
Model Combination in Multiclass Classification

by

Samuel Robert Reid

B.S., University of New Mexico, 2000

M.S., University of Colorado, 2003

M.S., University of Colorado, 2005

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2010



This thesis entitled:
Model Combination in Multiclass Classification

written by Samuel Robert Reid
has been approved for the Department of Computer Science

Michael C. Mozer

Prof. Greg Z. Grudic

Prof. Richard H. Byrd

Prof. James H. Martin

Prof. François G. Meyer

Date

The final copy of this thesis has been examined by the signatories, and we find that
both the content and the form meet acceptable presentation standards of scholarly

work in the above mentioned discipline.



iii

Reid, Samuel Robert (Ph.D., Computer Science)

Model Combination in Multiclass Classification

Thesis directed by Prof. Michael C. Mozer

Multiclass classification is an important machine learning problem that involves

classifying a pattern into one of several classes, and encompasses domains such as hand-

written character recognition, protein structure classification, heartbeat arrhythmia

identification and many others. In this thesis, we investigate three issues in combining

models to perform multiclass classification. First, we demonstrate that ridge regular-

ization is essential in linear combinations of multiclass classifiers. Second, we show

that when solving a multiclass problem using a combination of binary classifiers, it is

more effective to share hyperparameters across models than to optimize them indepen-

dently. Third, we introduce a new method for combining binary pairwise classifiers that

overcomes several problems with existing pairwise classification schemes and exhibits

significantly better performance on many problems. Our contributions span the themes

of model selection and reduction from multiclass to binary classification.
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Chapter 1

Introduction

1.1 Introduction

Multiclass classification is a ubiquitous machine learning problem, encompassing

diverse domains such as handwritten letter recognition, heartbeat arrhythmia moni-

toring, image segmentation, protein binding site prediction and many others. Several

algorithms have been proposed and studied for solving multiclass classification prob-

lems [50, 75, 30]. Early work in machine learning focused on using a single classifier for

each problem, but recent work has shown the advantage of training many classifiers for

each problem and combining their predictions [101, 62, 11, 89, 31, 48, 17]. Multiclass

classifiers can be combined directly using voting, averaging or other linear or nonlin-

ear combination techniques to improve classification performance. Another approach

is to combine binary classifiers to solve multiclass problems, with each binary classifier

solving a different subproblem. In this thesis, we investigate three previously unex-

plored issues in model combination for multiclass classification: we study regularization

in linear combinations of multiclass classifiers (Chapter 3), we explore model selection

in binary subproblems (Chapter 4) and we present a novel pairwise classification ap-

proach (Chapter 5). Our contributions span the related themes of model selection and

solving multiclass problems with binary classifiers. Each contribution of this thesis is

self-contained so that each of the contribution chapters 3-5 can be read independently of

the rest of the dissertation. Some methodological descriptions and background materi-
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als are duplicated to facilitate independence of the chapters. This introductory chapter

provides a high level overview of the contributions and common themes between them.

Chapter 2 provides background and literature review of classifier combination. Chapters

3-5 contain the contributions of this thesis, and Chapter 6 concludes with a summary

of our work and recommendations for future work.

1.1.1 Regularized Linear Models in Stacked Generalization

In Chapter 3, we focus on combining multiclass classifiers using a linear combi-

nation function, under the framework of stacked generalization. We use many types

of classification algorithms with many different hyperparameter settings, then use their

predictions on unseen (validation) data in order to train a linear combination function.

We study several regularization techniques and show that proper regularization of the

combiner function is essential to improve performance. The standard linear least squares

regression can be regularized with an L2 penalty (ridge regression), an L1 penalty (lasso

regression) or a combination of the two (elastic net regression). We study a linear model

that applies one weight per classifier prediction rather than one weight per classifier,

which allows classifiers to focus on different implicit subproblems corresponding to dif-

ferent classes. This chapter was published in the conference proceedings and presented

at the Multiple Classifier Systems conference in 2009 [84].

1.1.2 Model Selection in Binary Subproblems

Some machine learning algorithms were designed for solving binary classification

problems (e.g. support vector machines or AdaBoost). A popular and effective way to

solve a multiclass problem using binary classifiers is to transform the multiclass clas-

sification problem into a set of binary classification problems, solve them using binary

classification algorithms and combine the predictions of the binary classifiers. For ex-

ample, the one-vs-all method creates one binary subproblem for each class, separating
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it from the remaining classes. Another common reduction method is called pairwise

classification (or all-pairs), in which each subproblem separates one class from another

class. In Chapter 4, we focus on the particular issue of how to perform model selection

when reducing a multiclass classification problem to a set of binary subproblems. As

opposed to monolithic approaches that solve the entire multiclass problem at once and

are regularized as a unit, techniques that reduce multiclass problems to binary subprob-

lems introduce the new flexibility to perform model selection in each subproblem. In

Chapter 4, we perform experimental studies that show that shared-hyperparameter se-

lection is more effective than independent optimization because subproblems typically

share similar structure. Conversely, we construct a synthetic data set with differing

decision boundary shapes, and show that independently optimizing subproblem models

is more effective in that case. We also rule out several confounding factors such as

selection of incorrect models due to insufficient validation data, or a mismatch between

the validation and test metrics.

1.1.3 Probabilistic Pairwise Classification

Pairwise classification (all-pairs) [38, 40, 56] has been criticized because it relies

on classifiers that must make predictions over distributions that were unseen during

training[51, 23]. In Chapter 5, we address this issue with a new pairwise classifica-

tion technique called probabilistic pairwise classification (PPC) that uses probabilistic

predictions for pairwise discrimination and weights each pairwise prediction with an

estimated probability that the instance belongs to the pair. The technique is derived

from the Theorem of Total Probability, and relies only on the assumption that each

instance is assigned exactly one label. Our method is conceptually simpler and easier

to implement than other pairwise classification methods that incorporate and produce

probabilities. Experimental studies indicate that our proposed technique performs bet-

ter than other pairwise classification techniques on real world data sets, at the cost of
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increased computational demands. We also show that our proposed method is capable

of improving multiclass classifiers—for example, the random forest classifier is capable

of making multiclass predictions, but embedding it within PPC as a binary classification

algorithm can improve performance.

1.2 Thesis Statement

The contributions described in the preceding sections can be summarized in our

three-part thesis statement:

• Ridge regularization is essential in linear combinations of multiclass classifiers.

• When reducing a multiclass classification problem to a set of binary classification

problems, it is more effective to constrain subproblems to share hyperparameters

than to optimize each subproblem independently.

• Probabilistic pairwise classification has many advantages over previously pro-

posed pairwise classification approaches because it explicitly estimates proba-

bility of membership in each pair.

Each element of this thesis statement is corroborated by experimental studies

over many real world data sets, comparison with similar methodologies, investigation of

behavior under synthetic data sets, and discussion of related theories. Before presenting

our contributions, we provide an overview of the supervised learning framework and

related work in model selection and combination for supervised classification.



Chapter 2

Background

This chapter introduces supervised classification (Section 2.1), and the related

concepts of model selection (Section 2.2) and model combination (Section 2.3). We

discuss the two methodologies for performing model combination, namely commensurate

model combination, in which each classifier provides an estimate of the same target

function (Section 2.3.1) and complementary model combination, in which each classifier

provides a different part of the solution (Section 2.3.2).

2.1 Supervised Classification

Given a training data set D = {(xi, yi), i = 1..N}, where x is a d-dimensional

vector comprised of continuous (numerical) and/or discrete (nominal) parameters (at-

tributes), the goal is to induce a model ŷ(x) that minimizes a loss function L(y, ŷ) over

the distribution of unseen data. Training and test points are assumed to be drawn i.i.d.

(independent and identically distributed) from the same full joint probability distribu-

tion q(z), where z = (x, y). In nearly all real world problems, the full joint distribution

is unknown; instead a finite number of observations D are generated by the full joint

distribution. Generative techniques seek to model the full joint probability distribution

for the purpose of making predictions whereas discriminative techniques directly model

the class boundaries. In this thesis, we restrict our focus to discriminative modeling

techniques.
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A classifier, also known as a model, hypothesis or expert, is a function ŷ(x) :

Kd ⇒ Ω, where each dimension in K refers to a continuous or discrete attribute, also

known as a variable or feature, and Ω is the set of possible class labels Ω = {ω1...ωk}.

A classification algorithm is a function that produces a classifier, given a training data

set and a set of hyperparameters: f̂(D,θ) = ŷ(x) : Kd·N ⇒ (Kd ⇒ Ω). The hyperpa-

rameters θ, also known as learning parameters, are settings used to govern the learning

algorithm, for instance, regularization hyperparameters in linear regression, the learning

rate or momentum parameters in artificial neural network models or the {C, γ} learn-

ing parameters used in Gaussian support vector machines (SVMs). Each classification

algorithm entails a search through an implicit or explicit hypothesis space to find the

preferred model structure and/or parameters [75]. For classification problems, we con-

sider classification algorithms that predict probability distributions or confidences, also

known as as discriminant values or support values.

2.2 Model Selection

Model selection refers to the identification of a suitable algorithm and/or set of

hyperparameters for a particular data set. We refer to a model as any function that

produces a classifier when evaluated on a given labeled training data set. Typically,

a model is the combination of a learning algorithm (e.g. SVM or AdaBoosted decision

stumps) and an associated set of hyperparameters (also known as learning parameters

or metaparameters) such as {γ,C} for Gaussian SVM or {number of iterations} for

AdaBoosted decision stumps. Parameters, as opposed to hyperparameters, refer to

data components of the trained classifier rather than the mechanism used to obtain it.

If the algorithm is selected before seeing any labeled training data, then model selection

simply refers to the search over learning hyperparameters for the given classification

algorithm. Search techniques such as grid search or binary search are often used to

identify an appropriate set of hyperparameters, given an algorithm and a labeled training
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set. While parametric model selection methods have been proposed, such as minimum

description length [47], it is more common to estimate the performance of a model by

evaluation on validation data over many resamplings [50].

2.3 Model Combination

Classifier combination techniques, also known as model combination techniques,

ensemble methods, committees or opinion pools, combine predictions from multiple

models in order to make the final prediction. The underlying classifiers are commonly

referred to as the base classifiers. Formally, the prediction is taken to be a function

of the base classifier predictions ŷ(x) = f(ŷ1(x), ..., ŷL(x)), where ŷ(x) is the ensemble

prediction, ŷi(x) is the prediction from the ith base classifier (out of L base classifiers),

and f(.) is the combination function. Multiple classifier systems can also allow the

combination function to depend on the input vector f(.) = f(ŷ1(x), ..., ŷL(x),x), though

this technique is less common.

The base classifiers ŷi, i = 1..L may be constructed to each solve the same prob-

lem (commensurate models), or each base classifier may be trained to solve a different

subproblem (complementary models). In bagging, for example, each of the base clas-

sifiers is trained on a resampling of the original problem (which is an approximation

or perturbation of the original problem), and the base classifiers are combined using

voting [11]. In boosting and error-correcting output coding, different subproblems are

constructed to be solved by the different base classifiers; when the base classifiers solve

different problems, the combination function is typically more complex than averaging

or voting. In this thesis, Chapter 3 focuses on a method that combines many com-

mensurate models. Chapters 4-5 focus on methods that split multiclass classification

problems into a number of disjoint complementary models.
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2.3.1 Commensurate Model Combination

In commensurate model combination, each classifier is an approximation of the

same (target) function. In Chapter 3, we use many classification algorithms and hyper-

parameter settings to approximate the target function, then combine the models using a

linear regression technique. This section provides further background in commensurate

model combination.

2.3.1.1 Generating Base Classifiers

There are many techniques for generating different base models for classification

or usage in an ensemble. A classification algorithm A takes a dataset D and produces

a classifier C. Therefore, perturbations can be made to either the algorithm A or the

dataset D in order to obtain different classifiers. A central issue in generating dif-

ferent base classifiers is algorithm stability; an algorithm is said to be unstable if a

minor change to A or D produces a large change in the resulting classifier C [11]. Un-

stable classification algorithms are vital for obtaining improved ensembles under some

types of perturbations. In this thesis, we mainly focus on the usage of different algo-

rithms and associated hyperparameters to generate diversity among the base classifiers.

Furthermore, base classification algorithms may include one or more of the following

approaches (for example, a random forest classifier can be used as a base classifier).

Many publications have focused on isolating and evaluating the particular dimensions

for perturbation described below; an important line of future research would be to com-

bine many of these types of perturbations to attempt to maximize diversity and thus

classification performance.

Modifying the Training Data Set Modification of the original training data

set D to produce a perturbed dataset D′ typically produces a different classifier. The

main techniques for producing a perturbed dataset are to: (1) subsample examples, (2)
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subsample feature sets and (3) generate novel data.

Subsampling When there is enough data so that classifiers can be trained on

disjoint subsets of the training data set, the resulting classifiers can exhibit reduced

correlation and thus increased predictive performance [19].

Resampling Another method is to train several classifiers using a single classi-

fication algorithm on bootstrap samples of the original dataset; this technique is called

bagging (for bootstrap aggregating) [11]. Friedman and Popescu [37] point out that

there is nothing inherently advantageous about the bootstrap; different problems will

benefit from different resampling strategies in general. Boosting assigns higher weight

to difficult examples to produce classifiers that correctly label the difficult examples.

Different Feature Sets For each classifier, a random subset of features from

the original problem are selected. This technique is known as the random subspace

method, and has been explored with decision tree classifiers [52]. This technique fails

for problems in which all features are required to attain sufficiently high classification

accuracy [61].

Generating Novel Data A new dataset can be constructed by synthesizing

novel data based on the original data distribution. For example, in DECORATE, novel

data is generated and different classifiers are trained using that data with different

label assignments [72]. This technique can also be used productively in semi-supervised

methods, in which there is ample unlabeled data; in this case, no data synthesis step is

necessary.

Adding Noise Similarly, changing the class labels assigned to examples is one

way of producing different classifiers. For some datasets and classification algorithms,

this technique has shown to improve performance [14, 13].

Modifying the Classification Algorithm Aside from modifying the training

data set to produce different classifiers, it is also possible to modify the algorithm used

to train the classifier.
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Different Learning Algorithms Different learning algorithms entail differ-

ent inductive biases [75]; by using different learning algorithms, different classifiers are

obtained.

Different Learning Parameters Many classification algorithms have hyper-

parameters that must be tuned in order to match properties of the dataset at hand.

Using different settings for these hyperparameters generally results in the production

of different classifiers. For example, backpropagation neural networks can have varying

momentum, learning rates, hidden neurons, hidden layers, etc.

Randomized Algorithms Some classification algorithms rely on internal ran-

domization to produce individual classifiers. For example, random forests [14] construct

each classifier by sampling i.i.d. from a specified distribution over decision tree classi-

fiers. This randomization increases the diversity of the classifiers without significantly

decreasing their accuracy, and subsequently, the ensemble has improved classification

accuracy.

Perturbation of the Loss Function When the loss function for a classifica-

tion algorithm is perturbed, the result is a novel classification algorithm. Freidman and

Popescu [37] discuss perturbation of the loss function to produce diverse classifiers.

2.3.1.2 Advantages of Commensurate Model Combination

In 2000, Dietterich [26] identified three distinct problems that can be overcome

by classifier combination:

(1) The statistical problem: Several classifiers may yield the same validation set

accuracy. Combining predictions from such classifiers produces smoothing in

the output space, and reduces the risk of choosing a single poor classifier.

(2) The computational problem: Many classification algorithms entail a search that

is susceptible to local optima. For example, optimal training is known to be
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NP-hard for neural networks [57] and decision trees [8]; therefore suboptimal

techniques are typically used instead (e.g. greedy search for decision trees or

gradient descent for neural networks). By combining the results of multiple

runs, the ensemble may produce a better prediction than any of the constituent

classifiers.

(3) The representational problem: The combination of classifiers may produce a

decision boundary that is impossible to represent with any single base classifier

(for instance, consider that two right triangular decision boundaries may be

combined to produce a single square decision boundary). Many modern classifi-

cation algorithms are known to be universal, i.e. able to construct an arbitrary

set of decision boundaries. For example, a neural network with a single hidden

layer and a sufficient number of hidden neurons can represent any continuous

function [53]. However, when trained on a finite amount of training data, clas-

sification algorithms are only capable of exploring a finite region of the classifier

space. It is possible to expand the hypothesis space by asserting that the final

decision boundary is a combination of individual classifier boundaries.

Techniques for combining classifier outputs range from simple (e.g. majority vot-

ing) to complex (e.g. nonlinear combination functions). For any commensurate multiple

classifier technique to succeed, the base classifiers must exhibit nonrandom accuracy and

some degree of independence.

2.3.1.3 Independent Classifier Combination

When classification algorithms are applied to overlapping (or equal) data samples

or share similar inductive biases, the resulting classifiers will probably make similar pre-

dictions. Nevertheless, it is useful to analyze the simpler case of independent classifiers

in order to understand the mechanism and benefits of classifier combination [63, 92].
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When classifiers have identical accuracy and make independent predictions on a binary

classification problem, then the probability of a correct classification is given by the

probability mass function of the binomial distribution [48]1 :

Pmaj =
L∑

k=bL/2c+1

(
L

k

)
pk(1− p)L−k (2.1)

Table 2.1 shows an example of the performance of ensembles as a function of

base classifier accuracy and number of members in the group. These curves are also

depicted in Figure 2.1 for better-than-random classifiers. The behavior as the number

of classifiers increases can be characterized based on the individual classifier accuracy

[21] (here we assume a Bayes optimal rate of 1.0):

(1) p > 0.5 When each classifier predicts the correct class with probability greater

than 0.5, then as classifiers are added, the ensemble accuracy increases mono-

tonically. Furthermore, as the number of classifiers approaches infinity, the

accuracy of the ensemble approaches 1.

(2) p < 0.5 When each classifier predicts the correct class with probability less than

0.5, then as classifiers are added, the ensemble accuracy decreases monotonically.

Furthermore, as the number of classifiers approaches infinity, the accuracy of

the ensemble approaches 0.

(3) p = 0.5 When each classifier predicts the correct class with probability equal to

0.5, then as classifiers are added, the ensemble accuracy remains at 0.5.

For instance, in Table 2.1, the row for which p = 0.8 shows that after adding just 8 more

independent classifiers, the accuracy of the group under majority vote increases to 0.98,

a relative accuracy gain of more than 20%. It is possible to improve upon this benefit

by constructing negatively correlated classifiers rather than uncorrelated classifiers [69].
1 Here we assume a strict majority is necessary for a correct group prediction; ties are considered an

error.
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However, classifiers will typically be at least somewhat correlated, and the benefits will

fall short of those identified in the table. It is also possible to characterize the behavior

of independent classifiers for multiclass classification problems. In this case, sums are

made over appropriate subsets of the multinomial probability mass function.

Table 2.1: Ensemble accuracy is depicted for a given number of base classifiers L, and
individual accuracy p.

p L = 1 L = 3 L = 5 L = 7 L = 9
0.51 0.510 0.515 0.519 0.522 0.525
0.6 0.600 0.648 0.683 0.710 0.733
0.7 0.700 0.784 0.837 0.874 0.901
0.8 0.800 0.896 0.942 0.967 0.980
0.4 0.400 0.352 0.317 0.290 0.267

p=0.6 p=0.7 p=0.8 p=0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L (number of classifiers)
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Figure 2.1: Ensemble accuracy is depicted as a function of the number of independent
classifiers, for a specified individual classifier accuracy.

2.3.1.4 Dependent Classifier Combination

When classifiers are trained using overlapping data or are produced by algorithms

that share a similar inductive bias, the classifiers are likely to be at least somewhat
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correlated. Clemen and Winkler [20] and Jacobs [58] show that there is an upper limit

on the precision of information that can be obtained by consulting dependent experts. In

particular, they show that m dependent experts are worth the same as k independent

experts, where k <= m. This result is obtained under the assumption that experts

provide unbiased point estimates for a regression variable, and that the joint probability

of the experts’ errors is normally distribution with mean zero and covariance matrix Σ.

The combiner function is Bayes’ rule, treating the expert predictions as observations in a

new space (see Section 2.3.1.5). Therefore, combining dependent classifiers can still lead

to benefits, though not as significant as would be attained by combining independent

classifiers.

2.3.1.5 Probabilistic Model Combination

Early work on model combination in the statistics community focused on pre-

dictions from human experts, so many of the ideas in this literature are referred to as

expert combination or opinion pooling, and the combiner function is called the decision

maker. Preliminary work involved the search for a combination technique that satis-

fied normative (axiomatic) constraints, which are intuitive properties one might expect

to find in a combination technique [79]. However, when just a few seemingly reason-

able axioms are asserted, this search can be shown to be unsatisfiable, suffering from

impossibility theorems in the same vein as Arrow’s impossibility theorem [4]. Further

work showed the advantage of viewing the set of individual predictions as data, and

many authors have advocated the usage of Bayes’ theorem on the meta-level data in

the so-called supra-Bayesian framework [76, 58]. A few authors have investigated par-

ticular forms for the likelihood function, with hyperparameters that are inferred from

data [46, 60]; however, the computational demands of these techniques are large and

grow rapidly with the addition of classifiers. Before discussing probabilistic models, we

address a common misconception that Bayesian model averaging behaves as a model
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combination technique.

