat{p}^2}{2m} \psi_{\sigma} + \phi^{\dagger} \left(\frac{\hat{p}^2}{4m} + \epsilon_0\right) \phi - g\phi \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} + \text{h.c.}$$

(open channel)

molecules (closed channel) atom – molecules interconversion

tate

0

nance

$$S-wave FR scattering:details$$

$$S_{2ch} = \overline{\psi}_{\sigma}(i\partial_{t} - \frac{p^{2}}{2m})\psi_{\sigma} + \overline{\phi}(i\partial_{t} - \frac{p^{2}}{4m})\phi + g\overline{\phi}\psi_{\uparrow}\psi_{\downarrow} + c.c.$$

$$T(\mathbf{k}, \mathbf{k}') = gD_{0}g + gD_{0}g\Pi gD_{0}g + \dots = \frac{g^{2}}{\omega - \frac{p^{2}}{4m} - \epsilon_{0} - g^{2}\Pi}$$

$$\longrightarrow f_{\nu,\mathbf{q}} + \longrightarrow + \dots$$

$$\Pi(k) = \int_{\nu,\mathbf{q}} \frac{i}{(\omega - \nu - \frac{k_{1}^{2}}{2m} + i0)(\nu - \frac{k_{2}^{2}}{2m} + i0)}$$

$$= \int \frac{d^{3}q}{(2\pi)^{3}} \frac{1}{(\omega - \frac{p^{2}}{4m}) - \frac{q^{2}}{m} + i0} = -\frac{m\Lambda}{2\pi^{2}} - i\frac{m}{4\pi}k}$$

$$f_{\epsilon}(k) = \frac{1}{-a^{-1} + \frac{r_{0}}{2}k^{2} - ik}, \text{ with } a \sim -\frac{g^{2}}{\omega_{0}} \sim a_{bg}\frac{\Delta B}{B_{0} - B}, r_{0} \sim -\frac{1}{g^{2}}$$

$$= \frac{-\sqrt{\Gamma_{0}/m}}{E - \omega_{0} + i\sqrt{\Gamma_{0}E}} \qquad (\omega_{0} = \epsilon_{0} - g^{2}\Lambda m, \Gamma_{0} = g^{4}m^{3})$$

onance

state

Ą

= 0

• scattering T-matrix relates λ to a:

P-wave Feshbach resonant scattering

