Resonant atomic gases

Leo Radzihovsky

for details see: *Gurarie*, *L.R.*, *Annals of Physics*, 322, 2-119 (2007) *Sheehy*, *L.R.*, *Annals of Physics*, 322, 1790 (2007)

\$: NSF

Giorgini, et al., RMP, 80, 885 (2008) Ketterle and Zwierlein, Varenna lectures (2006)

Mysore, India, Dec 2010

Lecture 4: Imbalanced s-wave resonant Fermi gases

- experiments
- two-channel model
- phase diagram
- Fulde-Ferrel-Larkin-Ovchinikov (FFLO)
- Goldstone modes, fluctuations and stability of FFLO

500 B field [Gauss] 1000

- topological defects and fractionalization in LO
- experimental predictions

Imbalanced ("magnetized") BEC-BCS

• motivation: superconductivity in B field, quarks-gluon plasma,...

• natural realization in cold atoms: $H_h = H - h(N_f - N_f)$

$$\mathcal{H} = \psi_{\sigma}^{\dagger} (\frac{p^{2}}{2m} - \mu_{\sigma}) \psi_{\sigma} + \lambda \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}$$

$$n = \psi_{\uparrow}^{\dagger} \psi_{\uparrow} + \psi_{\downarrow}^{\dagger} \psi_{\downarrow}, \quad \Delta n = \psi_{\uparrow}^{\dagger} \psi_{\uparrow} - \psi_{\downarrow}^{\dagger} \psi_{\downarrow}$$

$$\Delta N = N_{\uparrow} - N_{\downarrow}$$

$$?$$

$$2\epsilon_{F} \qquad \omega_{0}$$

$$BEC \qquad BEC + BCS \qquad BCS$$

Imbalanced BEC-BCS experiments

• Ketterle's experiments (vortices, phase separation)

Science (2006)

• Hulet's experiments (phase separation, surface tension) *Science (2006)*

Imbalanced BEC-BCS experiments

• Salomon's experiments (phase separation, oscillations)

- $N = 10^4$, axial trap with 20:1 anisotropy (cf Rice)
- superfluid core disappears at $P_{c2}=0.76$ (cf MIT)
- LDA works (cf MIT)
- no visible surface tension effects (cf MIT)

• scattering T-matrix relates λ to a:

$$\begin{split} b_{q} &= B_{Q} \, \delta_{q,Q} \quad \underbrace{\text{Mean-field theory}}_{H_{\mu,h}} (valid for \ \gamma \sim g^{2}/\epsilon_{F}^{1/2} \ll 1 \) \\ H_{\mu,h} &= H - \mu N - h \Delta N \qquad \qquad N = N_{a\uparrow} + N_{a\downarrow} + 2 \, N_{b} \\ \bullet \text{ ground state: } |gs\rangle &= \Pi'_{\mathbf{k}} \big(u_{\mathbf{k},\mathbf{Q}} + v_{\mathbf{k},\mathbf{Q}} a^{\dagger}_{-\mathbf{k}+\mathbf{Q}/2,\downarrow} a^{\dagger}_{\mathbf{k}+\mathbf{Q}/2,\uparrow} \big) |0\rangle \qquad \qquad \Delta N = N_{a\uparrow} - N_{a\downarrow} \end{split}$$

• ground state energy:

$$E_{gs} = \left(\frac{Q^{2}}{4m} + \delta - 2\mu\right)B_{Q}^{2} - \sum_{\mathbf{k}}(E_{k} - \varepsilon_{k}) + \sum_{\mathbf{k}}\left[E_{\mathbf{k},\uparrow}\theta(-E_{\mathbf{k},\uparrow}) + E_{\mathbf{k},\downarrow}\theta(-E_{\mathbf{k},\downarrow})\right]$$

$$E_{k} = (\varepsilon_{k}^{2} + g^{2}B_{Q}^{2})^{1/2}, \quad \varepsilon_{k} = \frac{k^{2}}{2m} - \mu + \frac{Q^{2}}{8m}$$
• excitation spectrum:

$$H_{ex} = \sum_{\mathbf{k},\sigma}' E_{\mathbf{k},\sigma}^{(a)} \alpha_{\mathbf{k},\sigma}^{\dagger} + \sum_{\mathbf{k},\sigma}' E_{\mathbf{k},\sigma}^{(b)} \beta_{\mathbf{k}}^{\dagger} \beta_{\mathbf{k}}$$

$$E_{\mathbf{k},\sigma}^{(a)} = E_{k} \mp (h + \mathbf{k} \cdot \mathbf{Q}/2m), \quad E_{k}^{(b)} = \sqrt{\epsilon_{k}^{2} + V_{0}\epsilon_{k}} \quad \text{(for } Q = 0)$$

$$(gapped and gapless k's) \quad (gapless k's collective; also phonons Q \neq 0))$$

• determine B_Q , N_b , $N_{a\uparrow}$, $N_{a\downarrow}$ (ΔN_a), Q by:

 \rightarrow_k

gapless

energy minimization
$$\implies \frac{\partial E_{gs}}{\partial B_Q} = 0$$
 (gap equation), $\frac{\partial E_{gs}}{\partial Q} = 0$ ($P_{total} = 0$)

gapless

> k

gapless

N, h fixed

<u>BEC regime</u> (δ < 0)

)

 h_{cl}

• <u>Normal</u> $B_0 = 0$, $B_Q = 0$, $\Delta N \neq 0$ (Pauli "paramagnet"): $h > h_{c2}(\delta) \approx 2^{3/2} \epsilon_F - \delta/2$

FFLO state

- pair "density" wave: $\Delta = \sum_{\mathbf{Q}} \Delta_{\mathbf{Q}} e^{i\mathbf{Q}\cdot\mathbf{x}}$
- motivation:
 - * stabilized in lower dimensions (Huse, et al)
 - * negative surface tension for $\pm \Delta$ domain wall (Matsuo, et al.; Yoshida+Yip)
 - $* \implies SF \rightarrow LO: C-I transition of domain-wall proliferation?$

- excess fermions sit on domain walls (cf. polyacetylene of Schrieffer, Su, Heeger)
- microphase separation (cf. H_{c1} transition to vortex state in type II sc's)

Evidence in 1d and 2d

Experimental realization in quasi-1d

Experimental realization in quasi-1d

Microscopics to Ginzburg-Landau

Broken symmetries in LO/FF states

LR, Vishwanath PRL, 2009

• Fulde-Ferrell: $\Delta_{FF}(\mathbf{x}) = \Delta_{\mathbf{Q}} e^{i\mathbf{Q}\cdot\mathbf{x}}$

Q

- OV

- <u>broken</u>: *time reversal, orientational, off-diagonal* **orientationally-ordered superfluid**
- Larkin-Ovchinnikov: $\Delta_{LO}(\mathbf{x}) = \Delta_{\mathbf{Q}} \cos \mathbf{Q} \cdot \mathbf{x}$

Low-energy excitations in LO/FF states

- order parameter: $\Delta_{LO}(\mathbf{x}) = \Delta_0 e^{i\theta_+} e^{i\mathbf{Q}\cdot\mathbf{x}} + \Delta_0 e^{i\theta_-} e^{-i\mathbf{Q}\cdot\mathbf{x}}$ = $2\Delta_0 e^{i\theta} \cos[\mathbf{Q}\cdot\mathbf{x} - Qu]$
- superfluid phase and phonon: $\theta = \frac{1}{2}(\theta_- + \theta_+)$ $u = \frac{1}{2Q}(\theta_- \theta_+)$
- coupled incommensurate smectics u_+ , u_- :