Bayesian Model Averaging is not Model Combination Bayesian model

averaging marginalizes over different models

p(y|D) =
L∑
k=1

p(y|Mk,D)p(Mk|D)

That is, classifier predictions are weighted by the probability that the model is correct,

given the dataset. This technique appears to be a natural method for combining models,

and some have been tempted to treat it as such [28]. However, as is pointed out [74, 46],

Bayesian model averaging is not model combination, but rather a form of soft model

selection. As more data is observed, Bayesian model averaging will assign more and more

probability to the most probable model, and as the amount of data tends to infinity,

weights for all other models approach zero. Bayesian marginalization is appropriate

when the base classifiers Mi are mutually exclusive and exhaustive and the true data

generating model is one of the models under consideration. In the overproduce-and-

choose paradigm, neither of these requirements will generally be true.

Linear Opinion Pools A natural way of combining expert opinions is with

a linear combination ŷ(x) =
∑L

k=1 αkyk(x), called a linear opinion pool. Typically

the weight for an expert is chosen as a function of his/her (perceived) accuracy for

the particular domain. In 1981, McConway [71] showed that the linear opinion pool

is the only combination scheme that satisfies the marginalization property. Consider

the the probability distribution for a number of output variables y ∈ Rm. Combina-

tion schemes that satisfy the marginalization property produce the same group decision

whether the marginal predictions are combined or the joint predictions are combined

then marginalized over. Marginalization is an intuitive property, however, there are two

main problems. First, there is no foundational approach for how the weights should be

allocated. Many studies have been devoted to find theoretically and empirically moti-

vated means for choosing expert weights [44], but this is still an open problem. Second,



16

axiomatic approaches have been criticized for their failure on particular straightfor-

ward examples. Lindley shows, in particular, that the marginalization property ignores

important information [68]. Another argument for linear opinion pools was made by

Genest and Schervish [45], who showed that the supra-Bayesian paradigm reduces to a

linear opinion pool when the decision maker asserts a value only for the mean of the

marginal distribution of expert predictions.

Supra-Bayesian Methods In his 1971 thesis, Morris showed that the appro-

priate way to combine predictions from multiple experts under uncertainty is to treat

the predictions as data in a new feature space, and to use Bayes’ rule to update the deci-

sion maker’s prior distribution [76]. This technique was later referred to as the modeling

approach, since it is necessary to model the joint predictive distribution of all experts,

and later called the supra-Bayesian approach [58]. In the supra-Bayesian framework,

predictions from base classifiers are treated as data by the meta-classifier, and Bayes’

rule is used to compute the ensemble decision. The ensemble decision is therefore

p(y|H,P1, ..., Pm) ∝ p(P1, ..., Pm|y,H)p(y|H) (2.2)

where Pi = pi(y|H) is the ith classifier’s probability distribution for y when its knowl-

edge is H. That is, the posterior probability distribution for the class label given the

combiner’s knowledge H and the predictions of each base model p(y|H,P1, ..., Pm) is

proportional to the product of the likelihood p(P1, ..., Pm|y,H) of the experts’ decisions

given the true class, the combiner’s knowledge H and the prior distribution p(y|H) of

the combiner.

The main problem with supra-Bayesian methods was pointed out by Morris [77]

and Jacobs [58]; the difficulty is in specifying the likelihood function for the experts’

opinions given the data; the likelihood function must account for individual classifier cal-

ibration as well as classifier correlation. Furthermore, evaluating the likelihood function

can be computationally prohibitive since it is a high-dimensional distribution. Some re-
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cent research has focused on specifying a parametric model for the likelihood function,

and learning it by observing expert behavior on validation data. The discriminative

analog of the supra-Bayesian method is stacked generalization, discussed in Section

2.3.1.6.

Graphical Models Graphical models represent the relationships between in-

puts, classifiers and predictions using a probabilistic model described by a graph.

Garg et al. describe a simple graphical model for performing classifier combination

[43]. The classifiers are assumed to be conditionally independent of one another given

the ensemble classification. The Bayesian network is a tree of depth 2, with the root

being the ensemble classification and the leaves being the individual classifiers.

Ghahramani and Kim [46] describe a graphical model for combining classifiers,

called Bayesian classifier combination (BCC). They start with a simple graphical model

which assumes classifiers are independent (IBCC) and show how it can be embellished to

account for dependencies between classifiers. They describe a model called the enhanced

Bayesian classifier combination model, which uses separate graphs for easy and difficult

data points. A Markov network is added in the dependent BCC model to model the

correlations between classifiers directly. Finally, they combine dependent and enhanced

models to obtain a Markov network with the easy/difficult graph separation. Empirical

results are demonstrated for satellite, UCI digit and DNA datasets. The advantage of

BCC is shown to be greater when combining multiple different base classifiers trained on

the entire training set rather than combining different base classifiers trained on disjoint

subsets of the training set.

2.3.1.6 Stacked Generalization

In 1992, Wolpert introduced a general multiple classifier technique called stacked

generalization [101], known informally as stacking. The predictions of individual clas-

sifiers are viewed as data in a new meta-feature space, and any classification algorithm
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can be trained on this new problem. Wolpert also points out that the meta-feature space

can be augmented with the original inputs or with other relevant measures. Wolpert re-

stricted his focus to regression problems, but Ting and Witten later demonstrated that

stacked generalization can be used for classification problems as well, when using prob-

abilistic predictions (confidence-levels) outputted by the classifiers [95].2 Since stacked

generalization allows the usage of any method as the meta-classifier, it is possible to

simulate many discriminative multiple classifier techniques using stacked generalization,

including model selection, majority voting, weighted averaging and nonlinear combina-

tion functions [101, 91]; in fact, Wolpert refers to model selection by cross-validation as

“just a (relatively uninteresting) special case of stacked generalization, corresponding

to an extraordinarily dumb level 1 generalizer”. Wolpert also showed that any classifier

combination technique can use embedded cross-validation to efficiently re-use all train-

ing data as validation data for training the combiner function. In this thesis, we refer

to stacked generalization as any discriminative technique that views the predictions of

base classifiers as data in a new feature space. Below, we formalize the idea of stacked

generalization.

Given a set of L classifiers ŷi(x|θ), i = 1..L, a meta-level dataset3 is constructed

by aggregating the predictions of each classifier on a validation dataset Dval, and com-

bining them with the known labels. Table 2.2 shows an example of a meta-level dataset.

The meta-level dataset is used as input to the combiner classification algorithm. In or-

der to make a prediction on a new data point, each classifier makes its prediction, and

these predictions are input to the combiner function. The original problem of mapping

Kd ⇒ Ω is therefore passed through an intermediate space with dimension equal to the

number of classifiers Kd ⇒ KL ⇒ Ω.
2 Ting and Witten [95] mistakenly report that Wolpert’s original formulation addressed a classifica-

tion task rather than a regression task.
3 Wolpert referred to this as the level-1 dataset to emphasize that stacked generalization can be

extended to higher levels
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Table 2.2: A meta-level stacking dataset for three classes, two base classifiers and five
examples, using Wolpert’s model [101].

ŷ0 ŷ1 y

ω1 ω1 c1

ω1 ω1 c1

ω2 ω3 c3

ω1 ω1 c1
ω1 ω1 c2

Ting and Witten [95] addressed the classification problem, using probability dis-

tributions as inputs to the combiner function rather than class predictions. In this case,

each classifier outputs normalized discriminant values for each of the possible classes.

The set of discriminant values is passed as an input vector to the combiner function,

which produces the final ensemble prediction. In Ting and Witten’s stacked gener-

alization representation, the original problem of mapping Kd ⇒ Ω becomes the new

problem: Kd ⇒ KL·c ⇒ Ω. Table 2.3 shows an example of stacking using Ting and

Witten’s representation of the meta-feature space. Ting and Witten also pointed out

the need for regularization for the combiner function. They recommend using a simple

combiner function, such as multi-response linear regression (MLR) in order to prevent

overfitting. MLR trains a linear model for each of the classes, and at prediction time

chooses the class for which the linear model outputs the highest value.

Experiments in Stacked Generalization In this section, we summarize

some prominent experiments with stacked generalization.

Wolpert, 1992 [101] When Wolpert introduced stacked generalization in

1992, he investigated a series of toy problems for a 1-dimensional piecewise linear func-

tion. This toy problem used a single classifier, and included the original features in the

meta-feature space, so that the meta-feature space was 2-dimensional. Wolpert’s second

numerical experiment involved the NETTalk text-to-speech program. The inputs are 7
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Table 2.3: A meta-level stacking dataset for three classes, two base classifiers and five
examples, using Ting and Witten’s model [95]. ωi refers to the ith discriminant value,
ŷi is the ith model and ci is the predicted class. A single row (e.g. shown in bold)
corresponds to a meta-data point.

ŷ0 ŷ1

ω0 ω1 ω2 ω0 ω1 ω2 yi
0.8 0.1 0.1 0.6 0.3 0.3 c1

0.9 0.0 0.1 0.7 0.2 0.1 c1

0.2 0.7 0.1 0.0 0.1 0.9 c3

0.7 0.1 0.2 0.7 0.2 0.1 c1
0.9 0.1 0.0 0.6 0.4 0.0 c2

letters, and the output is a 21-dimensional output characterising an English phoneme.

The stacked generalization experiment combined three classifiers that each made predic-

tions for a single letter. Wolpert points out that the purpose of the experiment wasn’t

to improve on the performance of existing methods, but to identify whether stacked

generalization could productively combine separate pieces of incomplete information.

Breiman, 1996 Breiman investigated the Housing and Ozone datasets in his

1996 paper [12]. 50 CARTTM(Classification And Regression Trees)regression trees were

used as the base classifiers in the first experiment. CART pruning yields subtrees, so

each of the 50 trees were nested subtrees. When using a regularized error function

for the combiner, Breiman found that a small number of combiner values had nonzero

weights; only a small number of models were being combined in the stacked regression.

Breiman also recommends using ridge regression to more efficiently regularize.

Ting and Witten, 1999 [95] Ting and Witten investigate 10 problems:

Led24, Waveform, Horse, Credit, Vowel, Euthyroid, Splice, Abalone, Nettalk(s) and

Coding. They use C4.5, NB (a re-implementation of Naive Bayes) and IB1, a vari-

ant of the K-Nearest Neighbor algorithm as the base learners. They used C4.5, NB,

IB1 and MLR as combiner functions. No model selection is done at the base or meta-

levels. They show that MLR using confidence-level predictions beats model selection
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by cross validation in all datasets, significant at over two standard errors. They also

show that stacked generalization with MLR has eight significant wins and two losses

(with insignificant differences) against majority vote. They also mention employing a

multilayer perceptron as the combiner function, and report that it had the same error

rate as MLR while taking approximately 1700 times longer to train.

2.3.1.7 Bi-Level Stacking

Schaffer [87] extended stacked generalization to bi-level stacking in which the

meta-classifier is trained on a feature set that includes classifier predictions as well as

the original input features. This technique has been re-invented a few times in the

machine learning community; Chan and Stolfo [19] described this model as the class-

attribute combiner in their study of scalability for classifier combination techniques. In

2006, Torres-Sospedra et al. called this technique stacked generalization plus in their

comparative study of combination techniques [96]. Bi-level stacking has the potential

to address the tradeoff between classifier selection and classifier combination. Since the

combiner function has access to the original inputs, it can select the classifier (or a

combination of classifiers) known to be more accurate in that region of the input space.

Poor results have been reported for bi-level stacking in the above references, which may

be due to the following reasons:

• Insufficient search for an appropriate combiner function, including parameter

tuning as well as algorithm tuning. For example, Schaffer’s original investigation

of bi-level stacking combined three base level classifiers with a decision tree, rule

set induction or a neural network; no parameter tuning was performed for the

neural network (including a static stopping criterion of 1000 epochs).

• Increased dimension of the meta-feature space. When using probability predic-

tions from base classifiers as well as the original input features, the meta-feature
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space has dimension L ·c+d, which may lead to a sparsely-populated meta-data

space in which it is easy to overfit.

2.3.1.8 Theory for Classifier Combination

In a 2001 technical report, Breiman says (in a section titled “My Kingdom for

Some Good Theoretical Explanations”) [15] “The area of ensemble algorithms is filled

with excellent empirical results, but the understanding of how they work is a scarce

commodity.” In the statistics literature, axiomatic approaches are theoretically moti-

vated, but proposed axioms inevitably entail stronger and more restrictive implications

than intended, and tend to exhibit counterintuitive behavior on simple examples [100].

Winkler [100] says “The problem I have with the axiomatic approach (and this does

not apply to Morris) is that it is sometimes done in the spirit of a search for a single,

all-purpose, “objective” combining procedure. Such a search is futile...” The model-

ing approach (also known as the supra-Bayesian approach) in which expert predictions

are taken as data and combined under Bayes’ rule is theoretically well-founded, but to

apply this approach in practice requires modeling a high-dimensional joint likelihood

distribution over expert predictions which is often difficult or impossible [58]. In this

section, we identify other proposed theoretical models for explaining ensemble behavior.

Chebychev’s Inequality Breiman gives a bound for the generalization error

of random forests in [14] based on Chebychev’s inequality. The margin function for a

random forest is defined to be m(x, y) = pΘ(y(x,Θ) = y) − maxj 6=y pΘ(h(x,Θ) = j),

where Θ is drawn i.i.d. from a probability distribution used to guide induction of the

decision trees. Informally, the margin function measures the expectation value of how

many more votes are cast for the correct class than for the next highest voted class.

By defining the strength of a set of classifiers to be the expectation value of its margin

function s = ED[m(x, y)], it is possible to put an upper bound on the generalization

error of the random forest in terms of the strength and correlation of the classifiers.
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Chebyshev’s inequality is p(|x− µ| ≥ kσ) ≤ 1
k2 , where σ2 is the finite sample variance.

Informally, this inequality states that in any probability distribution, nearly all values

are close to the mean. The generalization error of a voted ensemble is given as the

probability that the margin function is negative: E∗ = pD(m(x, y) < 0). Therefore,

Chebyshev’s inequality bounds the ensemble error as E∗ ≤ σm
s2

, where σm is the variance

of the margin function. Breiman goes on to show that for random forests, or indeed any

set of classifiers whose construction is guided by i.i.d. random sampling, the variance

of the margin function can be written as σm = ρ̄(1− s2), where ρ̄ is the mean value of

the classifier correlation. Therefore an upper bound for the generalization error is given

by E∗ ≤ ρ̄(1− s2)/s2. Breiman points out that this bound is likely to be a loose upper

bound, but that it explains the success of particular types of ensembles and motivates

the search for accurate and diverse classifiers.

Bias-Variance-Covariance Decomposition of Ensemble Error The error

of a single classifier for a regression problem can be decomposed into contributions from

bias and variance [50]. Some work has been done to generalize this result to classification

problems [59]. The error in a single classifier prediction under the squared error loss can

be written as E(x) = σ2
ε + [Eŷ(x)− ŷ(x)]2 +E[ŷ(x)−E[ŷ(x)]]2. The first term on the

right hand side is the irreducible (Bayes optimal) error. The second term is the square

of the bias and the final term is the variance. In the regression case for ensembles, a

decomposition in terms of the average bias, average variance and average covariance is

given as [98]: E∗ = E[ ¯var(x)/L+ (1− 1/L) ¯cov(x) + ¯bias(x)2] + σε. A similar result is

shown for classifier ensembles. These results show the tradeoff between bias, variance

and covariance in the ensemble setting.

Added Error of the Ensemble Tumer and Ghosh [97] describe a mathemat-

ical framework that gives the relationship between classifier correlation and ensemble

error for the average combiner by approximating the decision boundaries as linear near

the Bayes optimal decision boundary. They show that when the classifiers are uncor-
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related, the reducible error is reduced by a factor of L; that is, Eens = 1
LEk. For the

case of correlated classifiers, a similar analysis shows that Eens = 1+ρ(L−1)
L Ek, where ρ̄

is the average classifier correlation.

Diversity Measures One potential route to understanding ensemble behavior

is by identification of an appropriate diversity measure. By combining a formal definition

of diversity with a model for the benefit due to diversity, we may obtain an understand-

ing of ensemble behavior. The above theoretical models have depicted the ensemble

accuracy in terms of the classifier correlation; however, recent work has searched for

other diversity measures with desirable properties. Diversity measures can be roughly

categorized as either pairwise or non-pairwise measures. For pairwise measures, the

pairwise diversity is averaged across all L(L− 1)/2 pairs of classifiers in the ensemble.

A simple pairwise measure known as the disagreement measure is the probability that

two classifiers disagree on their decisions

d = p(yi− + yj+) + p(yi+ + yj−) (2.3)

where yi− indicates that classifier i is incorrect and yi+ indicates that classifier i is

correct. Nonpairwise measures include the entropy measure, Kohavi-Wolpert variance,

measure of interrater agreement, measure of difficulty, generalized diversity, coincident

failure diversity, as well as others [62]. The entropy measure estimates the amount

of disagreement in the votes, with a maximum when the votes are very nearly split.

The Kohavi-Wolpert variance is based on an error decomposition formula for a single

classifier, and has been shown to differ from the averaged disagreement measure by a

coefficient [62].

2.3.1.9 Ensemble Pruning

Ensemble pruning is the process of selecting a subset of classifiers to participate in

the group decision [108, 107]. There are two main reasons to prune ensembles: to reduce
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the computational requirements (both storage space and prediction time) and to increase

performance. However, a complete search through all possible subsets of classifiers is

prohibitive; if there are L classifiers, then there are
∑L

k=1

(
L
k

)
subsets of classifiers. For

example, for ensembles with 10 classifiers, there are 1023 possible subsets, but for 100

classifiers, there are over 1030 classifier subsets. Therefore suboptimal search techniques

are typically employed. Flexible combination techniques, such as stacked generalization

(described in Section 2.3.1.6) with a trainable nonlinear combiner function have the

potential to learn which classifiers are most appropriate to combine for a problem, but

are prone to overfitting. Ensemble pruning, on the other hand, is a discrete technique

that attempts to discard as many irrelevant or redundant classifiers as possible. The

algorithms under investigation in Chapter 3 are an example of ensemble pruning. Many

other techniques have been proposed for pruning classifier ensembles; we discuss the

most prominent techniques below.

Generalized Ensemble Method Many of the early ensemble approaches,

and ensemble pruning approaches, come from the neural network ensemble literature.

Perrone and Cooper [80] studied the case of neural networks for regression, noting that in

the regression case it is possible to derive a closed form solution for weights in a weighted

combination model. They also address the issue of network pruning; the weights for a

linear combination of outputs is computed using the method of Lagrange multipliers to

be αi =
∑

j C
−1
ij∑

k

∑
j C

−1
kj

, where Cij is the symmetric correlation matrix E[fi(x)fj(x)]. The

authors point out that linearly dependent rows or columns indicate dependent classifiers,

and they recommend subsampling the population of neural networks to assure that C

has full rank.

Ensemble Pruning by Semidefinite Programming A recent proposed

technique for ensemble pruning reformulates the problem as a semidefinite program-
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ming problem [107], where the objective function is

min(xTGx)

s.t.
∑
i

xi = k

xi ∈ {0, 1}

The matrix G is constructed to reflect classifier errors on the diagonal and correlation

off the diagonal. An ad hoc scheme for measuring the correlation of classifiers on

validation data is used; the authors report that they tried several ad hoc measures

and arrived at similar results. The authors used this technique to prune ensembles

produced by Adaboost, and report that they are able to maintain the same accuracy

with a dramatic reduction in the number of classifiers, in some cases obtaining improved

predictive accuracy.

Overproduce and Choose All ensemble pruning techniques overproduce a

set of classifiers and choose which will participate in the ensemble decision. However, in

the literature, the overproduce and choose paradigm typically refers to a set of heteroge-

neous classifiers (different classifier types built from a variety of learning algorithms and

learning parameters). The idea is that usage of a wide variety of algorithms will increase

the probability that there will be good models that are amenable to combination, and

diversity can be fostered by using different algorithms rather than subsampling from

the dataset.

In 2000, Sharkey and Sharkey [93] reviewed work that focused on constructing

many classifiers, then trying to identify the most appropriate subset to participate in the

ensemble decision [80, 78, 49], referring to them collectively as test and select methods.

This idea was further refined and generalized by Roli et al. in 2001 [86], and dubbed

the overproduce and choose paradigm. In the overproduce phase, many classifiers are

trained on the training data, using different algorithms, learning parameters, feature

subsets or resamplings of the dataset. Next, classifiers are selected in order to optimize
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the accuracy of the ensemble; this requires choosing classifiers that are individually

accurate, but also different from one another. Roli et al. categorize selection rules as

heuristics, diversity measures, clustering and search methods. By analogy with feature

selection, we identify the first three techniques as filter methods, since they can be

computed without evaluation of the ensemble. Search methods, on the other hand,

are similar to wrapper methods, since estimates of the ensemble performance are used

to guide the search, and the search technique can be “wrapped around” any combiner

function.

Wrapper Methods for Ensemble Selection Wrapper methods for ensem-

ble selection evaluate classifier subsets together with the combiner function and overall

performance metric in order to choose classifier subsets. The wrapper method can be

contrasted with the filter method, which uses a statistical measure in order to perform

subset selection. This definition of filter and wrapper methods can be applied to fea-

ture selection, ensemble selection and meta-feature selection. Ensemble Selection from

Libraries of Models [17] is a wrapper method for ensemble selection that uses a forward

stepwise approach to construct the ensemble from a library of models. Classifiers are

selected with replacement, which produces a weighting of the final linear combination

function. Since this is a wrapper method, it is possible to use any metric to tune the

ensemble. Other stepwise selection procedures are possible such as backward selection,

hillclimbing and best-first approaches [61].

