Regularized Linear Models in Stacked Generalization

Sam Reid and Greg Grudic

Department of Computer Science University of Colorado at Boulder USA

June 11, 2009

How to combine classifiers?

- Which classifiers?
- How to combine?
- Adaboost, Random Forest prescribe classifiers and combiner
- We want L > 1000 heterogeneous classifiers
- Vote/Average/Forward Stepwise Selection/Linear/Nonlinear?
- Our combiner: Regularized Linear Model

Outline

- Introduction
 - How to combine classifiers?
- 2 Model
 - Stacked Generalization
 - StackingC
 - Linear Regression and Regularization
- 3 Experiments
 - Setup
 - Results
 - Discussion

Outline

- Introduction
 - How to combine classifiers?
- 2 Model
 - Stacked Generalization
 - StackingC
 - Linear Regression and Regularization
- 3 Experiments
 - Setup
 - Results
 - Discussion

Stacked Generalization

- Combiner is produced by a classification algorithm
- Training set = base classifier predictions on unseen data + labels
- Learn to compensate for classifier biases
- Linear and nonlinear combiners
- What classification algorithm should be used?

Stacked Generalization - Combiners

- Wolpert, 1992: relatively global, smooth combiners
- Ting & Witten, 1999: linear regression combiners
- Seewald, 2002: low-dimensional combiner inputs

Problems

- Caruana et al., 2004: Stacking performs poorly because regression overfits dramatically when there are 2000 highly correlated input models and only 1k points in the validation set.
- How can we scale up stacking to a large number of classifiers?
- Our hypothesis: regularized linear combiner will
 - reduce variance
 - prevent overfitting
 - increase accuracy

Posterior Predictions in Multiclass Classification

Classification with d = 4, k = 3

Ensemble Methods for Multiclass Classification

Multiple classifier system with 2 classifiers

Stacked Generalization

Stacked generalization with 2 classifiers

Classification via Regression

Stacking using Classification via Regression

StackingC

StackingC, class-conscious stacked generalization

Linear Models

- Linear model for use in Stacking or StackingC
- $\hat{y} = \sum_{i=1}^d \beta_i x_i + \beta_0$
- Least Squares: $L = |y X\beta|^2$
- Problems:
 - High variance
 - Overfitting
 - III-posed problem
 - Poor accuracy

Regularization

- Increase bias a little, decrease variance a lot
- Constrain weights ⇒ reduce flexibility ⇒ prevent overfitting
- Penalty terms in our studies:
 - Ridge Regression: $L = |y X\beta|^2 + \lambda |\beta|^2$
 - Lasso Regression: $L = |y X\beta|^2 + \lambda |\beta|_1$
 - Elastic Net Regression: $L = |y X\beta|^2 + \lambda |\beta|^2 + (1 \lambda)|\beta|_1$
- Lasso/Elastic Net produce sparse models

Model

- About 1000 base classifiers making probabilistic predictions
- Stacked Generalization to create combiner
- StackingC to reduce dimensionality
- Convert multiclass to regression
- Use linear regression
- Regularization on the weights

Model

- About 1000 base classifiers making probabilistic predictions
- Stacked Generalization to create combiner
- StackingC to reduce dimensionality
- Convert multiclass to regression
- Use linear regression
- Regularization on the weights

Outline

- Introduction
 - How to combine classifiers?
- 2 Mode
 - Stacked Generalization
 - StackingC
 - Linear Regression and Regularization
- 3 Experiments
 - Setup
 - Results
 - Discussion

Datasets

Table: Datasets and their properties

Dataset	Attributes	Instances	Classes
balance-scale	4	625	3
glass	9	214	6
letter	16	4000	26
mfeat-morphological	6	2000	10
optdigits	64	5620	10
sat-image	36	6435	6
segment	19	2310	7
vehicle	18	846	4
waveform-5000	40	5000	3
yeast	8	1484	10

Base Classifiers

- About 1000 base classifiers for each problem
 - Neural Network
 - Support Vector Machine (C-SVM from LibSVM)
 - K-Nearest Neighbor
 - Oecision Stump
 - Decision Tree
 - 6 AdaBoost.M1
 - Bagging classifier
 - Random Forest (Weka)
 - Random Forest (R)

Results

	select-	vote	average	sg –	sg –	sg –
	best			linear	lasso	ridge
balance	0.9872	0.9234	0.9265	0.9399	0.9610	0.9796
glass	0.6689	0.5887	0.6167	0.5275	0.6429	0.7271
letter	0.8747	0.8400	0.8565	0.5787	0.6410	0.9002
mfeat	0.7426	0.7390	0.7320	0.4534	0.4712	0.7670
optdigits	0.9893	0.9847	0.9858	0.9851	0.9660	0.9899
sat-image	0.9140	0.8906	0.9024	0.8597	0.8940	0.9257
segment	0.9768	0.9567	0.9654	0.9176	0.6147	0.9799
vehicle	0.7905	0.7991	0.8133	0.6312	0.7716	0.8142
waveform	0.8534	0.8584	0.8624	0.7230	0.6263	0.8599
yeast	0.6205	0.6024	0.6105	0.2892	0.4218	0.5970

Statistical Analysis

- Pairwise Wilcoxon Signed-Rank Tests
- Ridge outperforms unregularized at $p \le 0.002$
- Lasso outperforms unregularized at $p \le 0.375$
 - Validates hypothesis: regularization improves accuracy
- Ridge outperforms lasso at $p \le 0.0019$
 - Dense techniques outperform sparse techniques
- Ridge outperforms Select-Best at $p \le 0.084$
 - Properly trained model better than single best

Baseline Algorithms

- Average outperforms Vote at $p \le 0.014$
 - Probabilistic predictions are valuable
- Select-Best outperforms Average at $p \le 0.084$
 - Validation/training is valuable

Subproblem/Overall Accuracy - I

Subproblem/Overall Accuracy - II

Subproblem/Overall Accuracy - III

Accuracy for Elastic Nets

Figure: Overall accuracy on sat-image with various parameters for elastic-net.

Partial Ensemble Selection

- Sparse techniques perform Partial Ensemble Selection
- Choose from classifiers and predictions
- Allow classifiers to focus on subproblems
- Example: Benefit from a classifier good at separating A from B but poor at A/C, B/C

Partial Selection

Figure: Coefficient profiles for the first three subproblems in StackingC for the sat-image dataset with elastic net regression at $\alpha=0.95$.

Selected Classifiers

Classifier	red	cotton	grey	damp	veg	v.damp	total
adaboost-500	0.063	0	0.014	0.000	0.0226	0	0.100
ann-0.5-32-1000	0	0	0.061	0.035	0	0.004	0.100
ann-0.5-16-500	0.039	0	0	0.018	0.009	0.034	0.101
ann-0.9-16-500	0.002	0.082	0	0	0.007	0.016	0.108
ann-0.5-32-500	0.000	0.075	0	0.100	0.027	0	0.111
knn-1	0	0	0.076	0.065	0.008	0.097	0.246

Table: Selected posterior probabilities and corresponding weights for the sat-image problem for elastic net StackingC with $\alpha=0.95$ for the 6 models with highest total weights.

Conclusions

- Regularization is essential in Linear StackingC
- Trained linear combination outperforms Select-Best
- Dense combiners outperform sparse combiners
- Sparse models allow classifiers to specialize in subproblems

Future Work

- Examine full Bayesian solutions
- Constrain coefficients to be positive
- Choose a single regularizer for all subproblems

Acknowledgments

- PhET Interactive Simulations
- Turing Institute
- UCI Repository
- University of Colorado at Boulder

Questions?

• Questions?