Low-energy excitations in LO/FF states

- order parameter: $\Delta_{LO}(\mathbf{x}) = \Delta_0 e^{i\theta_+} e^{i\mathbf{Q}\cdot\mathbf{x}} + \Delta_0 e^{i\theta_-} e^{-i\mathbf{Q}\cdot\mathbf{x}}$ = $2\Delta_0 e^{i\theta} \cos[\mathbf{Q}\cdot\mathbf{x} - Qu]$
- superfluid phase and phonon: $\theta = \frac{1}{2}(\theta_- + \theta_+)$ $u = \frac{1}{2Q}(\theta_- \theta_+)$
- coupled incommensurate smectics u_+ , u_- :

$$\mathcal{H}_{LO} = \sum_{\alpha=\pm} \left[\frac{K}{4} (\nabla^2 u_{\alpha})^2 + \frac{B}{4} (\partial_z u_{\alpha} + \frac{1}{2} (\nabla u_{\alpha})^2)^2 \right]$$

rotational invariance of smectic liquid crystal

 $E[u^{0}_{\pm}(\mathbf{x})] = 0 \text{ for } u^{0}_{\pm}(\mathbf{x}) = z(\cos \phi - 1) + x \sin \phi$

Low-energy excitations in LO/FF states

- order parameter: $\Delta_{LO}(\mathbf{x}) = \Delta_0 e^{i\theta_+} e^{i\mathbf{Q}\cdot\mathbf{x}} + \Delta_0 e^{i\theta_-} e^{-i\mathbf{Q}\cdot\mathbf{x}}$ = $2\Delta_0 e^{i\theta} \cos[\mathbf{Q}\cdot\mathbf{x} - Qu]$
- superfluid phase and phonon: $\theta = \frac{1}{2}(\theta_- + \theta_+)$ $u = \frac{1}{2Q}(\theta_- \theta_+)$
- coupled incommensurate smectics u_+ , u_- :

$$\mathcal{H}_{LO} = \sum_{\alpha=\pm} \left[\frac{K}{2} (\nabla^2 u_\alpha)^2 + \frac{B}{2} \left(\partial_z u_\alpha + \frac{1}{2} (\nabla u_\alpha)^2 \right)^2 \right] + \frac{\gamma}{2} \left(\nabla u_+ - \nabla u_- \right)^2$$

rotational invariance of smectic liquid crystal $j = j_{+} + j_{-} = 0$

 $E[u_{\pm}^{0}(\mathbf{x})] = 0 \text{ for } u_{\pm}^{0}(\mathbf{x}) = z(\cos \phi - 1) + x \sin \phi$

"Infinitely" anisotropic superfluid

• supercurrents:

• Goldstone modes "elastic" theory:

$$\mathcal{H}_{LO} = \sum_{\alpha=\pm} \left[\frac{K}{4} (\nabla^2 u_{\alpha})^2 + \frac{B}{4} \left(\partial_z u_{\alpha} + \frac{1}{2} (\nabla u_{\alpha})^2 \right)^2 \right] + \frac{\gamma}{2} (\nabla u_+ - \nabla u_-)^2$$

$$\approx \underbrace{\frac{K}{2} (\nabla^2_\perp u)^2 + \frac{B}{2} (\partial_z u)^2 + \frac{\rho_s^i}{2} (\nabla_i \theta)^2}_{smectic \ elasticity} \underbrace{superfluid \ stiffness}_{superfluid \ stiffness}$$

• superfluid stiffness *anisotropy*:

$$\frac{\rho_s^{\perp}}{\rho_s^{\parallel}} = \left(\frac{\Delta_Q}{\Delta_{BCS}}\right)^2 \approx \ln\left(\frac{h_{c2}}{h}\right) \ll 1$$

• fluctuations at T=0: $\mathcal{L}_{LO} = \frac{\chi}{2} (\partial_{\mu} \theta)^2 + \frac{\rho}{2} (\partial_t u)^2 + \frac{B}{2} (\partial_z u)^2 + \frac{K}{2} (\nabla^2 u)^2$

> $\langle \theta^2 \rangle$, $\langle u^2 \rangle \sim$ finite for $d > 1 \Rightarrow LO$ <u>stable</u> to quantum fluctuations