2.3.1.10 No-Free-Lunch in Multiple Classifier Systems

The No-Free-Lunch Theorem [102] states that any two machine learning algo-

rithms will have identical performance averaged across all problems. We may be tempted

to assume that this theorem merely applies to base-level classifiers, and that model se-

lection or classifier combination methods will be able to circumvent the No-Free-Lunch

Theorem. However, as described by Schaffer [88], meta-learning methods (including
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cross-validation) are subject to the same kind of bias as base-level classifiers. When

available, we should use domain-specific knowledge from a problem to identify a suit-

able algorithm and model structure, including its inductive bias. When domain-specific

knowledge is unavailable, we must acknowledge that the implicit or explicit biases en-

tailed by our base- or meta-learning algorithms may be a poor match for the problem

at hand.

The previously discussed methodologies focus on combining commensurate clas-

sifiers which each estimate the same (target) function. In the next section, we discuss

methods for constructing and combining classifiers that each estimate different func-

tions.

2.3.2 Complementary Model Combination

An alternative to commensurate model combination is to combine models that

solve different parts of the overall problem. This includes the separate paradigms of

sensor fusion [3], classifier selection [62] (including mixture of experts techniques) and

techniques that reduce a multiclass problem to a set of binary classification problems.

In these cases, the classifiers are no longer estimating the same target function, but are

providing complementary components to the whole solution. In this thesis, we study

methods for solving multiclass classification problems by reducing them to a set of

binary classification problems (Chapters 4-5). In this section, we provide introductory

and background information on various techniques that are used to solve multiclass

classification problems with binary classifiers.

2.3.2.1 One-vs-All

One of the simplest and most widely used techniques for reducing a multiclass

problem to a set of binary subproblems is known as the one-vs-all reduction (OVA),

also known as unordered class binarization [40] or one-vs-rest (or 1vr) [105]. Using
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Figure 2.2: Illustration of an A-vs-BC decision boundary in a 2D, 3-class example of
the One-vs-All reduction.

the one-vs-all reduction, a k-class classification problem is decomposed into k binary

classification subproblems, one for each class (see Figure 2.2). In the ith subproblem,

the classifier is trained to distinguish whether the instance belongs to class i or not. At

prediction time, the classifier with the highest output is chosen (alternatively, voting or

Hamming decoding can be used, as in error-correcting output coding). There is some

disagreement in the literature about the terminology for the one-vs-all reduction; Rifkin

and Klautau [85] use the term one-vs-all to indicate winner-take-all with continuous

outputs (i.e. choosing the classifier with the maximum output); other research such

as Beygelzimer et al. [5] refer to one-vs-all as it is used with Hamming decoding (e.g.

discrete outputs as in error-correcting output coding [27], and randomizing over the

selected classes). Here, we use the term OVA to refer to continuous winner-take-all one-

vs-all and we refer to the discrete version as OVA with Hamming decoding. Rifkin and

Klautau studied the one-vs-all technique, and compared it to other methods for reducing

multiclass to binary and to other SVM techniques that provide direct optimization on

the entire multiclass problem [85]. Their main thesis is that it is essential to perform

model selection and that under appropriate model selection, one-vs-all tends to perform

as accurately as other multiclass SVM methods. Rifkin and Klautau’s technique for

model selection is to choose one set of hyperparameters for all subproblems, rather
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than trying to optimize each subproblem independently or trying to optimize differing

hyperparameters for all subproblems jointly. Rifkin and Klautau don’t explicitly state

that they use the shared-model paradigm for model selection, but it is implied since one

set of regularization hyperparameters is reported for each multiclass problem.

2.3.2.2 All-Pairs

Figure 2.3: Illustration of an A-C decision boundary in a 2D, 3-class example of the
All-Pairs reduction.

In the all-pairs reduction, also known as pairwise classification[51], all-vs-all (or

AVA)[85], round-robin classification[40] and 1-against-1 (or 11)[105]), a k-class classi-

fication problem is decomposed into k(k−1)
2 problems, one for each pair of classes (see

Figure 2.3). At prediction time, each binary classifier votes for one class, and the class

with the most votes is selected as the multiclass prediction. Note that in contrast to

continuous winner-take-all one-vs-all, the original all-pairs methodology ignores pre-

dicted probabilities or confidence predictions from each binary classifier, instead using

only a discrete vote from each, though it is possible to use the all-pairs encoding with

a decoding function other than Hamming decoding in Loss Based Decoding. Friedman

shows that Bayes optimal binary classifiers combine to produce a Bayes optimal multi-

class classifier, and therefore each binary subproblem can be solved independently and

as accurately as possible [38].
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The Bayes optimal decision is given by

ŷ(x) = argmax
k∈K

p(ω = k|ω ∈ K,x)

where K is the set of possible labels, ω is the true label, x is the input feature vector

and ŷ is the predicted label. This is equivalent to

ŷ(x) = argmax
k∈K

∑
i∈K

1(
pk

pk + pi
>

pi
pk + pi

)

where 1(x) = 1 if x is true and 0 otherwise. This reduces to:

ŷ(x) = argmax
k∈K

∑
i∈K

1(p(ω = k|ω ∈ {i, k},x) > p(ω = i|ω ∈ {i, k},x))

Therefore, given reliable p(ω = k|ω ∈ {i, k},x), binary reduction under the All-Pairs re-

duction is equivalent to the true Bayes optimal decision. Note that this analysis assumes

that p(ω = k|ω ∈ {i, k},x) can be determined exactly for each subproblem, whereas in

practice, it would be difficult or impossible to accurately obtain this distribution given

a finite sample size.

Friedman argues that one-vs-all subproblems must be tuned simultaneously, since

the outputs from each model must be commensurate with one another.

2.3.2.3 Other Techniques in Reducing Multiclass to Binary

While one-vs-all and all-pairs are the most widely studied and employed tech-

niques for reducing multiclass to binary, they are only two cases within the more general

framework known as loss-based decoding, which is itself an extension of error-correcting

output coding. Though we focus our experimental studies on the one-vs-all and all-pairs

reductions, we also describe these other frameworks, since they must also address the

issue of model selection and they are generalizations of the methods under our study.

Error-Correcting Output Coding The error-correcting output coding (ECOC)

framework was proposed by Dietterich and Bakiri in 1995 [27]. This scheme is named

for its similarity to error correcting codes in information theory, with the analogy that
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the instance’s class is a message to be transmitted, and that error correcting codes are

employed to encode the message in order to make the transmission (or classification)

more tolerant of errors. ECOC requires all classes to appear in each subproblem, and

allows an arbitrary specification of how classes are reassigned to subproblems. The data

structure used to specify how classes are reassigned to subproblems is called the coding

matrix. For example, for a 5-class problem, in a particular subproblem, classes 1, 3, 4

might be assigned to the positive indicator class. This would correspond to a row in

the coding matrix equal to {+1,−1,+1,+1,−1}. At prediction time, each subproblem

classifier votes for or against membership in the positive indicator class, and the class

with the most votes is selected as the multiclass prediction, breaking ties randomly.

The number of unique and nontrivial binary splits (codewords) for a set of k

classes is 2k−1 − 1 [62]. Of these splits, k correspond to the one-per-class dichotomies.

The other splits are different binary problems constructed from the original class labels.

Dietterich and Bakiri [27] proposed using as many of these dichotomies as computa-

tionally feasible in order to improve the multiclass prediction. At prediction time, each

base classifier is evaluated, and the class label with the minimum Hamming distance

to the predicted codeword is used as the multiclass prediction. Dietterich and Bakiri

recommend using all possible dichotomies when the number of classes is 7 or less; when

there are more classes, a random sampling of dichotomies is typically used. The error-

correcting output coding technique explicitly designs classifiers to focus on different

composite subproblems.

Loss Based Decoding In 2000, Allwein et al. generalized the ECOC frame-

work to to Loss Based Decoding, which (a) accounts for continuous instead of discrete

classifier outputs and (b) allows some subproblems to optionally ignore some of the

classes in the data set [2]. Incorporating continuous output makes it possible to rep-

resent the One-vs-All technique in the Loss Based Decoding framework (as we show

below), and allowing subproblems to omit subsets of data points makes it possible to
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represent the All-Pairs technique. Loss Based Decoding was further generalized by

Crammer and Singer in 2000 to Continuous Output Coding [22], in which each class in

a subproblem has some continuous weight w ∈ R rather than w ∈ {−1,+1} as in ECOC

or w ∈ {−1, 0,+1} as in Loss Based Decoding.

One-vs-All in Loss-Based Decoding While loss-based decoding [2] was

shown to encompass a variety of previous methods, including voted pairwise classifi-

cation and Hamming-decoding one-vs-all, a representation for continuous winner-take-

all one-vs-all has been lacking. In this section, we show that using the loss function

L(z) = (1−z)2 in one-vs-all loss-based decoding yields the same predictions as continu-

ous winner-take-all one-vs-all. Our experimental studies use this result in implementing

the continuous one-vs-all method.

2.4 Conclusion

This concludes our review of background material in supervised learning, model

selection and commensurate and complementary model combination. The next chapter

investigates linear combinations of commensurate multiclass classifiers.



Chapter 3

Regularized Linear Models in Stacked Generalization

Chapter Abstract

Stacked generalization is a flexible method for multiple classifier combination; however,

it tends to overfit unless the combiner function is sufficiently smooth. Previous stud-

ies attempt to avoid overfitting by using a linear function at the combiner level. This

chapter demonstrates experimentally that even with a linear combination function, reg-

ularization is necessary to reduce overfitting and increase predictive accuracy. The

standard linear least squares regression can be regularized with an L2 penalty (ridge

regression), an L1 penalty (lasso regression) or a combination of the two (elastic net

regression). In multiclass classification, sparse linear models select and combine individ-

ual predicted probabilities instead of using complete probability distributions, allowing

base classifiers to specialize in subproblems corresponding to different classes. Our ex-

perimental studies show that the dense ridge regularization is much more effective than

the sparse lasso regularization.

3.1 Introduction

Multiple classifier systems combine the predictions of many classifiers to produce

the ensemble prediction [26, 86, 62]. Simple techniques such as voting or averaging can

improve predictive accuracy by combining diverse classifiers [14]. More sophisticated

ensemble techniques, such as ensemble selection, train a combination function in order
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to account for the strengths and weaknesses of the base classifiers and to produce a

more accurate ensemble model [18].

Stacked generalization is a flexible method for multiple classifier systems in which

the outputs of the base-level classifiers are viewed as data points in a new feature

space, and are used to train a combiner function [101]1 . Ting and Witten [95] applied

stacked generalization to classification problems, and found that a multiple response

linear combiner outperformed several nonlinear combiners for their problem domains

and selection of base classifiers. They also showed that in classification problems, it is

more effective to combine predicted posterior probabilities for class membership than

class predictions.

Caruana et al. [18] evaluated stacked generalization with logistic regression with

thousands of classifiers on binary classification problems, and reported that stacked gen-

eralization tended to overfit, resulting in poor overall performance. In this chapter, we

remedy this overfitting and improve overall generalization accuracy through regulariza-

tion.

Regularization attempts to improve predictive accuracy by reducing variance er-

ror at the cost of slightly increased bias error—this is known as the bias-variance trade-

off [50]. In this chapter, regularization is applied to linear stacked generalization for

multiclass classification in order to improve predictive accuracy. In particular, ridge re-

gression [50], lasso regression [50], and elastic net regression [109] are used to regularize

the regression model by shrinking the model parameters. Lasso regression and some

settings of elastic net regression generate sparse models, selecting many of the weights

to be zero. This result means each class prediction may be produced by a different

subset of base classifiers.

In our experiments, many classification algorithms and many parameter settings
1 Wolpert introduced the ideas of internal cross-validation and trainable combiner functions together

in his article; we use the term ‘stacked generalization’ to refer to the latter.
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are used to build a library of base models as in Caruana et al. [17]. We also perform

resampling at the ensemble level in order to obtain more statistically reliable estimates

of performance without the expense of retraining base classifiers. We look at the corre-

spondence between performance on subproblems and overall classifier performance, and

interpret the behavior of sparse linear models in stacked generalization.

This chapter is organized as follows: Section 3.2.1 formally describes stacked gen-

eralization, including usage of indicator functions to transform the multiclass problem

into several regression problems and the class-conscious extension, StackingC. Section

3.2.2 describes linear regression, ridge regression, lasso regression and elastic net re-

gression, which are used to solve the indicator subproblems in stacked generalization.

Section 3.3 describes empirical studies that indicate the advantage of regularization.

Section 3.4 discusses the results and Section 3.5 concludes with a summary and future

work.

3.2 Model

3.2.1 Stacked Generalization

Given a set of L classifiers ŷi(x|θ), i = 1..L, the predictions of each classifier

on a validation dataset Dval are aggregated and combined with the known labels to

create a meta-level training dataset D′val. The combiner function is then trained on

this meta-level validation dataset. Given a test point, the predictions of all base-

level classifiers are combined to produce a new data point x′i. The combiner func-

tion is evaluated at the new data point x′i, and its output is taken as the ensem-

ble output. Formally, the ensemble prediction of stacked generalization is given by

sg(x) = c(y11(x), ..., y1K(x), ..., yL1(x), ..., yLK(x)), where x is the test point, c is the

classifier combiner function and ylk is the posterior prediction of the lth classifier on the

kth class. Following Ting and Witten, a regression function can be used at the meta-
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level by constructing one regression subproblem per class with an indicator function;

this is the so-called multi-response linear regression (MLR) formulation [95]. At predic-

tion time, the class corresponding to the subproblem model with the highest output is

taken as the ensemble output. A more general discussion of reducing classification to

linear regression problems is given in Hastie et al. [50].

The most general form of stacked generalization includes all outputs from all

base classifiers. To simplify the problem, Seewald recommends using a class-conscious

approach in which each indicator model is trained using predictions on the indicated

class only, called StackingC [90]. Formally, the StackingC class prediction is given by

sc(x) = argmaxk rk(y1k(x), ..., yLk(x)), where x is the test point, k = 1..K is an index

over classes, rk is the regression model for the indicator problem corresponding to the

kth class and ylk is the posterior prediction of the lth classifier for the kth class. Ting

and Witten report that StackingC gives comparable predictive accuracy while running

considerably faster than stacked generalization [95], and Seewald also reports increased

predictive accuracy. Based on these arguments, the experiments in this chapter use

StackingC rather than complete stacked generalization. With Ting and Witten’s MLR,

the predictive model is p̂j(x) =
∑

i=1..Lwijyij(x), where p̂j(x) is the predicted proba-

bility for class cj , wij is the weight corresponding to classifier yi and class cj , and yij(x)

is the ith classifier’s output on class cj . An example of this model is illustrated in Figure

3.1.

3.2.2 Linear Models and Regularization

The least squares solution is given by ŷ = β̂x, where β̂ = argminβ

∑N
i=1(yi−β0−∑p

j=1 xijβj)
2. Here β̂ is the vector of model parameters determined by the regression, N

is the number of training data points, yi is the true output on data point i, xij is the jth

feature of the ith data point, and p is the number of input dimensions for the problem.

In StackingC, the features are predicted probabilities from base classifiers. When the
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x

y1(x) y2(x)

ŷ

x′

yA(xA
′) yB(xB

′) yC(xC
′)

Figure 3.1: Example illustration of the StackingC and Multi-Response Linear Regression
model used in our experiments for a 4-dimensional input vector in a 3-class classification
problem. The prediction for class cA is highlighted.

linear regression problem is underdetermined, there are many possible solutions. This

situation can occur when the dimensionality of the meta-feature space L is larger than

the effective rank of the input matrix (at most N), where L is the number of classifiers

and N is the number of training points. In this case, it is possible to choose a basic

solution, which has at most m nonzero components, where m is the effective rank of the

input matrix.

Ridge regression augments the linear least squares problem with an L2-norm

constraint: PR =
∑p

j=1 β
2
j ≤ s. This has the effect of conditioning the matrix inversion

problem by adding a constant k to the diagonal: β = (XTX + kI)−1XTy. There is a

one-to-one correspondence between s and k [50].

Lasso regression augments the linear least squares problem with an L1-norm con-

straint: Pl =
∑p

j=1 |βj | ≤ t. The L1-norm constraint makes the optimization problem

nonlinear in yi, and quadratic programming is typically used to solve the problem.

Unlike ridge regression, lasso regression tends to force some model parameters to be

identically zero if the constraint t is tight enough, thus resulting in sparse solutions.

Zou and Hastie describe a convex combination of the ridge and lasso penalties
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Table 3.1: Data sets used in the experimental studies, and their properties

Dataset Attributes Instances Classes

balance-scale 4 625 3
glass 9 214 6
letter 16 4000 26

mfeat-morphological 6 2000 10
optdigits 64 5620 10

sat-image 36 6435 6
segment 19 2310 7

vehicle 18 846 4
waveform-5000 40 5000 3

yeast 8 1484 10

called the elastic net [109]. The penalty term is given by Pen(β|α) = (1 − α)1
2 ||β||

2
l2 +

α||β||l1, where 0 ≤ α ≤ 1 controls the amount of sparsity. The elastic net is particularly

effective when the number of predictors p (or classifiers in StackingC) is larger than

the number of training points n. The elastic net performs groupwise selection when

there are many correlated features (unlike the lasso, which instead tends to select a

single feature under the same circumstances). When there are many excellent classifiers

to combine, their outputs will be highly correlated, and the elastic-net will be able to

perform groupwise selection.

3.3 Experimental Studies

For empirical evaluations, we selected publicly available datasets with numerical

attributes and k ≥ 3 classes. Table 3.1 indicates the datasets and relevant properties.

For the 26-class letter dataset, we randomly subsampled a stratified selection of 4000

points.

Approximately half the data points (with stratified samples) in each problem are

used for training the base classifiers. The remaining data is split into approximately

equal disjoint segments for model selection at the ensemble level (e.g. stacking training

data or select-best data) and test data, again in stratified samples. In a real-world
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application, the base classifiers would be re-trained using the combination of base-

level data and validation data once ensemble-level hyperparameters are determined, but

this additional training is not done in this study due to the expense of model library

construction.

Previous studies with L ≥ 1000 classifiers obtain one sample per problem, with

no resampling due to the expense of model library creation, such as in Caruana et al.

[18]; we partially overcome this problem by resampling at the ensemble training stages.

In particular, we use Dietterich’s 5x2 cross-validation resampling [25] over the ensemble

training data and test data. We use the Wilcoxon signed-rank test for identifying

statistical significance of the results, since the accuracies are unlikely to be normally

distributed [24].

We generate around 1000 classifiers, including neural networks, support vector

machines, k-nearest neighbors, decision stumps, decision trees, random forests, and

AdaBoost.m1 and bagging models.

3.3.1 Base Classifiers

We generate about 1000 classifiers for each problem. For each classification algo-

rithm, we generate a classifier for each combination of the parameters specified below.

All implementations are in Weka except for the Random Forest (R), for which we used

the R port of the Breiman-Cutler code by Andy Liaw, available through CRAN.

(1) Neural Network decay={true, false} momentum={0.1, 0.5, 0.9}

learningRate={0.5, 0.75, 0.9} trainingTime={100, 500, 1000}

numHiddens={2, 4, 16, 32}

(2) Support Vector Machine (C-SVM) kernelType={linear, polynomial, rbf, sig-

moid} coef0={-1, 1} cost={0.1, 1.0, 10, 100, 1000} degree={1, 2, 3}

eps={0.001, 0.01} gamma={0.1, 0.3, 0.8}
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(3) K-Nearest Neighbor k={1, 2, 4, 16, 32, 64}

(4) Decision Stump

(5) Decision Tree (J48) binarySplits={true, false} confidenceFactor={0.25, 0.5, 0.75}

reducedErrorPruning={false, true} unpruned={true, false}

(6) Random Forest (Weka) numTrees={1, 2, 30, 50, 100, 300, 500}

(7) AdaBoost.M1 numIterations={10, 50, 100, 500} classifier={J48 binarySplits={true,

false}, Decision Stump}

(8) Bagging classifier={J48 binarySplits={true,false}} numBags={5, 10, 50}

(9) Random Forest (R) numTrees={1, 2, 30, 50, 100, 300, 500}

3.3.2 Ensemble Techniques

As a baseline for comparison, we select the best classifier as identified by accuracy

on the held-out ensemble training set (select-best). We also compare our linear models

to voting (vote) and averaging (average) techniques. The StackingC approaches are

denoted sg-linear, sg-ridge and sg-lasso.

For the majority of our datasets, there are more linear regression attributes p

(same as the number of classifiers L) than data points n (equal to the number of stacking

training points, roughly N
4 )2 . To solve this underdetermined system without resorting

to the typical ridge regularization solution, we choose a basic solution as implemented

in the Matlab mldivide function, which provides a sparse solution based on the QR

factorization.

