Strange elasticity of liquid-crystal rubber

University of Colorado Boulder

UMass, April 2011

- Diversity of phases in nature
- Liquid-crystals
- Rubber
- Liquid-crystal elastomers
- Phenomenology
- Theory (with Xing, Lubensky, Mukhopadhyay)
- Challenges and future directions

"White lies" about phases of condensed matter

States of condensed matter in nature

• magnets, superconductors, superfluids, liquid crystals, rubber, colloids, glasses, conductors, insulators,...

artificial muscle,...

Liquid-crystal beauty

N. Clark

"Liquid crystals are beautiful and mysterious; I am fond of them for both reasons." - P.-G. De Gennes

- color selective Bragg reflection from cholesteric planes
- temperature tunable pitch \rightarrow wavelength

Bio-polymer liquid crystals: DNA

12 bp 5'-CGCGAATTCGCG-3'

(L~3.4 nm)

8 bp 5'-CGCATGCG-3'

(L~2.7 nm)

M. Nakata, N. Clark, et al

... anything orientationally or spatially partially ordered (layered)

What's missing? $k_{B}T$ fluctuations beyond ξ Xing, Goldbart, L.R., (PRL'06)

• want to include long scale polymer network fluctuations

• finite compressibility is crucial: $ec{
abla}\cdotec{u}=0$

• integrate over phonons u(x):

$$f(\lambda) = f_{class.}(\lambda) + \mu_1 \left[rac{ anh^{-1}\sqrt{1-\lambda^{-3}}}{\sqrt{1-\lambda^{-3}}} - \ln \lambda
ight]$$

• anisotropic, L-dependent phonon correlations

$$\mu_1 \approx \mu_0 \approx k_B T / \xi^3$$

$$\langle u_i(q)u_j(-q)\rangle \approx \frac{k_B T/\mu_0}{\vec{q}\cdot\Lambda\Lambda^T\cdot\vec{q}}P_{ij}^T(q)$$

Open questions

- physical picture of the peak?
- universality of the stress-strain relation?
- beyond harmonic phonon approximation?
- frozen heterogeneity and nonaffine distortion?
- biaxial and shear distortions?
- effects of entanglement, non-ideal chain?
- key experiments?

• Effects of polymer matrix on liquid crystal order cf. liquid crystals in random matrix (e.g., aerogel)

(L.R.+Toner; Feldman; Gingras; Clark, Garland, Birgeneau)

• Effect of liquid crystal order on rubber (gel) elasticity (de Gennes, Golubovic+Lubensky, Warner, Terentjev)

Must understand both questions self-consistently to understand liquid crystal elastomers and gels

Main-chain nematic elastomer

If orientational order increases

expansion

contraction

director

MAN

If orientational order decreases

contraction expansion

Thermal response and stress-strain relation

Properties: • spontaneous distortion (~ 400%) at T_{IN} , thermoelastic

- *"soft" elasticity*
- giant electrostriction

- Applications: *plastic displays*
 - switches
 - actuators
 - artificial muscle

Terentjev, et al

Stress-strain relation (relaxation)

- extended stress plateau contrasting ordinary rubber
- small threshold

Glass-like threshold stress response

- polydomain monodomain transition
- threshold set by domain size and heterogeneity

Glass-like slow stress relaxation

 crossover from 1/t^{1/2} to slow 1/log(t) stress relaxation reminiscent of glasses

Nematic elastomer as heat engine

 monodomain nematic LCE

- 5cm x 5mm x 0.3mm
- lifts 30g wt. on heating, lowers it on cooling
- Iarge strain (>400%)

H. Finkelmann, Shahinpoor, et al

Nematic elastomer as heat engine

Terentjev, et al (Cambridge)

Ratna, et al (NRL)

Liquid crystal elastomer as a muscle concept

Director alignment

Ratna (NRL)