- fluctuations at $T \neq 0$:
 - > $\langle \theta^2 \rangle \sim \text{finite for } d > 2 \implies SF \text{ order } \underline{stable to } k_B T \text{ fluctuations}$
 - → $\langle u^2 \rangle$ ~ diverges for d ≤ 3 ⇒ *positional order <u>unstable</u>*
- → LO = superfluid smectic (SF_{sm}) with: > quasi-Bragg peaks (3d), Lorentzian (2d)
 - > anomalous elasticity (Grinstein and Pelcovits)
 - > transitions to superfluid nematic (SF_N)

- » destroy LO order ("charge"-2 SF <u>and</u> full smectic periodicity)
- ▶ retain "charge" ≥ 4 homogeneous SF (Δ^2)

• integer vortices in
$$\theta$$
: $\oint \nabla \theta \cdot d\mathbf{x} = 2\pi n_v$

$(n_{v}, n_{b}) = (1, 0)$

- > destroy LO order (full SF <u>and</u> Q smectic periodi
- > retain wavevector $\geq 2Q$ smectic periodicity $(|\Delta|^2)$

» restore full translational invariance and atom "conservation"

• integer 2π -vortex in θ (composite): $E_{(2\pi, 0)} \approx \rho_s L \log L$

• <u> π -vortex – a/2-dislocation (elementary)</u>: $E_{(\pm \pi, a)} \approx \frac{1}{4} \rho_s L \log L + \frac{1}{4} K L$

Composite defects (a-dislocation) unbind $1^{st} \rightarrow$ <u>"fractionalized" phases</u>

Structure function and time of flight

quasi-long-range order in 3d for T > 0

Fluctuations and stability in a trap

Fermionic sector of LO state

• ground state:
$$|LO_{\mathbf{Q}}\rangle = \prod_{\mathbf{k},\mathbf{Q}_{i}\in E_{\mathbf{k}\sigma\mathbf{Q}_{i}}<0} \alpha_{\mathbf{k}\sigma\mathbf{Q}_{i}}^{\dagger}|BCS_{\mathbf{Q}}\rangle,$$

$$= \prod_{\mathbf{k},\mathbf{Q}_{i}\in\mathbf{k}_{3}} c_{\mathbf{k}+\frac{\mathbf{Q}_{i}}{2}\downarrow}^{\dagger} \prod_{\mathbf{k},\mathbf{Q}_{i}\in\mathbf{k}_{2}} c_{-\mathbf{k}+\frac{\mathbf{Q}_{i}}{2}\uparrow}^{\dagger} \prod_{\mathbf{k},\mathbf{Q}_{i}\in\mathbf{k}_{1}} (u_{\mathbf{k}}+v_{\mathbf{k}}c_{\mathbf{k}+\frac{\mathbf{Q}_{i}}{2}\downarrow}^{\dagger}c_{-\mathbf{k}+\frac{\mathbf{Q}_{i}}{2}\uparrow}^{\dagger})|0\rangle$$

ectrum:
$$E_{\mathbf{k}\uparrow/\downarrow\mathbf{Q}_i} = (\varepsilon_k^2 + \Delta_Q^2)^{1/2} \mp (h + \frac{\mathbf{k}\cdot\mathbf{Q}_i}{2m})$$

• excitation spectrum (gapped and gapless k's)

• gapless fermionic excitations band of Andreev states:

Fermion-Goldstone modes coupling in LO state

- How do these affect Goldstone modes and fermions?
 - (weak) Landau damping, finite corrections to q_0 , ρ_s , K, B, ...
 - fermions retain their anisotropic pocket Fermi surface

Summary and directions

Normal

Phase

SFM

separated

- Larkin-Ovchinnikov state ⇔ superfluid smectic
- critical phase at finite T with universal properties
- half-integer vortex and dislocation defects
- transitions to $N\text{-}Sm_{2Q}$ and $SF_4\text{-}Nm$ ("charge"-4 SF nematic) phases

...many remaining questions:

- effects of Fermi pockets Goldstone modes interactions?
- better microscopic support for the energetics?
- connection to experimental knobs: detuning and imbalance?
- explore further experimental consequences, detection signals?
- charge-4e SC? ...