In order to select the ridge regression penalty, we search over a coarse grid

of λ = {0.0001, 0.01, 0.1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024} using cross-validation,

then use all validation data to train the ridge regression model with the selected penalty
2 The waveform, letter, optdigits and sat-image datasets are exceptions.
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Table 3.2: Accuracy of each model for each data set. Entries are averages over the
10 samples from Dietterich’s 5x2 cross-validation at the ensemble level. Variances are
omitted based on arguments in Demšar [24]. See Section 3.3 for a description of the
methods and Section 3.4 for discussion.

Dataset select −
best

vote average sg −
linear

sg −
lasso

sg −
ridge

balance-scale 0.9872 0.9234 0.9265 0.9399 0.9610 0.9796
glass 0.6689 0.5887 0.6167 0.5275 0.6429 0.7271
letter 0.8747 0.8400 0.8565 0.5787 0.6410 0.9002
mfeat-m 0.7426 0.7390 0.7320 0.4534 0.4712 0.7670
optdigits 0.9893 0.9847 0.9858 0.9851 0.9660 0.9899
sat-image 0.9140 0.8906 0.9024 0.8597 0.8940 0.9257
segment 0.9768 0.9567 0.9654 0.9176 0.6147 0.9799
vehicle 0.7905 0.7991 0.8133 0.6312 0.7716 0.8142
waveform 0.8534 0.8584 0.8624 0.7230 0.6263 0.8599
yeast 0.6205 0.6024 0.6105 0.2892 0.4218 0.5970

parameter. We use the Matlab implementation of ridge regression from the Matlab

Statistics Toolbox. Parameters are selected by cross-validation for each subproblem

rather than choosing a single λ for all subproblems. For example, the regularization

hyperparameter for the first indicator problem λ1 may differ from λ2. For lasso regres-

sion, we use the LARS software by Efron and Hastie [32], and search over a grid of

fraction = 0 to 1 (where fraction is the proportion of the saturated coefficients) in

increments of 0.01 to select the regularization penalty term by cross-validation for each

subproblem. We search over a finer grid in sg-lasso than in sg-ridge since model selection

is much more efficient in LARS. For the elastic net, we use the glmnet package written

by Friedman, Hastie and Tibshirani and described in the corresponding technical report

[36].

3.4 Results

The test set accuracies of all ensemble methods are shown in Table 3.2. Each

entry in this table is an average over 10 folds of Dietterich’s 5x2 cross-validation [25]

over ensemble training/validation data. According to the pairwise Wilcoxon signed-
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ranks test [24], ridge regression StackingC outperforms unregularized linear regression

StackingC at p ≤ 0.002. Select-best outperforms both unregularized and lasso regres-

sion StackingC at p ≤ 0.002. Ridge regression StackingC outperforms select-best at

p ≤ 0.084, and has more wins than any other algorithm. On two problems, select-best

outperforms all model combination methods. On all problems, sg-linear and sg-lasso

perform less accurately than sg-ridge; this result suggests that it may be more produc-

tive to assign nonzero weights to all posterior predictions when combining several base

classifiers. A possible explanation for the superiority of ridge regularization over lasso

regularization is that lasso is often more effective when it is able to perform feature

selection by discarding irrelevant inputs or inputs that are negatively correlated with

the target values; however, the base classifiers are predominantly positively correlated

with the target prediction values, so lasso regularization is forced to throw away good

predictors. In other words, lasso regularization actively searches for uncorrelated in-

put models; however, since all models are estimates of the same target value, the lasso

attempts to combine correct models with incorrect models.3 Further experimental

studies would be necessary in order to validate this hypothesis.

To study the effect of regularization on each subproblem, we plot the root mean

squared error for a particular indicator subproblem as a function of the regularization

penalty hyperparameter. Computation of a reasonable composite value over all data

sets is difficult due to incommensurability of the problems, so we restrict our focus

to a particular subproblem. (Results are qualitatively similar for other subproblems.)

Figure 3.2(a) shows the root mean squared error in the first subproblem in the sat-image

dataset4 . As the ridge penalty λ increases from 10−8 to 103, the error decreases by

more than 10%. With such a small penalty term, the error at 10−8 roughly corresponds

to the error that would be obtained by unregularized linear regression. For individual
3 Thanks to Abhishek Jaiantilal for pointing out this explanation.
4 The root mean squared error is used instead of the accuracy because the subproblem in multi-

response is a regression problem.
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subproblems, therefore, regularization dramatically improves performance.

Figure 3.2(b) shows the overall accuracy of the multi-response linear regression

with ridge regularization for the sat-image dataset. Regularization increases the accu-

racy of the overall model by about 6.5%, peaking around λ = 103. As the penalty is

increased beyond 103 (not pictured), the accuracy decreases, reaching 0.24, the propor-

tion of the predominant class, around λ = 108. Please note that in this figure, λ is the

same for all subproblems.

Figure 3.2(c) shows the correlation between the accuracy of the overall multi-

response linear regression system and the root mean squared error on the first subprob-

lem. The fit is approximately linear, with a = −0.408e+ 0.957, where a is the accuracy

of the multiclass classifier and e is the RMSE of the classifier on the first indicator

subproblem.

Figure 3.3(a) shows the overall accuracy of the multi-response linear regression

system as a function of the penalty term for lasso regression for the sat-image problem.

Standard errors over the 10 folds are indicated. As in the ridge regression case, λ is the

same over all subproblems in this figure. The accuracy falls dramatically as the penalty

increases beyond 0.2, stabilizing after λ = 0.50 at an accuracy of 0.24, the proportion

of the predominant class.

In order to view the effect of the elastic net’s mixing parameter α on the accuracy

of the multi-response system, accuracy vs penalty curves are plotted in Figure 3.3(b) for

α = {0.05, 0.5, 0.95}. The α = 1.0 curve indicated in Figure 3.3(a) is highly similar to

the α = 0.95 curve, and therefore omitted from Figure 3.3(b) for clarity. With a small

penalty term λ ≤ 10−1, the curves are constant, and within one standard deviation of

the select-best curve. As the penalty increases, the accuracy reaches a maximum that

is dependent on α, with higher α values yielding higher accuracy at smaller penalty

values. In this case, fine-tuned regularization increases accuracy by about 1.5%.

In ridge-regularized stacked generalization, all predictors are given some portion
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Figure 3.2: Figure 3.2(a) shows root mean squared error for the indicator problem for
the first class in the sat-image problem. Figure 3.2(b) shows overall accuracy as a
function of the ridge parameter for sat-image. The error bars indicate one standard
deviation over the 10 samples of Dietterich’s 5x2 cross validation. Figure 3.2(c) shows
the accuracy of the multi-response linear regression system as a function of mean squared
error on the first class indicator subproblem for ridge regression.
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Figure 3.3: Overall accuracy of the multi-response linear regression system as a function
of the penalty term for lasso regression for the sat-image problem, with standard errors
indicated in Figure 3.3(a). Figure 3.3(b) shows accuracy of the multi-response linear
regression system as a function of the penalty term for α = {0.05, 0.5, 0.95} for the elastic
net for sat-image. The constant line indicates the accuracy of the classifier chosen by
select-best. Error bars have been omitted for clarity, but do not differ qualitatively from
those shown in Figure 3.3(a).



47

−7 −6 −5 −4 −3 −2 −1

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Log Lambda

C
la

ss
 1

19 19 33

−7 −6 −5 −4 −3 −2 −1

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Log Lambda

C
la

ss
 2

8 6 32

2

3

456

8

10
111216

17

18

19

21

22

23
24
2627

28

30

32
34

35

36

384142

46

47

48

4950

54

55565758
60
6163

64

66

67

68

6970
71

72

74

76
78
82

86

87
90
91
92

93

94

95

96

98
99

100

102

103

106

107

108

109

110

111

116

117

118

120

121
122

123

124

125
126127128130

132

133

134

135
136
137
138
140141143

144

146
147
148

150

151

152

154

158160

162

163

164
165
166

168170
171

174

175176179

180

181

182

183

184

187188

189

190

193194
195

196

197198199
200201202203

204

205

206

207

208

209

210

211

212

213

214

215

216

221222
227229230231234247

249

251275276284292294296311312327329331333335342343345346347349350351354

362

363367370371375382387
392
394402407412
422
430431432

443

444
446

454461
462463464467469470471

482

489490491494495496
506512

522

542543544545546547548549573574582590591594614624632635636669687
689
703705707709710711

722

723724
727
729731742747752756761762767772775776782792
794
803804814815816822827829831

842

849850851867
872
876

882

892895896902

903

904909912929930931933934937

940

942

943944945946947

949

951952953954955957959960961962963965967968969
975976977978979980

981

982

987
988

989

990
991
992

994

995

997

−7 −6 −5 −4 −3 −2 −1

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Log Lambda

C
la

ss
 3

66 26 14

123

4

5

6

8

10

12

14

16

18

19

20

21

22

24

25

26

27

28

29

30

31

32

34

35
36
37

38

39
40

42
44

45

46

47

48

49
50

51

52

53

54

55
56

57

58

59

60

6162

63

64

65

66

67

68

69

70

72
74

7677

78

79

80

82

83

84

86

88

90

91

92

93
94

95

96

97

98

100

101

102

103

104

106

107

108

109

110

111

112

113

114

116

117

118

119

120

121

122

123
124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

141

142
143

144

146

147

148

149

150

151

154

156

157

158

159

160

162

164

165

166

168

170

171

172

173
174

176
177

178

179

180

182

184

185

186

187

188

189

190

191

192

193

194

195196

197

198

199

200

201

202

203

204

205
206
207

208

209

210

211

212

213

214
215
216

218

220

221
227
228
231

233

234

235

236238

241

244251252253254

255

256

258

261262

263

267269271272

273

274

275
278281

282

283284285287289

293

295

296

298301

302

303308309310

312

314

315

318

320

323

324

327

328329331332333334

335

336

338341342
344
345346347348351

352

354
355

356

358361364

365

367372373

374

376378
382
387388389

391

392

393

394
396
397

402

403

405

406

407

408411412415416

420

422423426428429432

435

438441

443

444

446

447

448449

450

453

454

456

457458462464465

466

472

473

478

483

484

485486487490

492

493498501

502

503

504

505

506

507509511512

513

514

515
518520521

523

530

532

533534536538

542

543

544

546

548550551552

553

554

556558560

562

563
568

569

572

573

574

578584590591592

593

594598603

604

607608611612

616

618619
622
623

624

627628629

636

638642

643

646

647
648

652654655
656

662663670

671

672681
682

683

684

688

690692693

694

696

697

698

703704712

713

714

715

717
718

723

724

725726727731732

733

734

736737738739742743745747

748

749750752754

756

757758
763
764765767769

774

775776778781782783784

788

789

792

793

794

796

797
798805806808809812813

815

816818

822

824

825

826

827

833

835838

843

844

846

847

850

852
854
855857858861

862

864

865

866

867868

870

872

875

878880882

883

886887

888

890

893894
896
897

898

902

903

905

906

908

909

913

915

916918

922

925926928929930931

932

933

937

938

939

940

941

942943944945946947948949950
951
952953954955956

957

958

959

960961962963

964

965
966
967

968
969

970

971

972

974

975976977978

979

980

981

982

984

985

986

987

988989
990

991

992

993

994
995996

997

998

999

−7 −6 −5 −4 −3 −2 −1

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Log Lambda

C
la

ss
 4

127 39 19

−7 −6 −5 −4 −3 −2 −1

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Log Lambda

C
la

ss
 5

55 28 41

1

2

3

4

6

7

8

9

10

11

12

13

1416

18

19

20
22

23

24

25

26

27

28

30
3233

34

35

36

37

38

3940

42

44

46

47

48

49

50

51

5253

54

55

56

57

58

59

60

61

62

64

65

66

67

68

6970

71

72

74

75

76

77

7879

80
82

83

8485

86

88

90

91

92

93

94

95

96

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114
115

116

117

118

119

120121

122

123

124

125

126

127
128

129

130

131

132

133134135

136

137

138139
140

141

142
143

144

145

146

147

148

150

151

152

154

156

157

158

159

160

162

163

164

165

166

167

168

169

170

171

172
173

174

176177

178
180

181

182

183

184

185186

187

188

191

192

193

194195

196
197

198199

200

201

202

203

205

206

207

208

209

210

211

212

213
214

215

216

222

227

228

229

231

233

242244247248250

251

252256

262

263
264

265

266

267268269270271

272

274

275

276

279

282

283

284

287288289290291295296

303

304

306

307309312
313

315

325

326

327329333335

342

343

344
345347

348

352

356
363

364

365366

367

368369

374

375

382383
384
386

387

388389391392

393

394

400

402

403
404

406407

408

409
411

415

416

422

423425
427

428

429
430

432

433

434

436

440

442443

447

448

449

450
453
454

455

460

462

464

465

466468

469471

474

480

482

483

486

487488492

494

495503504

505

506

507508

509

510511512

513

514

515

522523527

528

530531536

543

544
545

546

548

551552

553

554

555

556559

562

563

567

568

571

572

574

575

576581

582

587588589

592

595

602

604607608609

612

614

622

623

624

627628629630631632

635

639
642
645647648649650651653

654

661

666

667

668

669
670

673

674675

684

685

686

687688

689
691
693
694

695

702

703

705707708709712
714716725728729

731

733

742

748749750751

752

754

756

759

761

762

765

766

767

768770771772

776

778

782

783

786

791792

793

794795

796

802806
808810811

814

815

820

823

824825

826

828831832
842
844

845

846

847848851

853

856

860

862

863

864866

868869870871872873
876

880

882887

888

889

892

894

895

896

902

904

905

907
909910911912913

915

921

923925

927

928929932

934

937

938

939

940
941

942

943
944945946947
948

949

950

951
952953954955956957958959960961962963964965966967

968

969

970

971

972

973

974

975976977978

979
980

981
982

983

984

985986

987

988

989

990

991
992

993

994

995

997

998

−7 −6 −5 −4 −3 −2 −1

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Log Lambda

C
la

ss
 6

79 40 38

1

2

4

5

6

8

10

12

13

14

15

16

17

18

19

20

22

24

25

26
27

28

29

30

31

32

33

34

35

36

37

38

39

40

42

44

45

46

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

74

75

7678

80

82

83

84

86

87

88

90

91

92

93

94

95

96

98

99

100

101

102

103

104

106

107

108

110

111

112

113

114

115

116

117

118

119

120121

122

123

124

125

126

127

128

130
131

132

133

134
135

136

137

138

139

140

141

142

143

144

146

147

148

150
152

153154

155

156

157

158
159

160

162

163

164

165

166

167

168

169

170

171

172

174

175

176

177

178

180181

182

183

184

185

186

187

188

189

190

192

193

194

195

196

197

198199

200

202

203

204

205

206

207

208

209

210

211

212213

214

215216217218223227228229230

231

232

234237243

247

248

249

252254

255

257

261

262

263264

266267268269270271272

274

275280281
282

283

286287288289290291292

295296

297
299302

304

306

307308309310311

314

315

317

319

322

328

329

332333

334

335

336

338342

347

349350

354

357362
364

365

367

369

373376377379381382383

384

385386387

388

389390391392

395

397399

403

407408409410411412
413

417

422424425

427

428

430

433

436441

443

445

446

447448449

450

451

453

454

455

456

458

461

462

463

464

465

466467469

473

474

475

476

478

482

483484

485

491492

493

494501502

503

504

505

507508509510511512

515

522523

526

527528529

530

531532533542

544

545

547

548

549

550

553

554

555

556

557

561

562563567568569

571

573

574

575

576

579580582583587589590595596597

602

603

605

606607609

612

614

615

616

617620

622

627628629630631632633

643

644647648649650651

652

653

655657662

664

665668669670
672

676

677680
682
684

685

686

688689690

692

693

696
697

703

704

706

707

709

712

713

714

715

716

721

724

726

727

729

730

731

733

734

735

736

737738
742
743744745747749750751

752

754

755758

763

764

765766767769770771

773

774

775777782

784

788

789790792793

794

795
796
797800

802

805808809810814

815

816818819821822

823

825

826

828
831832834835836841

842

843

844

845846850

851

852

853

854

855

856860

861

862

864

865868869870871

872

873875

876

878881882

883

887888889890891893897

904

905

906

907

908

909

910911912

913

914

916

917920922

923

925
926

927

928

929931

932

933

934

935

936

937

939

940

941

942

943

944

945
946947

948

949

950

951

952

953954955

956

957958959960961962963

964

965
966
967

968

969

970

971

972

973

974975976977978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994995

996

997

998

999

Figure 3.4: Coefficient profiles for the first three subproblems in StackingC for the sat-
image dataset with elastic net regression at α = 0.95, over a single partition of ensemble
training and testing data.

of the total weight. In lasso regression and some settings of elastic net regression, it

is possible to obtain a sparse model in which many weights are identically zero. The

sparse model reduces computational demand at prediction time and makes it possible

to identify a small subset of base classifiers and predictions that are responsible for

making the overall prediction. Figure 3.4 shows the coefficient profiles for the sat-image

dataset, for classes 1-3 with elastic net regularized StackingC with α = 0.95. The

optimal value of λ according to overall classification accuracy is shown as a vertical

line. At λ = λopt, only 244 of the 999 classifiers are assigned weight for any of the

subproblems. Table 3.3 shows the 6 classifiers with the highest total sum of weights

for all classes. Sparse models obtained by L1-regularized linear regression can choose

different classifiers for each class—that is, classwise posterior predictions are selected

instead of complete classifiers. For instance, the classifier assigned the most total weight

is k = 1-nearest neighbor, which contributes to the response for classes 3-6, but doesn’t

appear in the predictions for classes 1 or 2. The base classifier that makes the largest

contribution to the class-1 prediction is boosted decision trees run for 500 iterations.
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Table 3.3: Selected posterior probabilities and corresponding weights for the sat-image
problem for elastic net StackingC with α = 0.95. Only the 6 models with highest
total weights are shown here. ann indicates a single-hidden-layer neural network, and
corresponding momentum, number of hidden units, and number of epochs in training.

Classifier class− 1 class− 2 class− 3 class− 4 class− 5 class− 6 total

adaboost-500 0.063 0 0.014 0.000 0.0226 0 0.100
ann-0.5-32-1000 0 0 0.061 0.035 0 0.004 0.100
ann-0.5-16-500 0.039 0 0 0.018 0.009 0.034 0.101
ann-0.9-16-500 0.002 0.082 0 0 0.007 0.016 0.108
ann-0.5-32-500 0.000 0.075 0 0.100 0.027 0 0.111

knn-1 0 0 0.076 0.065 0.008 0.097 0.246

Thus each classifier is able to specialize in different class-based subproblems rather than

being required to predict accurate probabilities for all classes.

3.5 Conclusion

Stacked generalization has a tendency to overfit; overfitting is even more likely

when using many highly correlated, well-tuned models. In order to avoid overfitting

and to improve prediction accuracy, it is necessary to perform regularization at the

combiner level, even when using a linear combiner. Regularization can be performed by

penalization of the L2 norm of the weights (ridge regression), L1 norm of the weights

(lasso regression) or a combination of the two (elastic net regression). L1 penalties yield

sparse linear models; in stacked generalization, this means selecting from a small number

of classifier posterior predictions. We showed that ridge regularization was significantly

more effective than the sparse linear lasso penalty, and suggested that this result is

because many of the classifier outputs are well correlated with the target prediction

value, causing lasso to select from both correct and incorrect models.

An interesting extension of this work would be to examine the full Bayesian

solutions (under Gaussian and Laplacian priors for regularization), instead of the single-

point maximum likelihood estimates implicit in the ridge (Gaussian prior) and lasso

(Laplacian prior) regularizers. Other work could study additional regularization by
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(a) selecting a single regularization hyperparameter for use in all subproblems or (b)

constraining the weights to be non-negative for each subproblem.



Chapter 4

Model Selection in Binary Subproblems

Chapter Abstract

Model selection is critical in building effective classifiers. Support vector machines

(SVMs) are a popular and effective classification technique, and model selection for

Gaussian SVMs is performed by tuning the cost (C) and Gaussian width (γ) hyper-

parameters. SVMs were originally designed for binary classification, but have been

extended and adapted to address multiclass classification problems. A simple, popular

and effective method for solving multiclass classification problems using binary SVMs

is to reduce a given multiclass classification problem to a set of binary classification

subproblems, solve the binary subproblems, and combine the predictions from the bi-

nary classifiers. This raises the question of how to perform model selection; should the

same model and hyperparameters be used on all subproblems, or should subproblems

be tuned independently? The predominant technique is to constrain all subproblems to

share the same hyperparameters; this enables performing model selection on the tar-

get (multiclass) metric, but requires the assumption that a single hyperparameter set

works well on all subproblems and allows suboptimal subproblem performance. Our ex-

perimental studies indicate shared hyperparameter selection outperforms independent

optimization for a variety of binary reductions, and has similar performance in one case.

We show two situations in which independent optimization is more effective than shared

hyperparameter optimization: (a) when the subproblems have very different structure
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and (b) when Hamming decoding is used and there is enough validation data to decrease

the probability of choosing suboptimal subproblem models. Though we focus on using

SVMs as the binary classification algorithm, the issues and results identified in this

paper are applicable to any tunable binary classifier used with a multiclass-to-binary

reduction method.

4.1 Introduction

Multiclass classification is an important machine learning problem, encompassing

domains such as handwritten text recognition, protein structure prediction [73], heart-

beat arrhythmia monitoring, and many others. Support vector machines were intro-

duced as a binary classification algorithm, and several techniques have been proposed

for adapting them to address multiclass classification problems [2, 38, 22, 81, 67, 9].