Sensors: strain changes optical properties

- changing sample shape changes Q and
 - magnetic permeability, dielectric permittivity
 - optical properties: cholesteric pitch

cholesteric elastomer

-mechanically tunable material

H. Finkelmann, S-T. Kim, A. Munoz, P. Palffy-Muhoray and B. Taheri, Adv. Mat. 13, 1069 (2001)

Mechanism of optomechanical effects in LCE

• optomechanical coupling:

Mechanism of optomechanical effects in LCE

- optical field changes liquid crystal order via:
 - direct heating
 - absorption
 - disruption of order
 - photoisomerization
 - direct optical torque
 - angular momentum transfer from light
 - indirect optical torque
 - Landauer's blowtorch
 - orientational Brownian ratchet
 - no angular momentum transfer from light;
 - light drives molecular motor

P. Palffy-Muhoray

Other liquid crystal elastomers

- has also been generalized to:
 - o smectic-A
 - o smectic-C
 - o biaxial nematic
 - o cholesterics
 - o nematic membranes

smectic elastomers: W. Lehmann, et al, Nature '01

Mechanism of optomechanical effects in LCE

sample: nematic elastomer EC4OCH3 + 0.1% dissolved Disperse Orange 1 azo dye

Response time: 70ms

M. Chamacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, M. Shelley, Nature Mat. 3, 307, (2004)

Soft elasticity

- extended stress plateau contrasting ordinary rubber
- small threshold

Neoclassical theory of nematic elastomers

Warner,

Terentjev '90

- $F \approx k_B T R^T L^{-1} R$ (L = N l)
- affine deformation: $R = \Lambda R_0$ (e.g., $\Lambda \approx 1 + u$)
- $F \approx k_B T Tr (l_0 \Lambda^T l^{-1} \Lambda)$
- incompressible det $\Lambda = 1 = \lambda_x \lambda_y \lambda_z$
- soft mode (zero energy deformation): $\Lambda = l^{-1/2} O l_0^{-1/2}$ restore to isotropic state, rotate, deform along new axis n

•
$$\ell = \begin{pmatrix} \ell_{\perp} & 0 & 0 \\ 0 & \ell_{\perp} & 0 \\ 0 & 0 & \ell_{||} \end{pmatrix} = \ell_{\perp} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r \end{pmatrix} = \ell_{||} \hat{n}_i \hat{n}_j + \ell_{\perp} (\delta_{ij} - \hat{n}_i \hat{n}_j)$$

Elastic theory of NE

- Construct rotationally invariant elastic theory of deformations about $\underline{\underline{u}}_0$
- Study fluctuations and heterogeneities about $\underline{\underline{u}}_{0}$

Must incorporate underlying rotational invariance of the nematic state

- Some distortions cost no energy: "soft" uniaxial solid $f[\vec{R}(\mathbf{x})] = f[O_T \vec{R}(O_R \mathbf{x})]$
- Vanishing energy cost for: $\delta \underline{\underline{u}} = \underline{\underline{O}} \cdot \underline{\underline{u}}_0 \cdot \underline{\underline{O}}^T \underline{\underline{u}}_0$
- Harmonic elasticity about nematic state: $\underline{\underline{\varepsilon}} = \underline{\underline{u}} \underline{\underline{u}}_{0}$ $\mathcal{H}_{NE}^{0} = \mu_{zi}\varepsilon_{zi}^{2} + B_{z}\varepsilon_{zz}^{2} + \mu_{\perp}\varepsilon_{ij}^{2} + \lambda\varepsilon_{ii}^{2} + \lambda_{zi}\varepsilon_{zz}\varepsilon_{ii}$ 0, required by rotational invariance

• Nonlinear elasticity about nematic state:

Fluctuations and heterogeneity

• Thermal fluctuations: $\mathcal{Z} = \operatorname{Trace}_{u}[e^{-\beta \mathcal{H}[u]}]$

• Heterogeneity random torques and stresses: *nematic elastomers are only <u>statistically</u> homogeneous and isotropic*

$$\mathcal{H}_{NE}^{real} = \mathcal{H}_{NE}[\underline{u}] - \underline{\underline{u}} \cdot \underline{\underline{\sigma}}(\mathbf{r}) - (\hat{n} \cdot \vec{g}(\mathbf{r}))^2$$

encodes heterogeneity Elastic "softness" leads to strong qualitative effects of thermal fluctuations and network heterogeneity

