Regularized Linear Models in Stacked Generalization

Sam Reid and Greg Grudic

Department of Computer Science
University of Colorado at Boulder
USA

June 11, 2009

Reid & Grudic (Univ. of Colo. at Boulder)

Regularized Linear Models in Stacking June 11, 2009 1/33



How to combine classifiers?

Which classifiers?

How to combine?

Adaboost, Random Forest prescribe classifiers and combiner
We want L > 1000 heterogeneous classifiers
Vote/Average/Forward Stepwise Selection/Linear/Nonlinear?

Our combiner: Regularized Linear Model
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© Introduction
@ How to combine classifiers?

© Model

@ Stacked Generalization
@ StackingC
@ Linear Regression and Regularization

© Experiments
@ Setup
@ Results
@ Discussion
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Outline

© Model

@ Stacked Generalization
@ StackingC
@ Linear Regression and Regularization
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Stacked Generalization

Combiner is produced by a classification algorithm
Training set = base classifier predictions on unseen data + labels
Learn to compensate for classifier biases

Linear and nonlinear combiners

What classification algorithm should be used?
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Stacked Generalization - Combiners

o Wolpert, 1992: relatively global, smooth combiners
o Ting & Witten, 1999: linear regression combiners

@ Seewald, 2002: low-dimensional combiner inputs
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@ Caruana et al., 2004: Stacking performs poorly because regression
overfits dramatically when there are 2000 highly correlated input
models and only 1k points in the validation set.

@ How can we scale up stacking to a large number of classifiers?
@ Our hypothesis: regularized linear combiner will

e reduce variance
e prevent overfitting
e increase accuracy

Reid & Grudic (Univ. of Colo. at Boulder) Regularized Linear Models in Stacking June 11, 2009 7 /33



Posterior Predictions in Multiclass Classification

LITT] @

Classification with d =4, k=3
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Ensemble Methods for Multiclass Classification

Multiple classifier system with 2 classifiers
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Stacked Generalization

Stacked generalization with 2 classifiers
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Classification via Regression

yi(x)| |ya(z)

Stacking using Classification via Regression
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StackingC

\

StackingC, class-conscious stacked generalization
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Linear Models

@ Linear model for use in Stacking or StackingC
o y =20, Bixi + Bo

o Least Squares: L = |y — X3/

@ Problems:

High variance
Overfitting
Ill-posed problem
Poor accuracy
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Regularization

@ Increase bias a little, decrease variance a lot
@ Constrain weights = reduce flexibility = prevent overfitting
@ Penalty terms in our studies:

o Ridge Regression: L = |y — X3[> + \|B/?

o Lasso Regression: L= |y — X032+ \|B)1

o Elastic Net Regression: L = |y — X3|> + A|B> + (1 — \)|B1
@ Lasso/Elastic Net produce sparse models
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About 1000 base classifiers making probabilistic predictions
Stacked Generalization to create combiner

StackingC to reduce dimensionality

Convert multiclass to regression

Use linear regression

Regularization on the weights
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About 1000 base classifiers making probabilistic predictions
Stacked Generalization to create combiner

StackingC to reduce dimensionality

Convert multiclass to regression

Use linear regression

Regularization on the weights
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© Experiments
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@ Results
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Table: Datasets and their properties

Dataset | Attributes | Instances | Classes
balance-scale 4 625 3
glass 9 214 6

letter 16 4000 26
mfeat-morphological 6 2000 10
optdigits 64 5620 10
sat-image 36 6435 6
segment 19 2310 7
vehicle 18 846 4
waveform-5000 40 5000 3
yeast 8 1484 10
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Base Classifiers

@ About 1000 base classifiers for each problem

© Neural Network

Support Vector Machine (C-SVM from LibSVM)
K-Nearest Neighbor

Decision Stump

Decision Tree

AdaBoost.M1

Bagging classifier

Random Forest (Weka)