One simple, effective and widely-used technique is to reduce the multiclass classification

problem to a set of binary classification problems. The binary classification problems

are solved and predictions from the binary classifiers are combined to produce the mul-

ticlass prediction [2]. In this chapter, we focus on the issue of model selection in the

induced subproblems for a variety of multiclass-to-binary reductions. In particular, we

experimentally investigate whether it is more effective to perform model selection on

each binary subproblem independently or to perform model selection on the multiclass

problem by sharing hyperparameters across subproblems. We also perform experimen-

tal studies that illustrate the correlation between binary subproblem performance and

multiclass performance, and the comparative performance of the one-vs-all reduction

vs. the all-pairs reduction. We present results for two reduction methods (one-vs-all

and all-pairs), two decodings (Hamming decoding and squared-error decoding) and two

metrics (accuracy and the Brier score, a probability calibration metric). In Section

4.1.1, we describe the one-vs-all and all-pairs reductions and previous research. In Sec-

tion 4.1.2, we focus on the particular issue of model selection in the binary subproblems,
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and discuss theory correlating multiclass accuracy to binary accuracy and consistency

results in Section 4.1.4. In Section 4.2, we present experimental studies showing the

advantage of the constraint that hyperparameters are shared across subproblems. In

Section 4.2, we show that shared optimization has an advantage because model selec-

tion tends to choose wrong solutions and subproblems in a multiclass problem are often

similar with respect to model selection. We analyze the results and perform control

studies in Section 4.3, report on supplementary results in Section 4.4 and conclude in

Section 4.5.

4.1.1 Reducing Multiclass to Binary

4.1.1.1 One-vs-All

One of the simplest and most widely used techniques for reducing a multiclass

problem to a set of binary subproblems is known as the one-vs-all reduction (OVA),

also known as unordered class binarization [40] or one-vs-rest (or 1vr) [105]. Using the

one-vs-all reduction, a k-class classification problem is decomposed into k binary clas-

sification subproblems, one for each class (see Figure 4.1). In the ith subproblem, the

classifier is trained to distinguish whether the instance belongs to class i or not. At pre-

diction time, the classifier with the highest output is chosen. An alternative scheme uses

voting, or Hamming decoding, to combine the predictions, with ties broken randomly.

There is some disagreement in the literature about the terminology for the one-vs-all

reduction; Rifkin and Klautau [85] use the term one-vs-all to indicate winner-take-all

with continuous outputs (i.e. choosing the classifier with the maximum output); other

research such as [5] refer to one-vs-all as using Hamming decoding. Here, we use the

term OVA to refer to continuous winner-take-all one-vs-all, and refer to the discrete

version as OVA with Hamming decoding. Rifkin and Klautau studied the one-vs-all

technique, and compared it to other methods for reducing multiclass to binary and to
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other SVM techniques that provide direct optimization on the entire multiclass prob-

lem [85]. They show that model selection is essential and that under appropriate model

selection, one-vs-all tends to perform as accurately as other multiclass SVM methods.

Rifkin and Klautau’s technique for model selection is to choose one set of hyperparame-

ters for all subproblems, rather than trying to optimize each subproblem independently

or trying to optimize differing hyperparameters for all subproblems jointly. Rifkin and

Klautau don’t explicitly state that they use the shared-model paradigm for model se-

lection, but it is implied since one set of regularization hyperparameters is reported for

each multiclass problem.

Figure 4.1: Illustration of an A-vs-BC decision boundary in a 2D, 3-class example of
the One-vs-All reduction.

4.1.1.2 All-Pairs

In the all-pairs reduction, also known as pairwise classification [51], all-vs-all

(or AVA) [85], round-robin classification [40] and 1-against-1 (or 11) [105]), a k-class

classification problem is decomposed into k(k−1)
2 problems, one for each pair of classes

(see Figure 4.2).

At prediction time, each binary classifier votes for one class, and the class with

the most votes is selected as the multiclass prediction. Note that in contrast to con-

tinuous winner-take-all one-vs-all, the original all-pairs methodology ignores predicted
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Figure 4.2: Illustration of an A-C decision boundary in a 2D, 3-class example of the
all-pairs reduction.

probabilities or confidence predictions from each binary classifier, instead using only a

discrete vote from each, though it is possible to use the all-pairs encoding with a decod-

ing function other than Hamming decoding in loss-based decoding. Subsequent research

in pairwise classification has shown how to incorporate continuous outputs and also to

produce a probability distribution instead of a discrete vote [51, 103]. Friedman shows

that Bayes optimal binary classifiers combine to produce a Bayes optimal multiclass

classifier, and therefore each binary subproblem can be solved independently and as

accurately as possible [38]. This proof is repeated here for for completeness.

The Bayes optimal decision is given by

ŷ(x) = argmax
k∈K

p(ω = k|ω ∈ K,x)

where K is the set of possible labels, ω is the true label, x is the input feature vector

and ŷ is the predicted label. This is equivalent to

ŷ(x) = argmax
k∈K

∑
i∈K

1(
pk

pk + pi
>

pi
pk + pi

)

where 1(x) = 1 if x is true and 0 otherwise. This reduces to

ŷ(x) = argmax
k∈K

∑
i∈K

1(p(ω = k|ω ∈ {i, k},x) > p(ω = i|ω ∈ {i, k},x))

Therefore, given reliable p(ω = k|ω ∈ {i, k},x), binary reduction under the all-pairs re-

duction is equivalent to the true Bayes optimal decision. Note that this analysis assumes
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that p(ω = k|ω ∈ {i, k},x) can be determined exactly for each subproblem, whereas in

practice, it would be difficult or impossible to accurately obtain this distribution given

a finite sample size. Friedman argues that unlike subproblems in the all-pairs reduction,

subproblems in one-vs-all must be tuned simultaneously, since the outputs from each

model must be commensurate with one another.

4.1.1.3 Other Techniques in Reducing Multiclass to Binary

While one-vs-all and all-pairs are the most widely studied and employed tech-

niques for reducing multiclass to binary, they are only two cases within the more general

framework known as loss-based decoding (LBD), which is itself an extension of error-

correcting output coding (ECOC). Though we focus our experimental studies on the

one-vs-all and all-pairs reductions, we also describe these other frameworks, since they

also face the issue of model selection.

Error-Correcting Output Coding The error-correcting output coding (ECOC)

framework was proposed by Dietterich and Bakiri in 1995 [27]. This scheme is named for

its similarity to error correcting codes in information theory, with the analogy that an

instance’s class is a message to be transmitted, and error correcting codes are employed

to encode the message in order to make the transmission (or classification) more tolerant

of errors. ECOC requires all classes to appear in each subproblem, with an arbitrary

specification (called a coding matrix) of how classes are reassigned to subproblems. For

example, for a 5-class problem, classes 1, 3, 4 might be assigned to the positive indica-

tor class in a particular subproblem, corresponding to a row in the coding matrix of

ri = {+1,−1,+1,+1,−1}. At prediction time, each subproblem classifier votes for or

against membership in the positive indicator class, and the class with the most votes is

selected as the multiclass prediction, with ties broken randomly.

The number of unique and nontrivial binary splits (codewords) for a set of k

classes is 2k−1− 1 [62]. Of these splits, k correspond to the one-vs-all dichotomies. The
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other splits are different binary problems constructed from the original class labels. Di-

etterich and Bakiri [27] proposed using as many dichotomies as computationally feasible

in order to improve the multiclass prediction. At prediction time, each base classifier

is evaluated, and the class label with the minimum Hamming distance to the predicted

codeword is used as the multiclass prediction. Dietterich and Bakiri recommend using

all possible dichotomies when the number of classes is 7 or less; when there are more

classes, a random sampling of dichotomies is typically used. The tradeoff is that codes

with better error correcting properties typically correspond to more difficult subprob-

lems.

Loss Based Decoding In 2000, Allwein et al. generalized the ECOC frame-

work to to loss-based decoding, which (a) incorporates continuous instead of discrete

classifier outputs and (b) allows some subproblems to optionally ignore some of the

classes in the data set [2]. Incorporating continuous output makes it possible to repre-

sent the one-vs-all technique in the loss-based decoding framework (as we show below),

and allowing subproblems to omit subsets of data points makes it possible to represent

the all-pairs technique. Loss-based decoding was further generalized by Crammer and

Singer to continuous-output coding [22], in which each class in a subproblem has some

continuous weight w ∈ R rather than w ∈ {−1,+1} as in ECOC or w ∈ {−1, 0,+1} as

in loss-based decoding.

One-vs-All in Loss-Based Decoding While loss-based decoding [2] was

shown to encompass a variety of previous methods, including voted pairwise classifi-

cation and Hamming-decoding one-vs-all, a representation for continuous winner-take-

all one-vs-all has been lacking. In this section, we show that using the loss function

L(z) = (1−z)2 in one-vs-all loss-based decoding yields the same predictions as continu-

ous winner-take-all one-vs-all. Our experimental studies use this result in implementing

the continuous one-vs-all method.
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Theorem 1. Using the loss function L(z) = (1 − z)2 in one-vs-all loss-based decoding

yields the same predictions as continuous winner-take-all one-vs-all for a problem with

labels in set K and base classifier predictions f(x) on test point x.

Proof. The prediction made by OVA Loss Based Decoding is

ŷ = argmin
c
L(fc(x)) +

∑
a∈K 6=c

L(−fa(x))

Adding
∑

a∈K −L(−fa(x)) to each term, we have

ŷ = argmin
c
L(fc(x))− L(−fc(x))

Choosing the loss function to be L(z) = (1− z)2, we have

ŷ = argmin
c

(1− fc(x))2 − (1 + fc(x))2

ŷ = argmin
c
−4fc(x)

ŷ = argmax
c
fc(x)

This concludes the proof that winner-take-all one-vs-all classification can be im-

plemented by setting the loss function as L(z) = (1−z)2 in loss-based decoding with the

one-vs-all coding scheme. In our experimental studies, we also employ this loss function

with the all-pairs reduction scheme for completeness.

4.1.2 Model Selection in Reducing Multiclass to Binary

There are several differing views regarding subproblem model selection when us-

ing binary classifiers to solve multiclass classification problems. Before discussing the

different types of model selection, we identify the terminology used here and throughout

the chapter. We refer to a model as any function that produces a classifier when evalu-

ated on a labeled training data set. Typically, a model is the combination of a learning
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algorithm (e.g. SVM or AdaBoosted decision stumps) and an associated set of hyper-

parameters (also known as learning parameters or metaparameters) such as {γ,C} for

Gaussian SVM or {number of iterations} for AdaBoosted decision stumps. Parameters,

as opposed to hyperparameters, refer to data components of the trained classifier rather

than the mechanism used to obtain it. A base classifier is a classification algorithm used

with a higher order classifier, such as a multiclass-to-binary reduction technique.

If the algorithm (but not the hyperparameter set) is selected before training,

then model selection refers to the search over learning hyperparameters for the given

classification algorithm. Search techniques such as grid search or binary search are often

used to identify an appropriate set of hyperparameters, given an algorithm and a labeled

training set.

As opposed to multiclass classification algorithms that solve the entire multi-

class problem at once (and are regularized as a unit), techniques that reduce multiclass

problems to a set of binary subproblems introduce the new issue of model selection in

subproblems. Four approaches have been explored in the literature:

(1) no model selection: No model selection is done on subproblems or on the overall

multiclass problem; the algorithm and hyperparameters (if any) are selected

independently of the training data set.

(2) shared-model: A single algorithm and set of hyperparameters is used in all

binary subproblems, typically selected by cross-validation or another resampling

method on the multiclass problem. When only one classification algorithm is

used, this method can be referred to as shared-hyperparameter model selection.

(3) independent optimization: Each binary subproblem is optimized independently

of the others.

(4) full-joint optimization: A separate model is used for each subproblem, deter-

mined by optimizing all models simultaneously by validation on the multiclass
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problem metric.

We examine each of these methods below, and point out prominent lines of re-

search based on each technique. There is some disagreement about the ‘classical’ way to

perform model selection for reducing multiclass to binary in SVMs; for example, Lebrun

et al. report that “the classical way to achieve optimization of multiclass schemes is an

individual model selection for each related binary sub-problem” [65]. However, often

cited works such as Rifkin et al. [85] select a single set of hyperparameters that are used

in all subproblems. Lorena provides an overview and discussion of these methods and

related studies [70].

4.1.2.1 No Model Selection

Some research in machine learning reduction uses untuned (unregularized) base

models, with the implicit assumption that behavior will transfer to the regularized

case. For example, Allwein et al. report usage of polynomial SVMs with polynomials of

degree 4, with no mention of whether or how this model was selected [2]. Beygelzimer

et al. report “We do not perform any kind of parameter optimization such as tuning

the regularization parameters for support vector machines or the pruning parameters

for decision trees. Our objective is simply to compare the performance of the two

reductions under the same conditions.” [7]. Zadrozny reports usage of the boosted

naive Bayes algorithm with 10 rounds of boosting [106], selected a priori without any

search over algorithms or hyperparameter space. Avoiding model selection generally

results in suboptimal performance [50], and there is no guarantee that results will be

transferable to situations with model selection.

4.1.2.2 Shared Hyperparameters

The earliest and most pervasive view is that a single set of hyperparameters should

be used for all subproblems. Rifkin and Klautau follow this paradigm, and perform two



60

independent one-dimensional grid searches for model selection [85].

Duan et al. take the {C, γ} of each of the binary classifiers within a multi-category

method to be the same, tuned based on the multiclass classification performance over

a coarse and fine grid [29, 9].

Hsu and Lin [55] take the hyperparameter set for each subproblem to be the

same, and again use the shared-hyperparameters paradigm to parallel the shared-

hyperparameters paradigm inherent in monolithic SVM multiclass methods [54].

Platt et al. report one set of hyperparameters for each set of binary subproblems,

indicating that they performed shared-hyperparameter model selection [81].

When addressing a problem with a domain-specific metric, shared hyperparameter

model selection may be more appropriate than independent optimization because there

may not be a corresponding binary loss function. Furthermore, shared hyperparameter

optimization has the advantage that the tuning is performed by evaluation on the actual

training data set for which a predictive model is desired, rather than tuning artificial

subproblem models as in independent optimization.

4.1.2.3 Independent Optimization

In independent optimization, model selection is performed independently on each

subproblem. More specifically, one model selection routine is applied to each sub-

problem, and (potentially) different models (algorithms and/or hyperparameter sets)

are selected for each subproblem. Independent optimization removes the constraint in

shared-hyperparameters that the same model must be applied to all subproblems, and

therefore allows more flexibility. However, as in all variance-increasing tradeoffs, this

increases the possibility of overfitting, or, more generally, may not entail an inductive

bias that is suitable for the problem at hand.

Liepert reported that independent optimization was not a significant improvement

over shared-hyperparameter optimization [66].
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Szepannek reported on performing independent model selection on each subprob-

lem using heterogeneous classifiers for the all-pairs reduction [94]; that is, potentially

using different classification algorithms and hyperparameter sets on each subproblem.

However, results on real world data sets reported in [94] are not statistically compelling;

only four data sets are used, and Wilcoxon signed ranks tests indicate that there is no

statistically significant difference between the proposed method and the baseline al-

gorithms at the predetermined value of p ≤ 0.05 (actual p-values are p ≤ 0.125 and

p ≤ 0.25). Furthermore, this work used only naive Bayes and LDA as the base classifi-

cation algorithms, and these results may not generalize to more powerful classification

algorithms. Independent optimization has the potential to increase multiclass predictive

performance by finding a separate model suited to each binary subproblem.

4.1.2.4 Full Joint Optimization

Another perspective is that if each of l subproblems have n hyperparameters,

then all ln hyperparameters should be determined simultaneously by optimizing the

overall multiclass classification performance. Due to the large search space, evolutionary

algorithms are often employed to search for good solutions.

De Souza et al. introduces a particle swarm optimization for searching over all

subproblem models simultaneously [33]; however, they conclude that this technique did

not statistically significantly improve performance.

Lebrun et al. introduce an evolutionary algorithm for performing a joint opti-

mization over all subproblems simultaneously [65]. In this article, statistical claims are

also problematic, since only three datasets are used, and Wilcoxon signed ranks tests

don’t indicate a statistically significant result at the predetermined value of p ≤ 0.05

(actual p-value is p ≤ 0.25.)

Xu and Chan claim that all binary problems need to have different parameters,

but that it is insufficient to optimize each individually [104]. They propose an algorithm
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that starts by searching over a 13 x 13 grid with shared hyperparameters, then uses

genetic algorithms to fine-tune the individual subproblem parameters.

In theory, it would be optimal to perform a full joint optimization (if it were

tractable); however, with so much flexibility in the model and given finite sample sizes,

there is a larger risk of overfitting to the validation set.

In this thesis, we focus on the shared-hyperparameters and independent-optimization

techniques since they are computationally tractable and significantly more effective than

avoiding model selection. For purposes of investigation, we introduce and evaluate a

new methodology that uses shared hyperparameters that are selected by optimizing

average binary performance.

4.1.3 Computational Demand

The previously discussed techniques for model selection differ in their computa-

tional demands. At the low extreme, avoidance of model selection requires no additional

computational power beyond training the classifier itself because the learning algorithm

and learning hyperparameters are specified independently of the data. At the opposite

end of the spectrum, full-joint optimization requires evaluation of all ln combinations of

hyperparameter sets, where l is the number of subproblems and n is the cardinality of

the hyperparameter set (e.g. two for Gaussian SVMs). Independent-optimization and

shared-model model-selection have identical computational requirements (as long as the

binary and multiclass metric have similar computational demands), since each requires

training and evaluation once for each combination of subproblem and model.

4.1.4 Consistency in Reducing Multiclass to Binary

An important feature of a machine learning reduction method is consistency,

which means that optimal binary classifiers guarantee an optimal multiclass classifier.

As pointed out in [5], it is sufficient to minimize regret (difference from Bayes error
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rate) rather than absolute error since the Bayes error rate may be nonzero. When us-

ing a consistent reduction technique, optimal binary classifiers guarantee an optimal

multiclass classifier. It has been shown that one-vs-all (or any other ECOC encoding)

under Hamming decoding is inconsistent, while the all-pairs reduction and one-vs-all

(with continuous outputs) is consistent [5, 6]. This result suggests that independent-

optimization model selection should work well for all-pairs and one-vs-all, since indepen-

dent optimization focuses on identifying the best model for each subproblem and has the

flexibility to choose different models for each subproblem. On the other hand, shared-

hyperparameter optimization may be more effective than independent optimization for

one-vs-all with Hamming decoding, since it is inconsistent. For some consistent reduc-

tions, the multiclass regret is bounded by a function of the average binary regret—this

motivates solving each subproblem as accurately as possible.

4.2 Main Experimental Results

In this section, we experimentally investigate whether it is better to perform

shared-hyperparameter optimization or independent optimization. In Section 4.2.1, we

describe the datasets, algorithms and statistical methods used in our studies. The main

experimental results are reported in Section 4.2.2 with discussion and analysis in Section

4.3.

4.2.1 Setup

4.2.1.1 Data Sets

Experiments are performed over 20 publicly available datasets. The datasets,

number of classes, number of features and number of instances are indicated in Table

4.1. We formalize our data set selection decision procedure below to rule out bias

in data set selection. We downloaded collections of preprocessed datasets in Weka’s
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ARFF format from http://www.cs.waikato.ac.nz/ml/weka/index_datasets.html,

omitting any collection that consisted solely of artificial, ordinal or regression datasets,

and filtered them based on the following criteria:

(1) classes ≥ 3

(2) 5 ≤ numeric attributes ≤ 500

(3) instances ≥ 200

The first rule (classes ≥ 3) selects multiclass classification problems, ignoring the

binary case k = 2. The second rule (5 ≤ numeric attributes ≤ 500) ensures there are

sufficiently many but not too many attributes. The remaining criterion ensures that

there is a sufficient number of data points. Uniquely identifying attributes that com-

pletely specify the identity of an instance (such as ID or index attributes) are discarded,

specifically: the counter attribute in collins, the BookID attribute in authorship and the

ID attribute in dj30-1985-2003. Classes with less than 20 instances are deleted, along

with corresponding instances. The free parameters in the above rules were hand-tuned

until 20 datasets were selected to facilitate statistical analysis. After deletion of classes,

any duplicate instances (based on attribute values, not class values) are deleted. Data

set selection was performed before evaluation of algorithms in order to avoid bias.

Stratified subsampling is used to reduce the total number of instances for large

problems in order to reduce computational demands, while maintaining a distribution

over class labels commensurate with the original sample. For data sets with N ≥ 450

instances, random draws are sampled with Ntr = 300 training points and Nts = 150 test

points. For data sets with N < 450, random draws are taken with 2/3 of the instances

used for training and the remaining approximate 1/3 points for testing. Missing values

are filled in with the mean of non-missing values for each attribute. Datasets from

similar domains are discarded in order to improve tests for statistical significance of
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results, as prescribed by Demšar [24]. In particular, pendigits was discarded because of

its similarity to optdigits, only one of the mfeat- series was selected, and anneal.ORIG,

heart-h and cars-with-names were discarded due to similarity with other data sets. For

data sets with k > 20 (letter and dj30-1985-2003 ), 1/3 of the classes are removed to

decrease computational demands, and further stratified subsampling removes 1/3 of the

instances.