Fluctuations, nonlinearities and phase transitions

Upshot of 40 years of research on fluctuations and critical phenomena:

usually Fluctuations <u>and</u> nonlinearities are only important near isolated critical points (continuous phase transition)

Predictions

Xing + L.R., PRL (2003)

 δu_{ij}

- <u>Universal</u> elasticity: $\overline{\langle |\delta u(q)|^2 \rangle} \sim q_{\perp}^{-4+\eta}$, for $r_{\perp} > \xi_{\perp} \sim K^2/\Delta$
- Non-Hookean elasticity: $\sigma_{zz} \sim (u_{zz})^{\delta}$, $\delta > 1$ (cf. non-Fermi liquid) vanishing slope

no linear response

- Length-scale dependent elastic moduli: $K_{\text{eff}}(L) \sim L^{\eta}, \quad \mu_{\text{eff}}(L) \sim L^{-\eta_{\mu}}, \quad B_{\text{eff}}(L) \sim B_0$
- Macroscopically incompressible: $\kappa_{\text{eff}} \sim \mu_{\text{eff}}(L) / B_{\text{eff}}(L) \rightarrow 0$
- Universal Poisson ratios: $u_{xx} > 0 \Longrightarrow \begin{cases} u_{yy} = \frac{5}{7}u_{xx} \\ u_{zz} = -\frac{12}{7}u_{xx} \\ u_{zz} > 0 \Longrightarrow u_{xx} = u_{yy} = -\frac{1}{2}u_{zz} \end{cases}$

Summary and Conclusions

• Amazing liquid-crystal rubber --- a "liquid" solid a P a "solid" liquid-crystal

- Dramatic influence of thermal fluctuations and heterogeneities on macroscopic elasticity and orientational correlations
- Critical phases in "soft" condensed matter

Open questions:

- More sophisticated model of heterogeneity?
- "Plastic" deformation?
- Other liquid crystal phases (e.g., smectic rubber)?
- Dynamics?
- Quantum realizations of critical phases?

"Soft" elastic systems: critical phases

guiding principle: *partial breaking of spatial symmetry*

What's missing? $k_B T$ fluctuations beyond ξ L.R., (PRL'06)

• want
$$F[\Lambda] = -kT \ln Tr \ e^{-H/kT}$$
 with $H = \frac{\mu_0}{2} \int |\nabla r(X)|^2$

• approximate by small thermal fluctuations about imposed affine distortion:

$$\vec{r}(\vec{X}) = \Lambda \cdot e^{\mathbf{u}(\vec{\mathbf{X}}) \cdot \nabla} \vec{X} \approx \Lambda \cdot (\vec{X} + \vec{u}(\vec{X}) + \ldots)$$

• finite compressibility is crucial:

$$\vec{\nabla} \cdot \vec{u} = 0$$

• integrate over phonons u(x): $f(\lambda) = f_{class.}(\lambda) + \mu_1 \left[\frac{\tanh^{-1} \sqrt{1 - \lambda^{-3}}}{\sqrt{1 - \lambda^{-3}}} - \ln \lambda \right]$ $\mu_1 \approx \mu_0 \approx k_B T / \xi^3$

• anisotropic, Λ -dependent phonon correlations $\langle u_i(q)u_j(-q)\rangle \approx \frac{k_B T/\mu_0}{\vec{q} \cdot \Lambda \Lambda^T \cdot \vec{q}} P_{ij}^T(q)$

... there are others

Properties of critical phases

- spontaneously broken continuous symmetry
- nontrivial fixed point of strongly interacting Goldstone modes (c.f. nonlinear O(N) sigma-model)
- universal power-law correlation functions and amplitude ratios (<u>throughout the phase</u>)
- no fine-tuning to a critical point required
- quantum analogs? road to 3d "Luttinger liquids"?