Random Forest (R)

00000000
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select—| vote average| sg — |sg — |sg —
best linear | lasso ridge
balance 0.9872| 0.9234 | 0.9265 | 0.9399 | 0.9610 | 0.9796
glass 0.6689 | 0.5887 | 0.6167 | 0.5275 | 0.6429 | 0.7271
letter 0.8747 | 0.8400 | 0.8565 | 0.5787 | 0.6410 | 0.9002

mfeat 0.7426 | 0.7390 | 0.7320 | 0.4534 | 0.4712 | 0.7670
optdigits | 0.9893 | 0.9847 | 0.9858 | 0.9851 | 0.9660 | 0.9899
sat-image | 0.9140 | 0.8906 | 0.9024 | 0.8597 | 0.8940 | 0.9257
segment | 0.9768 | 0.9567 | 0.9654 | 0.9176 | 0.6147 | 0.9799
vehicle 0.7905 | 0.7991 | 0.8133 | 0.6312 | 0.7716 | 0.8142
waveform | 0.8534 | 0.8584 | 0.8624| 0.7230 | 0.6263 | 0.8599
yeast 0.6205| 0.6024 | 0.6105 | 0.2892 | 0.4218 | 0.5970
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Statistical Analysis

Pairwise Wilcoxon Signed-Rank Tests

Ridge outperforms unregularized at p < 0.002
Lasso outperforms unregularized at p < 0.375
e Validates hypothesis: regularization improves accuracy

Ridge outperforms lasso at p < 0.0019

o Dense techniques outperform sparse techniques
Ridge outperforms Select-Best at p < 0.084

e Properly trained model better than single best
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Baseline Algorithms

@ Average outperforms Vote at p < 0.014
o Probabilistic predictions are valuable

@ Select-Best outperforms Average at p < 0.084
o Validation/training is valuable
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Accuracy for Elastic Nets
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Figure: Overall accuracy on sat-image with various parameters for elastic-net.
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Partial Ensemble Selection

Sparse techniques perform Partial Ensemble Selection
Choose from classifiers and predictions

Allow classifiers to focus on subproblems

Example: Benefit from a classifier good at separating A from B but
poor at A/C, B/C
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Partial Selection
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Figure: Coefficient profiles for the first three subproblems in StackingC for the
sat-image dataset with elastic net regression at aw = 0.95.
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Selected Classifiers

Classifier red | cotton | grey | damp veg | v.damp total
adaboost-500 | 0.063 0| 0.014 | 0.000 | 0.0226 0 0.100
ann-0.5-32-1000 0 0 | 0.061 | 0.035 0 0.004 0.100
ann-0.5-16-500 | 0.039 0 0| 0.018 | 0.009 0.034 0.101
ann-0.9-16-500 | 0.002 | 0.082 0 0| 0.007 0.016 0.108
ann-0.5-32-500 | 0.000 | 0.075 0| 0.100 | 0.027 0 0.111
knn-1 0 0| 0.076 | 0.065 | 0.008 0.097 0.246

Table: Selected posterior probabilities and corresponding weights for the
sat-image problem for elastic net StackingC with o = 0.95 for the 6 models with
highest total weights.
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Conclusions

Regularization is essential in Linear StackingC
Trained linear combination outperforms Select-Best

Dense combiners outperform sparse combiners

Sparse models allow classifiers to specialize in subproblems
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Future Work

@ Examine full Bayesian solutions
@ Constrain coefficients to be positive

@ Choose a single regularizer for all subproblems

Reid & Grudic (Univ. of Colo. at Boulder) Regularized Linear Models in Stacking June 11, 2009 31/33



Acknowledgments

PhET Interactive Simulations
Turing Institute
UCI Repository

University of Colorado at Boulder

Reid & Grudic (Univ. of Colo. at Boulder) Regularized Linear Models in Stacking June 11, 2009 32/33



Questions?

@ Questions?
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