Table 4.1 indicates the datasets used in our experiments, and their relevant prop-

erties. The column labeled entropy refers to the normalized entropy (in base 2) of the

class distribution, e = −1
log2k

∑k
i=1 pilog2(pi), where pi is the proportion of instances with

the class label ci and k is the number of classes. For instance, the entropy is 1 for a class

with an even distribution of class labels p1 = ... = pk = 1/k and 0 for a distribution

that has only instances with one label, i.e. pi = 1, pj 6=i = 0. To summarize, the number

of classes varies from 3 to 20, with entropy varying between 0.4819 and 0.9976. The

smallest training sample size (after subsampling) is 133, and the number of attributes

ranges from 6 to 254.

Because classes without a sufficient number of instances have been discarded,

and the data has optionally been subsampled, not all results on these datasets will

correspond identically to those found in the literature. However, we are able to perform

comparative studies since our experiments include a number of baseline algorithms. Also

note that a few of these data sets have classes that would be more appropriately modeled

as ordinal attributes, but that in these experiments we omit any ordering information

and treat classes simply as distinct nominal values.

4.2.1.2 Methods

We use a modified version of LibSVM with probability estimates enabled ac-

cording to the algorithm presented in [103], using Weka’s adapter. LibSVM is non-

deterministic when probability estimates are produced, so we modified LibSVM to use
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Table 4.1: Properties of the 20 data sets used in our experimental studies.

dataset classes entropy numeric nominal train test sampled-from

anneal 4 0.6282 6 23 300 150 878
arrhythmia 5 0.7311 198 56 257 129 386
authorship 4 0.9363 70 0 300 150 841

autos 5 0.9328 15 10 134 68 202
cars 3 0.8693 6 1 270 136 406

collins 11 0.9543 19 0 300 150 451
dj30-1985-2003 20 0.9936 6 0 133 67 138123

ecoli 4 0.9008 6 0 204 103 307
eucalyptus 5 0.9725 14 5 300 150 736
halloffame 3 0.5010 15 1 300 150 1340

hypothyroid 3 0.4819 6 20 300 150 3707
letter 18 0.9920 16 0 136 68 18668

mfeat-morphological 10 0.9911 6 0 300 150 1888
optdigits 10 0.9971 58 0 300 150 5620

page-blocks 5 0.5945 10 0 300 150 5393
segment 7 0.9927 18 0 300 150 2086

synthetic-control 6 0.9976 60 0 300 150 600
vehicle 4 0.9923 18 0 300 150 846
vowel 11 0.9910 10 3 300 150 990

waveform 3 0.9942 40 0 300 150 5000

a deterministic seed instead of seeding from the system clock to enable reproducible

runs. The one-vs-all and all-pairs methods are implemented in Scala under the loss-

based decoding framework1 using a squared error decoding for one-vs-all to implement

continuous-output winner-take-all and Hamming decoding for the all-pairs reduction to

implement voting.

In order to compare shared-hyperparameter selection to individual optimization

model selection, we evaluate both techniques on the 20 datasets identified in Section

4.2.1.1. Results are averaged over 10 random splits.

Support Vector Machines (SVM-121) We use the SVM algorithm as im-

plemented in LibSVM [103], using the Gaussian kernel. To search over the hyperpa-

rameters {c, γ}, we perform a search over the coarse 7× 7 grid of

{−5,−1.666, 1.666, 5.0, 8.333, 11.666, 15.0}2 to first determine a value for the cost hy-
1 The default Weka implementation of One-vs-All or ECOC uses a loss-oriented output, in which

probabilities are summed (not using either Hamming decoding or continuous winner-take-all).
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perparameter c. Then a separate search is performed over a finer grid of 72 samples

(ranging from −40 to 15) at the previously determined c-value to obtain the value for

γ. We used this sampling scheme since there was much more sensitivity to the γ hy-

perparameter than to the c hyperparameter, and so that our scheme would take a total

of 121 samples, as done in many other grid searches, such as LibSVM [103]. This fine-

granularity 1-d search for γ also facilitates visualization of the results. Platt scaling is

used to fit a sigmoid to each of the SVM models to improve probability estimates [82],

and Wu et al.’s technique for improving probability estimates by applying their second

method for pairwise coupling to the binary predictions [103].

Accuracy Metric The accuracy metric counts the number of correctly clas-

sified instances, ignoring probabilistic predictions: a = 1
N

∑N
i=1 1(ŷ(x) = y(x)), where

ŷ(x) = argmaxi pi(x) is the predicted class, x is the input attribute vector, and y(x)

is the true class. In this chapter, we primarily focus on classifier using the accuracy

metric, though some results with the Brier metric are presented in Section 4.4.2. The

accuracy metric has the advantage that accuracy can be computed on both the binary

subproblems and on the original multiclass problem; other multiclass metrics may not

have a corresponding binary metric (or vice-versa).

4.2.1.3 Statistical Techniques

Since the scores are unlikely to be normally distributed, we use the Wilcoxon

signed-ranks test for identifying statistical significance of the results [24]. Also, Demšar

recommends using 5+ datasets to obtain reliable results [24]; we use 20 independent

data sets to improve statistical confidence in our results.

The rest of this section is organized as follows. Section 4.2.2 compares shared-

hyperparameter to independent optimization. In order to understand the results, we

investigate the structure of the binary subproblems and of the multiclass problems and

the relationship between the two in Section 4.2. We analyze the results and perform



68

control studies in Section 4.3.

4.2.2 Results

Figure 4.3 indicates the performance of shared-hyperparameter optimization and

independent optimization for one-vs-all, all-pairs, one-vs-all with the Hamming loss

function and all-pairs with the squared error loss function. In each case, our results show

that shared-hyperparameter optimization attains a higher accuracy than independent

model optimization.
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Figure 4.3: Average accuracy values comparing independent to shared hyperparameter
selection for each reduction, averaged over 20 data sets. The advantage of shared over
independent in the one-vs-all reduction is not statistically significant at a p ≤ 0.05 level.
One standard error is indicated for each method for the 10 runs.

For the four combinations of {one-vs-all, all-pairs} × {squared, Hamming}, shared-

hyperparameter optimization outperforms independent optimization (see Table 4.2).

For continuous one-vs-all, the win is not statistically significant at p ≤ 0.05, with a

value of p ≤ 0.0663; for all other cases the win is statistically significant. For continuous
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one-vs-all all-pairs one-vs-all-hamming all-pairs-squared

accuracy shared 0.0663 shared 0.0027 shared 0.0027 shared 0.0028

Table 4.2: Winning strategy for each combination of reduction and metric. Statistically
significant wins (at p ≤ 0.05) are highlighted. P-values from the Wilcoxon signed-ranks
test are indicated after the winning strategy.

one-vs-all, shared hyperparameter optimization attains an average rank of 1.3 (compared

to 1.7 for independent optimization) and an average accuracy of 77.55%, compared to

76.46% for independent optimization. Fine-grained results, including performance on

individual data sets, are reported in the appendix (see Section 4.6.1). Explanations for

the mechanism behind these results are discussed in Section 4.3.

4.3 Analysis

In this section, we investigate the mechanism behind the effectiveness of shared-

hyperparameter optimization. We start by showing that shared-hyperparameter op-

timization is advantageous because subproblems often have similar structure (Section

4.3.1). Conversely, we show that when subproblem decision boundaries have differ-

ing shapes that independent optimization is necessary (Section 4.3.2). We also discuss

the relationship between binary and multiclass accuracy, showing a strong correlation

(Section 4.3.3). We also perform control studies that rule out other explanations. In

Section 4.3.4, we invalidate the hypothesis that shared hyperparameter optimization is

more effective because it uses the true target metric for optimization instead of a binary

metric. In Section 4.3.5, we show that choosing optimal classifiers on subproblems (as

judged by the oracle) favors independent optimization for reductions that use Hamming

decoding, but still favors shared-hyperparameters for the one-vs-all reduction.
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4.3.1 Subproblem are Similar

In this section, we show that subproblems in multiclass classification often have a

similar structure with respect to model selection and, subsequently, that they often share

similar optima. This subproblem similarity makes shared-hyperparameter optimization

more productive than independent optimization.

For algorithms like one-vs-all, it is not unexpected for subproblems to have similar

structure since portions of one decision boundary may appear in several problems. For

example, consider a 5 class classification problem. The first one-vs-all subproblem is to

discriminate class c1 from {c2, c3, c4, c5}. The second subproblem is to discriminate class

c2 from the union of classes c1, c3, c4, c5. Both of these subproblems share c3, c4, c5 in

the negative indicator class, and therefore, the subproblems will share similar portions

of the decision boundary.

Another explanation of why subproblems might have similar structure is that

the generative distribution that produces elements from each class may have similar

physical, statistical, or noise properties. For instance, if each class in a data sample

is produced by a Gaussian distribution with an identity covariance matrix, then all

subproblems in the all-pairs reduction will be optimally fit with linear discriminants.

In the remainder of this section, we show that subproblems in real-world data

sets are structurally similar, and that this causes shared hyperparameter optimization

to work well since a single hyperparameter value can often be chosen that performs

well on many subproblems. As an example, we select the four class problem vehicle to

illustrate the relationship between subproblems. Composite results over many data sets

are discussed in Section 4.3.1.3.
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4.3.1.1 Case Study: The Vehicle Dataset

We selected the vehicle data set for particular investigation since it illustrates

many of the important issues in subproblem similarity. The vehicle data set is a 4-class

problem, and therefore has four one-vs-all subproblems and 6 all-pairs subproblems.

One-vs-All Figure 4.4 indicates the model selection curves for the four sub-

problems in one-vs-all for the vehicle data. First, note that there seem to be two types

of behaviors; the upper pair of curves for class c2 and class c3 and the lower pair for

classes c0 and c1. It is interesting to note that the lower curves correspond to the classes

opel and saab and the upper curves correspond to bus and van, showing that these con-

ceptually similar classes have similar structures under model selection. Second, note

that even though the pairs of curves have significantly different shape, they have op-

tima in nearly the same region of the log2(γ) dimension, around log2(γ) = −5.0. This

indicates that the shared hyperparameter would be effective for this problem since all

four classes, though different, peak at the same hyperparameter setting. Table 4.7 indi-

cates that independent optimization actually averages a 0.8% higher average accuracy,

though this difference is probably not significant compared to the standard deviation of

about 3.0%.

All-Pairs Figure 4.5 indicates the model selection curves for the 6 subprob-

lems in the all-pairs reduction for the vehicle data set. Note that 5 of the subproblems

(upper part of the chart) have a similar structure, with broad peaks in the range of

−13 ≤ log2(γ) ≤ −3. The unique lower subproblem plot is between the two sedans

opel and saab. Again, despite the difference between these types of series, they have a

similar peak, around log2(γ) = −6.0. Table 4.8 indicates that shared-hyperparameter

optimization averages about 1.3% higher average accuracy, again probably not signifi-

cant compared to the standard deviation of about 3.0%.
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Figure 4.4: Independent model selection curves for the four one-vs-all subproblems in
the vehicle data set.
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Figure 4.5: Independent model selection curves for the 6 all-pairs subproblems in the
vehicle data set.
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4.3.1.2 Illustration of Model Selection Curves

In this section, we show the model selection curves for the cars, page-blocks and

letter data sets under the one-vs-all and all-pairs reduction methods, which represent

many of the salient features in the 20 data sets. Note that the curves tend to peak near

the same regions, and that often, subproblems have similar shapes.
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(b) cars: all-pairs
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(c) page-blocks: one-vs-all
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(d) page-blocks: all-pairs
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(f) letter: all-pairs

Figure 4.6: Examples of subproblem performance as a function of γ for the cars, page-
blocks and letter data sets.
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4.3.1.3 Aggregate Results

In order to quantify the pertinent differences between subproblems, we compute

the average binary subproblem loss at the hyperparameter value selected by shared-

hyperparameter optimization. Specifically, we identify the hyperparameter value γs

selected by the shared-hyperparameter method, then for each of the subproblems, we

compute the difference between optimal binary accuracy of the subproblem attained at

the optimal value of gamma γo. The difference is d = ā(γo) − a(γs), which quantifies

the degree to which the subproblems have similar peaks.

The average subproblem losses incurred by shared-hyperparameter optimization

for the one-vs-all reduction are indicated in Figure 4.7. All differences are less than

0.80%, with an average of 0.30%. The datasets halloffame and vehicle attain the opti-

mal values for all subproblems. These results validate our hypothesis because they show

that at a particular hyperparameter value, the subproblems do not differ significantly

from their optimal value. Furthermore, this result indicates that the individual subprob-

lems attain very good values at the hyperparameter selected by shared-hyperparameter

optimization.

For the all-pairs reduction (see Figure 4.8), the average loss is 4.24%, significantly

larger than the average loss for the one-vs-all reduction. The largest loss values for the

all-pairs reduction are 36.4% for letter and 29.4% for dj30-1985-2003. Note that the

larger loss values occur at large number of classes. In this case, subproblems deviate

from each other so significantly that they suggest that independent-optimization should

outperform shared-hyperparameter optimization, contrary to the results obtained in

Section 4.2. In Section 4.3.5, we show that independent optimization is, in fact, more

appropriate for the Hamming decoding techniques (including all-pairs) once subsam-

pling problems are ruled out.

The similarity of subproblems does not guarantee that shared-hyperparameter op-
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Figure 4.7: Average subproblem accuracy loss at the value selected by shared-
hyperparameter optimization for the one-vs-all reduction.
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Figure 4.8: Average subproblem accuracy loss at the value selected by shared-
hyperparameter optimization for the all-pairs reduction.

timization will outperform independent optimization; independent optimization should

be able to determine the same hyperparameter sets for each subproblem. However, an

advantage of shared-hyperparameter optimization in the case of similar subproblems is

that the effective amount of validation data is the combination of validation data for
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all subproblems, whereas in independent optimization, each model selection must be

performed with a significantly smaller amount of validation data. This efficient re-use

of validation data may explain the benefits of of shared-hyperparameter optimization

over independent optimization2 ; further experimental studies would be necessary in

order to isolate this effect and validate this hypothesis.

4.3.2 Differing Subproblems Favor Independent Optimization

In this section, we construct synthetic problems to show that independent op-

timization is more effective than shared-hyperparameter optimization in problems in

which subproblem decision boundaries differ in shape. In particular, we investigate the

behavior of both model selection techniques in two synthetic data sets that are designed

to have different optima for each subproblem with respect to model selection. Two

of the parameters that govern performance as a function of hyperparameter sets are

(a) noise and (b) shape of the decision boundary. We first experiment with Gaussian

data sets and varying degrees of noise between each data set, which contains only linear

decision boundaries. In the next section, we experiment with datasets in which some

subproblem decision boundaries are linear and others are nonlinear. For both synthetic

data sets, we use 300 training and 150 test points over 10 random resamplings as in

Section 4.2.

Linear Decision Boundaries with Varying Noise In our first synthetic

data experiment, we define a three-class problem in which each intra-class decision

boundary is linear, and there are varying degrees of noise between each class. To

implement this, we sample data points from each class from a Gaussian, each with

the identity covariance matrix. The centroids of each Gaussian are c1 = (0, 0), c2 =

(0, 1), c3 = (0, 3) so that the intra-class distances are 1, 2, 3. Qualitatively, these settings

correspond to a small, medium and large amount of noise between each pair of classes.
2 Thanks to Shumin Wu for identifying this explanation.
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In the one-vs-all reduction, some subproblem classes correspond to the union of two

classes, and again we have varying degrees of noise between each subproblem. In the

c1 vs c23 subproblem, the amount of noise between class c1 and c23 is determined by

the closest class in c23, namely c2. Therefore, in this case, there are interclass distances

of 1 (between class c1 and c23) and 2 (between class c3 and c12). The subproblem

corresponding to c2 vs c13 has class c2 between the larger composite class c13. Therefore,

this configuration of Gaussian clusters offers varying degrees of noise between each

subproblem for both all-pairs and one-vs-all reductions. The datasets are shown in

Figure 4.9.

Linear Decision Boundaries with Varying Noise

Class_0 Class_1 Class_2
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Figure 4.9: Synthetic datasets generated by Gaussian distributions with varying degrees
of noise.

Results The results are indicated in Table 4.3. For this synthetic data set,

shared-hyperparameter model selection outperforms independent optimization in all

three reductions. The improved accuracy of shared-hyperparameter optimization is not

very large, less than 1.1% in all cases. To understand these results, the model selection
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plots are shown in Figures 4.10 (for the one-vs-all reduction) and 4.11 (for the all-

pairs reduction). Note that in both cases, despite having a different amount of noise

in each subproblem, the optima are not significantly separated, and that choosing the

optimal point with respect to the multiclass curve doesn’t incur much loss on any of

the subproblems. Therefore, we conclude that shared-hyperparameter optimization is

sufficient for this synthetic problem because the subproblems are structurally similar

with respect to model selection.

one-vs-all: Gaussians
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Figure 4.10: Model selection curves for Gaussian synthetic data sets under the one-vs-all
reduction

Table 4.3: Accuracy results for linear decision boundaries (in %), for synthetic data sets
as described in paragraph 4.3.2. Standard error over 10 random samplings is indicated
in parentheses.

reduction shared independent
one-vs-all 66.7 (1.3) 66.1 (1.3)

one-vs-all-hamming 58.2 (2.5) 58.1 (1.9)
all-pairs 67.6 (1.3) 66.5 (1.9)
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all-pairs: Gaussians
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Figure 4.11: Model selection curves for Gaussian synthetic data sets under the all-pairs
reduction

Linear and Nonlinear Decision Boundaries In our second synthetic ex-

periment, we introduce a nonlinear boundary between classes c1 and c2. In particular,

for classes c1 and c2, a point is drawn uniformly from the unit circle, and the point

is assigned to class c1 if y > 0.35sin(6.4πx); otherwise it is assigned to class c2. This

distribution yields a sinusoidal decision boundary with a frequency of f = 3.2 (about 7

periods across the unit circle). A third class c3 is drawn from a Gaussian distribution

with an a covariance matrix of 0.1I, where I is the 2×2 identity matrix, and a centroid

located at x = 0, y = 1, so that it overlaps significantly with class c2 and less with class

c1.

Results The results are indicated in Table 4.3. For this synthetic data set,

independent optimization outperforms shared-hyperparameter model selection in all

three reductions. The improved accuracy of independent optimization is 1% for each

of the one-vs-all reductions, and 1.8% for the all-pairs reduction. To understand these
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Linear and Nonlinear Decision Boundaries
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Figure 4.12: Synthetic datasets with sinusoidal and linear decision boundaries.

results, the model selection plots are shown in figures 4.13 (for the one-vs-all reduction)

and 4.14 (for the all-pairs reduction). This problem was constructed to have differing

optimal hyperparameters for each subproblem. For both the one-vs-all and all-pairs

reductions, the optimal hyperparameter on one subproblem gives more than 2% error

on at least one other subproblem. Therefore, since the subproblems are significantly

different with respect to model selection, independent optimization is essential for this

problem.

Table 4.4: Accuracy results for mixed linear and nonlinear decision boundaries (in %),
described in paragraph 4.3.2. Standard error over 10 random samplings is indicated in
parentheses.

reduction shared independent
one-vs-all 82.4 (0.6) 83.5 (0.9)

one-vs-all-hamming 78.5 (1.3) 79.5 (1.3)
all-pairs 82.4 (1.3) 84.2 (0.9)
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one-vs-all: Sinusoidal
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Figure 4.13: Model selection curves for Sinusoidal synthetic data sets.

all-pairs: Sinusoidal
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Figure 4.14: Model selection curves for Sinusoidal synthetic data sets.

Summary The results of the synthetic experiments indicate that when sub-

problems have significantly different shape with respect to tuning of hyperparameters
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(as in the mixed linear/nonlinear example above), that it is essential to allow each

subproblem to select its own optimal hyperparameters. On the other hand, when the

subproblems have similar shape, or, more specifically, have optima in similar regions of

the hyperparameter space, then shared-hyperparameter optimization is more effective.

Therefore, since shared-hyperparameter optimization outperformed independent opti-

mization in the real-world data sets, discussed in Section 4.2, we infer that this set of

real world data sets entailed subproblems that have similar structure with respect to

hyperparameter selection.

4.3.3 Average Binary and Multiclass Accuracy are Highly Correlated

In this section, we show that there is a strong correlation between binary and

multiclass accuracy. This correlation has several ramification for model selection in

multiclass classification with binary classifiers. First, it means that optimizing with

respect to the binary average is a reasonable way to optimize the multiclass accuracy.

Second, it means that more effective binary classifiers (possibly obtained through in-

dependent optimization) exhibit higher multiclass classification. First, we present an

illustrative example in Section 4.3.3.1, then generalize results over all 20 data sets in

Section 4.3.3.2.

4.3.3.1 Case Study: Anneal

Figure 4.15(a) indicates the accuracy as a function of the hyperparameter γ for the

curves. The curve labeled one-vs-all-shared indicates the model selection performance

for the one-vs-all method, while the curve labeled one-vs-all-sharedsub indicates the

average binary accuracy for all subproblems as a function of γ. Note that these curves

are qualitatively very highly correlated. The fact that the one-vs-all-sharedsub is several

percent above the other curve indicates that the subproblems are much easier than the

original multiclass problem. Third, the curve labeled one-vs-all-shared-oracle indicates
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the value of the model as determined by hold-out test data (instead of on validation

data as in the previous two curves). The similarity between the oracle curve and the

one-vs-all-shared curve indicates that model selection on validation data is choosing

models that are indeed effective on the test set.
anneal: one-vs-all
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(a) Anneal with one-vs-all
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(b) Scatterplot for anneal with one-vs-all
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(c) Anneal with all-pairs
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(d) Scatterplot for anneal with all-pairs

Figure 4.15: Correlation between average binary accuracy and multiclass accuracy for
the dataset anneal

4.3.3.2 Aggregate Results

To quantify the linearity of the relationship between the average binary accuracy

and multiclass accuracy, we fit a linear model to the multiclass vs. average-binary

scatter plots for each data set and compute the R2 statistic. A R2 value of 1.0 indicates

that the data points are collinear (note that this result does not guarantee that the

generating model from which the points were sampled is linear). Figure 4.16 indicates
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the R2 statistics for linear fits for each of the variables for the one-vs-all reduction. In

this case, the average R2 statistic is 0.791. For all-pairs (see Figure 4.17), the average R2

statistic is 0.910. These results indicate that there is a significant correlation between

the average binary accuracy and multiclass accuracy.
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Figure 4.16: R2 values indicating goodness-of-fit of a linear relationship between the
average binary accuracy and the multiclass accuracy for the one-vs-all reduction.
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Figure 4.17: R2 values indicating goodness-of-fit of a linear relationship between the
average binary accuracy and the multiclass accuracy for the all-pairs reduction. The R2

computation yielded NaN for the datasets letter and dj30-1985-2003, so those results
are omitted.
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4.3.4 Model Selection Effective on Non-Target Metric

One possible explanation for the advantage of shared-hyperparameter optimiza-

tion over independent optimization is that shared-hyperparameter model selection is

performed on the target metric while independent optimization is performed on a set of

different (though related) metrics. In order to identify whether this mechanism explains

the results obtained in Section 4.2, we implemented a new classification algorithm that

operates by constraining hyperparameters to be shared, but selects the hyperparame-

ter set by optimizing average binary subproblem accuracy rather than the true target

metric of multiclass accuracy. We refer to this new technique as shared-sub because it

constrains hyperparameters to be shared, but selects them based on subproblem accu-

racy instead of multiclass accuracy.

For all combinations of one-vs-all, all-pairs x Hamming, squared error, there are

no statistically significant differences between shared-sub and shared-hyperparameters

based on multiclass accuracy. The statistical test is pairwise Wilcoxon signed-ranks

test at a p ≤ 0.05 level. The Wilcoxon signed ranks test indicate difference for one-

vs-all at p ≤ 0.6507, for all-pairs at p ≤ 0.1042, for one-vs-all-hamming at p ≤ 0.5678

and for all-pairs-squared at p ≤ 0.1231. (A three-way Holm test which also includes

the “independent hyperparameters” method also indicates no statistically significant

differences between the two methods). Shared w/subproblem-selection also beats in-

dependent optimization everywhere that shared w/multiclass-selection does, except for

one-vs-all-hamming, in which case it ties with independent optimization.

The above results indicate that sharing hyperparameters provides regularization

and protection against choosing suboptimal binary classifiers, even though selection is

not performed on the true multiclass metric.
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4.3.5 Oracle Selection Rules Out Sampling Problems

One possible explanation for the tendency for shared-hyperparameter model selec-

tion to outperform independent optimization is related to to the bias-variance tradeoff.

In independent optimization, more parameters must be fit during model selection. In

particular, in shared-hyperparameter model selection, only m hyperparameters must

be determined, where m is the number of hyperparameters used by the learning algo-

rithm (e.g. m = 2 for support vector machines with a Gaussian kernel). In independent

optimization, m×L hyperparameters must be determined, where L is the number of sub-

problems. With the increased flexibility of the model, overfitting becomes a significant

problem, and, in the absence of a sufficiently large validation set, incorrect hyperpa-

rameter values may be selected for many of the subproblems. In order to rule out the

possibility of subsampling problems in determining the model-selection parameters for

independent optimization, we introduce an oracle, which performs model selection not

on validation data but rather on actual test data. While this technique cannot be used

in practice, we experiment with it here in order to determine whether the advantage

of shared-hyperparameter model selection is due to selection of hyperparameter sets

that, while optimal with respect to the validation set, are suboptimal with respect to

the actual test dataset. Note that the test data must be reduced into binary subprob-

lems in order to use it as validation data on the binary subproblems in independent

optimization.

The results for oracle selection are indicated in Table 4.5. Even when an oracle

is used to select optimal models for both shared and independent methods, shared

hyperparameters still outperforms independent optimization for the one-vs-all method.

Independent optimization with oracle selection outperforms shared optimization for all-

pairs and one-vs-all-hamming, and there is no statistically significant differences between

the methods for all-pairs-squared.
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one-vs-all all-pairs one-vs-all-hamming all-pairs-squared

accuracy shared 0.0071 indep 5.72× 10−6 indep 4.77× 10−5 indep 0.3955

Table 4.5: Winning strategy for each combination of reduction and metric, when using
the oracle selection method. Statistically significant wins (at p ≤ 0.05) are highlighted.
P-values from the Wilcoxon signed-ranks test are indicated after the winning strategy.

Another explanation for the accuracy of shared-hyperparameter optimization is

that requiring re-use of the same hyperparameter set for each subproblem may provide

some level of regularization for the problem; that is, it may provide essential smoothing

that is omitted by independent-optimization.

4.4 Supplemental Results

In addition to the main results discussed in Section 4.2, we also discuss two

supplementary results: a comparison of all methods in this study (Section 4.4.1) and

discussion of performance under a probability calibration metric (Section 4.4.2).

4.4.1 One-vs-All vs. All-Pairs

Several studies have previously compared the all-pairs reduction to one-vs-all [85].

We also compared 7 of the algorithms (omitting one-vs-all-hamming-independent, a

poorly-performing algorithm, so that familywise-error statistics would be computation-

ally feasible). The results are indicated in Table 4.6, and the average ranks are depicted

in Figure 4.18. The highest ranking algorithm is all-pairs using shared-hyperparameter

optimization, but it is not statistically significantly different from all-pairs with squared-

error decoding, one-vs-all with shared-hyperparameter optimization or one-vs-all with

independent optimization.
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Figure 4.18: Average ranks of the 7 algorithms under study; algorithms not statistically
significantly different from the top-scoring algorithm are connected to it with a vertical
line.

4.4.2 Brier Metric

In order to evaluate the calibration of each method, we use the Brier metric [16],

also known as the mean squared error (MSE) metric, in which b(x) = 1
d

∑
j(tj(x) −

p̂j(x))2, where x is the input vector, tj is the target probability for the the jth class, p̂j is

the probability estimated by the classification method and d is the dimensionality of the

input vector. We take tj(x) to be 1 if the label belongs to the jth class and 0 otherwise.

This metric is used in other related work such as Wu et al. [103] and Zadrozny [106].

In the results presented below, we use the rectified Brier score r(x) = (1− b(x))× 100

so that the results are structurally similar to percent accuracy; namely that higher is

better and that the values range between 0% and 100%. For all four combinations

of {one-vs-all, all-pairs} × {squared, Hamming}, there is no statistically significant

difference between shared hyperparameter optimization and independent optimization

on the Brier metric (see Table 4.2). One possible explanation for this result is that

a significantly different metric is used for model selection than for model evaluation.
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Future studies could experiment with using a binary Brier metric for purposes of model

selection to see whether performance is improved.
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Figure 4.19: Average rectified Brier scores comparing independent to shared hyperpa-
rameter selection for each reduction.

4.5 Conclusion

In this chapter, we focused on the issue of model selection in solving multiclass

classification problems by combining complementary binary classifiers. In particular,

we showed that it is more effective to constrain hyperparameters to be shared across

subproblems rather than independently optimizing each subproblem. This result is

counterintuitive since it suggests that it is better to accept suboptimal binary models in

order to improve the overall model. We performed several control studies to isolate the

mechanism behind the effectiveness of shared-hyperparameter optimization, and showed

that shared-hyperparameter maintains its superiority even when (a) the average binary

accuracy is used as the metric instead of the true multiclass target metric and (b) the
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oracle is used to ensure that suboptimal models are not selected due to low validation set

sizes. We showed that binary subproblems in multiclass classification problems often

have similar structure, and that this is an explanation for the superiority of shared-

hyperparameter optimization. Conversely, we constructed a synthetic data set with

differing optima for each subproblem and showed that independent optimization is more

effective in this case. As a supplementary result, we also showed all-pairs with voting

to rank higher than other algorithms, but not statistically significantly higher than

one-vs-all in a 7-way comparison.

4.5.1 Future Work

This work could be extended to cover random coding matrices (with a variety of

loss functions). Another interesting avenue of research would be to study (possibly het-

erogeneous) model combination in each of the subproblems, as in Caruana et al. [17] and

see if the same results we obtained for model selection also apply to the case of model

combination (i.e. averaging binary models vs. averaging multiclass models). Also, this

research focused on the accuracy metric (0-1 loss) and Brier score metric. Future work

could investigate custom or domain-specific multiclass loss functions, including those

that do not necessarily have a corresponding analogous loss function for the associated

binary subproblems. Additional studies could determine whether there is any advan-

tage in standardizing each subproblem independently, instead of standardizing only the

multiclass problem as done in our studies.

4.6 Appendix

4.6.1 Shared vs. Independent Optimization - Results

This section provides the results comparing shared-hyperparameter optimization

to independent optimization on each data set. Tables 4.7-4.10 show the accuracy values
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for one-vs-all and all-pairs under the squared-error and hamming decodings. Tables

4.11-4.14 show the rectified Brier scores.
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Table 4.7: Average accuracy over 10 random splits for shared and independent model
selection strategies with the one-vs-all reduction, with the standard deviation indicated
in parentheses. The winner for each data set is indicated in bold.

dataset one-vs-all-shared one-vs-all-independent

anneal 97.47 (0.98) 97.33 (0.94)
arrhythmia 72.02 (3.42) 72.56 (2.26)
authorship 99.33 (0.54) 99.40 (0.58)

autos 70.74 (4.13) 71.18 (4.05)
cars 78.53 (1.86) 78.38 (2.84)

collins 42.73 (3.88) 40.47 (4.44)
dj30-1985-2003 22.84 (3.59) 18.36 (5.59)

ecoli 86.41 (4.09) 86.31 (4.61)
eucalyptus 54.40 (5.41) 53.13 (2.41)
halloffame 90.27 (2.04) 90.67 (2.63)

hypothyroid 92.13 (1.98) 93.07 (3.00)
letter 55.59 (8.85) 44.56 (10.35)

mfeat-morphological 74.40 (3.08) 72.53 (4.58)
optdigits 93.80 (1.51) 93.33 (1.83)

page-blocks 89.60 (2.18) 89.33 (1.96)
segment 91.53 (1.89) 90.93 (1.78)

synthetic-control 98.13 (1.25) 98.13 (0.93)
vehicle 79.53 (2.97) 80.33 (3.15)
vowel 80.13 (1.91) 78.13 (2.59)

waveform 81.47 (4.25) 81.00 (3.97)
average 77.55 76.46

average rank 1.3 1.7
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Table 4.8: Average accuracy over 10 random splits for shared and independent model
selection strategies with the all-pairs reduction, with the standard deviation indicated
in parentheses. The winner for each data set is indicated in bold.

dataset all-pairs-shared all-pairs-independent

anneal 97.27 (1.19) 97.13 (1.18)
arrhythmia 72.09 (3.47) 73.80 (2.22)
authorship 99.33 (0.54) 99.20 (0.98)

autos 73.68 (4.35) 67.79 (4.41)
cars 77.65 (2.90) 77.06 (3.04)

collins 41.87 (3.74) 43.20 (3.47)
dj30-1985-2003 19.40 (4.61) 16.12 (4.03)

ecoli 86.12 (4.69) 83.01 (5.22)
eucalyptus 55.93 (4.63) 56.80 (5.09)
halloffame 90.07 (1.87) 90.27 (1.99)

hypothyroid 94.00 (1.44) 91.60 (2.71)
letter 55.29 (9.12) 36.91 (8.92)

mfeat-morphological 75.80 (2.65) 73.27 (4.12)
optdigits 94.07 (1.42) 90.47 (4.28)

page-blocks 91.00 (1.70) 90.07 (2.40)
segment 92.07 (1.87) 89.20 (3.04)

synthetic-control 98.33 (0.85) 91.73 (12.50)
vehicle 80.40 (3.18) 79.13 (2.83)

vowel 84.60 (2.82) 78.47 (3.02)
waveform 83.93 (2.07) 83.07 (2.74)

average 78.14 75.41
average rank 1.2 1.8
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Table 4.9: Average accuracy over 10 random splits for shared and independent model
selection strategies with the one-vs-all reduction with Hamming decoding, with the
standard deviation indicated in parentheses. The winner for each data set is indicated
in bold.

dataset one-vs-all-hamming-shared one-vs-all-hamming-independent

anneal 97.20 (1.21) 96.60 (1.35)
arrhythmia 66.51 (7.95) 65.04 (6.02)
authorship 98.80 (0.61) 98.47 (1.44)

autos 64.85 (4.24) 62.35 (6.97)
cars 79.19 (4.23) 77.50 (4.78)

collins 26.27 (3.83) 25.87 (4.16)
dj30-1985-2003 17.31 (5.23) 15.82 (5.46)

ecoli 84.27 (4.53) 84.76 (4.60)
eucalyptus 39.40 (4.63) 38.93 (5.10)
halloffame 89.80 (1.99) 88.47 (3.28)

hypothyroid 90.87 (1.69) 91.87 (2.75)
letter 39.71 (7.20) 34.12 (7.13)

mfeat-morphological 65.47 (3.09) 65.20 (3.20)
optdigits 89.47 (2.55) 88.67 (3.16)

page-blocks 89.33 (1.44) 88.73 (2.10)
segment 85.93 (2.91) 84.53 (3.74)

synthetic-control 98.00 (1.30) 97.13 (0.95)
vehicle 72.27 (4.31) 71.53 (3.81)
vowel 74.20 (3.33) 73.00 (5.19)

waveform 79.73 (3.57) 80.87 (3.72)
average 72.43 71.47

average rank 1.2 1.8
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Table 4.10: Average accuracy over 10 random splits for shared and independent model
selection strategies with the all-pairs-squared reduction, with the standard deviation
indicated in parentheses. The winner for each data set is indicated in bold.

dataset all-pairs-squared-shared all-pairs-squared-independent

anneal 97.20 (1.25) 97.27 (1.02)
arrhythmia 71.09 (2.92) 73.41 (2.31)
authorship 99.47 (0.61) 99.07 (0.90)

autos 70.74 (3.63) 68.82 (3.59)
cars 78.24 (2.67) 76.69 (2.86)

collins 44.87 (3.24) 44.33 (3.07)
dj30-1985-2003 19.70 (4.03) 18.96 (5.41)

ecoli 85.92 (4.42) 83.30 (5.09)
eucalyptus 57.53 (5.92) 58.33 (4.73)
halloffame 90.13 (1.88) 90.07 (2.14)

hypothyroid 93.80 (1.44) 91.27 (2.77)
letter 53.53 (8.94) 45.00 (8.00)

mfeat-morphological 75.40 (3.88) 72.33 (3.71)
optdigits 93.80 (1.22) 92.60 (2.28)

page-blocks 89.93 (1.68) 89.93 (2.16)
segment 91.80 (1.75) 90.13 (2.99)

synthetic-control 98.33 (0.85) 98.07 (1.27)
vehicle 80.20 (2.69) 80.13 (2.47)

vowel 84.67 (2.70) 79.13 (3.61)
waveform 83.87 (2.24) 83.00 (2.87)

average 78.01 76.59
average rank 1.2 1.8
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Table 4.11: Average rectified Brier score over 10 random splits for shared and inde-
pendent model selection strategies with the one-vs-all reduction, with the standard
deviation indicated in parentheses. The winner for each data set is indicated in bold.

dataset one-vs-all-shared one-vs-all-independent

anneal 98.95 (0.36) 98.90 (0.29)
arrhythmia 91.44 (1.13) 91.62 (0.63)
authorship 99.48 (0.21) 99.62 (0.21)

autos 91.43 (1.09) 91.79 (0.89)
cars 89.23 (0.86) 88.83 (1.26)

collins 93.55 (0.21) 93.29 (0.34)
dj30-1985-2003 95.59 (0.16) 95.52 (0.32)

ecoli 94.58 (1.64) 94.60 (1.54)
eucalyptus 88.34 (0.75) 88.10 (0.58)
halloffame 94.73 (1.14) 94.66 (1.21)

hypothyroid 95.92 (0.83) 96.05 (1.35)
letter 96.58 (0.31) 96.13 (0.51)

mfeat-morphological 96.10 (0.41) 95.96 (0.47)
optdigits 98.97 (0.22) 98.90 (0.24)

page-blocks 96.91 (0.56) 96.91 (0.59)
segment 98.04 (0.35) 97.95 (0.32)

synthetic-control 99.33 (0.64) 99.46 (0.14)
vehicle 92.89 (0.82) 92.97 (0.75)
vowel 97.26 (0.24) 97.32 (0.25)

waveform 91.40 (1.28) 91.51 (1.43)
average 95.04 95.00

average rank 1.4 1.6
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Table 4.12: Average rectified Brier score over 10 random splits for shared and indepen-
dent model selection strategies with the all-pairs reduction, with the standard deviation
indicated in parentheses. The winner for each data set is indicated in bold.

dataset all-pairs-shared all-pairs-independent

anneal 90.07 (0.07) 90.06 (0.32)
arrhythmia 88.31 (0.69) 88.04 (0.74)
authorship 90.24 (0.06) 90.29 (0.16)

autos 88.08 (0.40) 87.95 (0.30)
cars 86.24 (0.84) 85.92 (0.94)

collins 92.62 (0.05) 92.66 (0.04)
dj30-1985-2003 95.36 (0.02) 95.33 (0.04)

ecoli 88.94 (0.55) 89.18 (1.18)
eucalyptus 87.28 (0.40) 87.19 (0.52)
halloffame 89.91 (0.68) 89.99 (0.49)

hypothyroid 91.16 (0.35) 90.60 (0.62)
letter 95.12 (0.05) 95.05 (0.04)

mfeat-morphological 92.49 (0.06) 92.56 (0.15)
optdigits 92.57 (0.02) 92.60 (0.05)

page-blocks 89.59 (0.24) 89.94 (0.64)
segment 90.81 (0.10) 90.74 (0.07)

synthetic-control 90.35 (0.02) 90.30 (0.27)
vehicle 88.88 (0.47) 88.65 (0.39)

vowel 92.98 (0.03) 93.02 (0.07)
waveform 89.03 (0.47) 88.84 (0.61)

average 90.50 90.45
average rank 1.4 1.6
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Table 4.13: Average rectified Brier score over 10 random splits for shared and indepen-
dent model selection strategies with the one-vs-all reduction with Hamming decoding,
with the standard deviation indicated in parentheses. The winner for each data set is
indicated in bold.

dataset one-vs-all-hamming-shared one-vs-all-hamming-independent

anneal 98.76 (0.52) 98.80 (0.41)
arrhythmia 89.80 (0.88) 89.93 (0.91)
authorship 99.73 (0.14) 99.63 (0.27)

autos 90.30 (1.48) 90.57 (1.06)
cars 88.42 (1.17) 88.30 (1.81)

collins 92.10 (0.32) 92.19 (0.40)
dj30-1985-2003 95.45 (0.34) 95.18 (0.77)

ecoli 92.88 (2.30) 93.34 (2.25)
eucalyptus 85.30 (1.14) 85.88 (1.29)
halloffame 93.94 (1.57) 94.21 (1.24)

hypothyroid 95.13 (0.60) 95.73 (1.29)
letter 96.10 (0.42) 95.80 (0.62)

mfeat-morphological 95.04 (0.51) 95.14 (0.57)
optdigits 98.74 (0.34) 98.64 (0.41)

page-blocks 96.43 (0.51) 96.58 (0.74)
segment 97.66 (0.45) 97.54 (0.50)

synthetic-control 99.50 (0.34) 99.39 (0.22)
vehicle 90.98 (1.44) 90.78 (0.90)
vowel 97.07 (0.28) 96.99 (0.49)

waveform 89.41 (2.33) 89.22 (2.27)
average 94.14 94.19

average rank 1.5 1.5
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Table 4.14: Average rectified Brier score over 10 random splits for shared and indepen-
dent model selection strategies with the all-pairs-squared reduction, with the standard
deviation indicated in parentheses. The winner for each data set is indicated in bold.

dataset all-pairs-squared-shared all-pairs-squared-independent

anneal 91.26 (0.69) 92.02 (1.23)
arrhythmia 89.67 (0.92) 89.20 (0.52)
authorship 91.42 (0.34) 92.29 (0.64)

autos 88.45 (0.63) 88.44 (0.55)
cars 87.01 (1.15) 87.91 (1.27)

collins 92.63 (0.06) 92.66 (0.04)
dj30-1985-2003 95.36 (0.03) 95.34 (0.03)

ecoli 89.82 (0.59) 90.57 (0.71)
eucalyptus 87.36 (0.35) 87.29 (0.29)
halloffame 92.60 (1.74) 92.24 (1.14)

hypothyroid 91.31 (0.74) 90.81 (0.94)
letter 95.07 (0.04) 95.06 (0.03)

mfeat-morphological 92.45 (0.12) 92.71 (0.13)
optdigits 92.59 (0.06) 92.65 (0.06)

page-blocks 90.02 (0.59) 90.86 (0.80)
segment 90.75 (0.06) 90.77 (0.16)

synthetic-control 90.88 (0.21) 90.80 (0.25)
vehicle 89.30 (0.29) 89.24 (0.35)

vowel 92.90 (0.04) 93.05 (0.07)
waveform 89.37 (0.46) 89.23 (0.44)

average 91.01 91.16
average rank 1.5 1.5



Chapter 5

Probabilistic Pairwise Classification

Chapter Abstract

Pairwise classification is a technique for solving multiclass classification problems by

constructing a classifier to discriminate between each pair of classes. Early pairwise

classification techniques combined discrete votes from each pairwise classifier to produce

a multiclass classification [38]. Subsequent work has shown the advantage of combining

probabilistic predictions (instead of votes) to produce a probability distribution over

classes (instead of a discrete classification) [51, 106, 103]. Pairwise classification methods

have been criticized because each pairwise classifier is trained on only two of the classes

but makes predictions for instances from any class [51, 23]. In this chapter, we propose

a new pairwise classification technique that addresses this problem by weighting each

pairwise prediction with an estimated probability that the instance belongs to the pair.

The technique is based on the Theorem of Total Probability, and relies on only the

assumption that each instance is assigned exactly one label. Furthermore, our method

is conceptually simpler and easier to implement than other methods that incorporate

and produce probabilities in pairwise classification. Experimental studies on real world

data sets indicate that our proposed technique performs better than voted pairwise

classification [38] and the pairwise coupling methods from Hastie and Tibshirani [51]

and Wu et al. [103], at the cost of increased computational demands.
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5.1 Introduction

Multiclass classification is an important machine learning problem, encompass-

ing domains such as handwritten text recognition, heartbeat arrhythmia monitoring,

protein structure prediction [73], and many others. However, several supervised ma-

chine learning techniques such as support vector machines [10] and AdaBoost [35] are

designed for solving binary classification problems. While many modifications and ex-

tensions have been proposed for adapting these methods to multiclass classification

problems, another prominent line of research instead focuses on reducing the multiclass

problem to a set of binary problems. The most general framework for solving multi-

class classification problems with binary classifiers is the loss-based decoding framework

[2], which is flexible in how the multiclass problem is coded into binary classification

problems and how the binary classifier predictions are decoded as a multiclass predic-

tion. Loss-based decoding generalizes a widely-used technique called one-vs-all, which

creates one binary classification problem for each class to discriminate the class from

the union of the remaining classes. In this chapter, we focus on a related reduction

technique called pairwise classification (or all-pairs), which creates a binary classifier to

discriminate between each pair of classes.

5.1.1 Pairwise Classification

In pairwise classification (also known as all-pairs, all-vs-all (or AVA) [85], round-

robin classification [40] and 1-against-1 (or 11) [105]), a k-class classification problem

is reduced to k(k−1)
2 subproblems, one for each pair of classes. For example, Figure 5.1

indicates a k = 3 class problem with the decision boundary between classes A and C.

At prediction time, each binary classifier votes for one class, and the class with the

most votes is selected as the multiclass prediction, with ties broken randomly [38]. This

original formulation, which we refer to as voted pairwise classification (VPC), ignores
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Figure 5.1: Illustration of an A-C decision boundary in a 2D, 3-class example of the
all-pairs reduction.

confidence predictions from each binary classifier, instead combining a discrete vote

from each classifier, and produces a multiclass prediction rather than a probability dis-

tribution over classes. Despite these drawbacks, voted pairwise classification has several

advantages. Even though pairwise classification creates a large number of subproblems

(quadratic in the number of classes), each subproblem contains only a small fraction of

the instances in the multiclass classification problem. Furthermore, since these subprob-

lems involve only two classes, they can be significantly simpler than the original k-class

problem. That is, the decision boundary between two classes can be less complex than

a decision boundary discriminating between three or more classes. Another important

feature of pairwise classification is consistency.

5.1.1.1 Consistency

A desirable property of any reduction scheme is consistency, which guarantees

optimality of the multiclass classifier if each of the binary classifiers is optimal [5].

When pairwise classification was introduced in 1996, Friedman proved it to be consistent

by showing that Bayes optimal binary classifiers combine to produce a Bayes optimal

multiclass classifier. The Bayes optimal decision is given by

ŷ(x) = arg max
i=1..k

p(y = ci|ω ∈ L,x) (5.1)
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where L = {c1, c2, ..., ck} is the set of possible labels, y is the true label, x is the input

feature vector and ŷ is the predicted label. This is equivalent to

ŷ(x) = arg max
i=1..k

∑
j=1..k

1(
pi

pi + pk
>

pk
pi + pk

) (5.2)

where 1(x) = 1 if x is true and 0 otherwise. This reduces to

ŷ(x) = argmax
i=1..k

∑
j=1..k

1(p(y = ci|y ∈ {ci, cj},x) > p(y = cj |y ∈ {ci, cj},x)) (5.3)

Therefore, given reliable values for p(y = ci|y ∈ {ci, cj},x), binary reduction under the

all-pairs reduction yields the Bayes optimal decision. This analysis assumes p(y = ci|y ∈

{ci, ck},x) can be determined exactly for each subproblem, whereas in practice, it is

difficult or impossible to accurately obtain this probability distribution given a finite

sample size. However, even with finite sample sizes this analysis shows the all-pairs

reduction to be consistent and motivates solving each subproblem independently and as

accurately as possible. Friedman argues that the all-pairs reduction works according to

a bias-variance tradeoff, increasing variance slightly at the cost of significantly reduced

bias [38].

Friedman presents experimental results using nearest-neighbor classifiers and de-

cision tree (CART) methods with axis-oriented splits and linear combination splits on

synthetic data sets generated from Gaussian mixtures. For the nearest-neighbor algo-

rithm, Friedman identified that all-pairs is more accurate than one-vs-all and suggests

that this is due to the ability to tune the regularization hyperparameter (number of

neighbors) separately in each subproblem. He also observed that the all-pairs reduction

outperforms the one-vs-all reduction for CART methods with linear combination, and

suggested that is because the one-vs-all problems are significantly more difficult than

the two-class problems in the all-pairs reduction.
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5.1.1.2 Pairwise Coupling Schemes

While Friedman’s pairwise classification method produces a class prediction, sev-

eral authors have proposed algorithms for obtaining multiclass probabilities from pair-

wise probability predictions. These methods are often called pairwise coupling meth-

ods because the predicted pairwise probabilities are coupled together to produce the

multiclass classification. In this paper, we use the terms pairwise coupling and pair-

wise classification interchangeably. Pairwise coupling methods use discriminative binary

classifier to estimate the pairwise probabilities µij = p(y = ci|y = ci or cj ,x) (note that

µij = pi

pi+pj
) and differ in how the µij are used to estimate the multiclass probability

estimates p = {p1, p2, ..., pk} = f(µ̂ij(x)).

Hastie & Tibshirani In 1996, Hastie & Tibshirani proposed a pairwise cou-

pling algorithm that works by tuning the k-dimensional multiclass probability estimate

p = {p1, p2, ..., pk} in order to minimize the Kullback-Liebler divergence between the

obtained pairwise estimates and the true pairwise probability values [51]. With the true

probability estimates defined as µij = p(y = ci|y ∈ {ci, cj},x), a discriminative binary

classification algorithm is then used to obtain pairwise probability estimates µ̂ij ≈ µij .

An initial guess vector p is selected (with all elements pi ≥ 0.0 for i = 1..k, and normal-

ized so that
∑k

i=1 pi = 1) and used to compute a new iteration of values for µij . Then

by minimizing the Kullback-Liebler divergence between µ̂ij and µij in this iteration, we

obtain an updated p vector. This algorithm is proved to converge to the minimum of

the KL divergence between µ̂ij and µij . For more details, see Hastie & Tibshirani [51],

or the description in Wu et al. [103].

Wu, Lin & Weng In 2004, Wu et al. [103] proposed the following procedure for

pairwise coupling to produce probability estimates as an improvement over the method

proposed by Hastie & Tibshirani. Again defining µij = p(y = ci|y = ci or cj ,x),

discriminative binary classification algorithms are used to obtain pairwise estimates
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µ̂ij ≈ µij . Using the identity

µij =
pi

pi + pj

we have also the identity
µij
µji

=
pi
pj

The multiclass probability vector is then approximated as the solution to the constrained

optimization problem

min
p

k∑
i=1

∑
j 6=i

(µ̂jipi − µ̂ijpj)2

subject to
k∑
i=1

pi = 1, pi ≥ 0, ∀i

This optimization problem reduces to a linear system, which is also solvable with an

iterative process, and is proved to be convergent. Wu et al. show this pairwise classifi-

cation method to be superior to the method proposed by Hastie & Tibshirani and voted

pairwise classification over a variety of data sets [103].

5.1.1.3 A Problem with Pairwise Classification

Pairwise classification techniques have been criticized because each pairwise clas-

sifier is trained on only two of the k classes, but makes predictions for instances of any

of the k classes. Evaluation of classifiers on a different distribution than the training

distribution can be problematic because it introduces unnecessary bias into the predic-

tions [51, 23]. Consider, for example, a 4-class problem with classes {A,B,C,D}. Assume

without loss of generality that we wish to classify a test point whose true label is A. At

prediction time, all 6 classifiers are evaluated; however, the predictions from the BC,

CD and BD classifiers will be unreliable since they were not trained on distributions

containing instances with class A. If there is bias, such as D instances being more eas-

ily mistaken for B than for C, multiclass classification errors can occur. Hastie and

Tibshirani show a simulation result that indicates this bias to be a real problem, but
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they comment that other (non-pairwise) approaches may not fare any better. Further-

more, they show that when this bias is present that the probabilistic predictions of the

multiclass classifier are more evenly distributed, indicating reduced confidence in the

predicted class.

5.2 Probabilistic Pairwise Classification

5.2.1 Proposed Method

In this section, we introduce a new pairwise coupling technique called probabilistic

pairwise classification (PPC) that weights each pairwise probability with a probability

that the instance belongs to the pair. This approach has the the following features: it

incorporates predicted probabilities from the base classifiers (rather than discrete votes),

it produces a posterior probability (rather than a discrete classification), it compensates

for the problem that pairwise classifiers make predictions for instances with different

class labels than those used during training, and it has the property of consistency. It

is also conceptually simple, theoretically motivated and easy to implement. First, we

derive the probabilistic pairwise classification rule. Given N mutually exclusive and

exhaustive events a1, ...aN (i.e. with
∑N

i=1 p(ai) = 1), the Theorem of Total Probability

is

p(b|x) =
N∑
i=1

p(b|x, ai)p(ai) (5.4)

Letting L = {c1..ck} be the set of labels in a k-class classification problem, and substi-

tuting into Equation (5.4) the values N = 2, a1 = ci ∪ cj , a2 = L − ci − cj and b = ci,

we have

p(ci|L,x) = p(ci|ci ∪ cj ,x)p(ci ∪ cj |L,x) + p(ci|L− ci − cj ,x)p(L− ci − cj |L,x) (5.5)

since p(ci ∪ cj |L,x) + p(L − ci − cj |x) = 1. However, p(ci|L − ci − cj ,x) = 0 since

no instance can be labeled both ci and any label from the set L − ci − cj . Therefore,
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Equation (5.5) reduces to

p(ci|x) = p(ci|ci ∪ cj ,x)p(ci ∪ cj |L,x) (5.6)

In practice, we do not obtain true probabilities from the trained classifiers (whether

density-based or discriminative), but rather probability estimates p̂. Therefore, we sub-

stitute the predicted probabilities and make the prediction p̂(ci|x) = p̂(ci|ci∪cj ,x)p̂(ci∪

cj |L,x). Here, p̂(ci|ci ∪ cj ,x) is the estimated probability that the given instance x be-

longs to class ci given that it belongs to either class ci or cj and is produced by a

discriminative binary classifier trained using points from only classes ci and cj , where ci

is the positive indicator class and cj is the negative indicator class. Fürnkranz provides

theory and evidence that suggests that these pairwise discrimination problems are much

simpler than corresponding one-vs-all discrimination problems [40]. The more difficult

problem is estimating p̂(ci ∪ cj |L,x), the probability that an instance belongs to either

class ci or cj , selecting from all labels L. Depending on the properties of the underlying

distributions, predicting p̂(ci ∪ cj |L,x) may be more difficult than predicting the poste-

rior probability p(ci|L,x) itself. Because the predictions are based on estimated values

for probabilities instead of true probabilities, we average over all possibilities for j 6= i

(rather than arbitrarily selecting a single value for j in Equation (5.6)), giving

p̂(ci|L,x) =
1

k − 1

∑
j 6=i

p̂(ci|ci ∪ cj ,x)p̂(ci ∪ cj |L,x) (5.7)

Note that the average is over k−1 terms since the i = j case can’t be used for discrimina-

tion. The motivation for this averaging is that the individual classifiers may make noisy

predictions and that averaging may be able to decrease the multiclass predictive error,

as long as the classifiers are not systematically biased in the same way. In practice, the

values p̂(ci|L,x) should also be normalized so that
∑

i p̂(ci|L,x) = 1.

Probabilistic pairwise classification can be used with any classification algorithm

capable of performing binary classification (including multiclass classifiers); the classifi-

cation algorithm used with PPC (or any pairwise coupling method) is known as the base
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classifier. In our experimental studies, we also investigate treating multiclass classifiers

as binary classifiers, including decision trees, nearest-neighbor classifiers and random

forests.

Other decompositions are possible, for example:

p(a|x) = p(a|ab,x)p(ab|abc,x)p(abc|L,x)

Such decompositions may be valuable in problems for which domain-specific knowledge

can be used to construct or simplify the intermediate models. However, in our studies,

we assume that no domain specific knowledge is available, and focus solely on the

reduction to pairwise and pair-vs-rest terms.

Also note that the assumption p(ci|L − ci − cj ,x) = 0 means this technique

is unsuitable for multi-label classification problems (in which each instance may be

assigned more than one class label).

5.2.2 Computational Demand

Probabilistic pairwise classification is more computationally demanding than ei-

ther voted pairwise classification or one-vs-all. In one-vs-all, there are k problems, each

with N data points. In the voted all-pairs reduction or other pairwise coupling schemes,

there are k(k − 1)/2 classifiers, each with approximately 2/N training data points (for

a balanced problem). In probabilistic pairwise classification, there are k(k − 1) clas-

sifiers, 2 for each of the k(k − 1)/2 pairs, one for discriminating between elements of

the pair and one for discriminating between the pair and the rest of the classes. The

pairwise classifiers are each trained on approximately 2/N data points as above, but

the pair-vs-rest classifiers are each trained on the entire training set. These values are

summarized in Table 5.1. Therefore, probabilistic pairwise classification is more compu-

tationally demanding than both one-vs-all and pairwise classification. For applications

that have a large number of training instances or classes, probabilistic pairwise classi-
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Table 5.1: Computational complexity of one-vs-all (OVA), pairwise coupling (PC) and
probabilistic pairwise classification (PPC)

OVA PC PPC
subproblems k k(k-1)/2 k(k-1)

instances per subproblem N 2N/k N (half) + 2N/k (other half)
computational complexity/SVM O(kN3) O(k−1N3) O(k2N3)

fication may be inappropriate; however, in situations in which accuracy is the primary

goal, probabilistic pairwise classification has the potential to increase accuracy. It is

important to note that all of the aforementioned methods are fully parallelizable. For

offline applications in which training time is the bottleneck, the main difference between

PPC and other pairwise coupling methods is the training of the (k*(k-1))/2 pair-vs-rest

classifiers, which each train on all N data points instead of just 2N/k data points.

For a base classifier with a known computational complexity, the time complexity

of the various methods can be computed. For instance, the binary SVM has a compu-

tational complexity for training time of O(N3), where N is the number of training data

points. For one-vs-all, each of k subproblems must train on all N points, so the com-

putational complexity is O(kN3). For balanced pairwise coupling methods, for which

the number of points per subproblem is approximately Ns = 2N/k, the computational

complexity is O(k2N3
s ) = O(k−1N3). For PPC, the computational complexity of each

subproblem is O(k2N3) +O(k−1N3) = O(k2N3), since each pairwise subproblem must

train on all N data points. These computational complexities are summaries in the last

row of Table 5.1.

5.2.3 Discriminative Classifiers

It can be argued that it is inappropriate to use discriminative classifiers to provide

estimates for p(ci|ci ∪ cj) and that proper density models should be used instead; this
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argument applies equally well to one-vs-all and other reductions. Furthermore, if any

desired probability p(ci|L) could be easily and accurately estimated, then the one-vs-all

reduction would be a simple and straightforward approach for predicting probabilities

on the multiclass problem. However, we hypothesize that inducing pairwise probabil-

ities should be easier than inducing one-against-all class probabilities since all-pairs

subproblems tend to be simpler than one-vs-all subproblems (and, in turn, simpler than

other ECOC encodings). Therefore probabilistic pairwise classification should have a

higher probability of high accuracy. Evidence of the simplicity of all-pairs subproblems

compared to one-vs-all subproblems is given in Fürnkranz [40].

5.2.4 Relationship to Previous Methods

Wu et al. show that Hastie and Tibshirani’s pairwise coupling method can be

derived as an approximation to the identity

pi =
∑
j:j 6=i

(
pi + pj
k − 1

)µij (5.8)

with µij = p(y = ci|y ∈ {ci, cj},x) where pi + pj is assumed to be 2/k and µij are taken

as the pairwise predictions µ̂ij [103]. PPC is also based on this identity, but instead of

assuming that pi+pj = 2/k, PPC trains a discriminative classifier to explicitly estimate

pi + pj = p̂(ci ∪ cj |L,x).

5.3 Methodology

In this section, we describe experimental results comparing probabilistic pairwise

classification to other pairwise classification methods, and to classifiers that are capa-

ble of making multiclass predictions directly, including decision trees, nearest-neighbor

algorithms and random forests. The experimental results indicate that under a wide va-

riety of conditions, probabilistic pairwise classification either outperforms or ties other

methods.
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5.3.1 Data Sets

Experiments are performed over 20 publicly available datasets. The datasets,

number of classes, number of features and number of instances are indicated in Table

5.2. We formalize our data set selection decision procedure below to rule out bias

in data set selection. We downloaded collections of preprocessed datasets in Weka’s

ARFF format from http://www.cs.waikato.ac.nz/ml/weka/index_datasets.html,

omitting any collection that consisted solely of artificial, ordinal or regression datasets,

and filtered them, requiring that (a) the number of classes must be three or more, so that

it is a multiclass classification problem instead of a binary classification problem, (b) the

number of numeric attributes is between 5 and 500 ensuring there are sufficiently many

but not too many attributes and (c) the number of instances is 200 or more, so that

each class will have sufficiently many instances in each binary training set. Uniquely

identifying attributes that completely specify the identity of an instance (such as ID or

index attributes) are discarded, specifically: the counter attribute in collins, the BookID

attribute in authorship and the ID attribute in dj30-1985-2003. Classes with less than

20 instances are deleted, along with corresponding instances. The free parameters in

the above rules were hand-tuned until 20 datasets were selected to facilitate statistical

analysis. After deletion of classes, any duplicate instances (based on attribute values,

not class values) are deleted. Data set selection was performed before evaluation of

algorithms in order to avoid bias.

Stratified subsampling is used to reduce the total number of instances for large

problems in order to reduce computational demands, while maintaining a distribution

over class labels commensurate with the original sample. For data sets with N ≥ 450

instances, random draws are sampled with Ntr = 300 training points and Nts = 150 test

points. For data sets with N < 450, random draws are taken with 2/3 of the instances

used for training and the remaining approximate 1/3 points for testing. Missing values
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are filled in with the mean of non-missing values for each attribute. Datasets from

similar domains are discarded in order to improve tests for statistical significance of

results, as prescribed by Demšar [24]. In particular, pendigits was discarded because of

its similarity to optdigits, only one of the mfeat- series was selected, and anneal.ORIG,

heart-h and cars-with-names were filtered out due to similarity with other data sets.

For data sets with k > 20 (letter and dj30-1985-2003 ), 1/3 of the classes are removed

to decrease computational demands, and further stratified subsampling removes 1/3 of

the instances.

Table 5.2 indicates the datasets used in our experiments, and their relevant prop-

erties. The column labeled entropy refers to the normalized entropy (in base 2) of the

class distribution, e = −1
log2k

∑k
i=1 pilog2(pi), where pi is the proportion of instances with

the class label ci and k is the number of classes. For instance, the entropy is 1 for a class

with an even distribution of class labels p1 = ... = pk = 1/k and 0 for a distribution

that has only instances with one label, i.e. pi = 1, pj 6=i = 0. To summarize, the number

of classes varies from 3 to 20, with entropy varying between 0.4819 and 0.9976. The

smallest training sample size (after subsampling) is 133, and the number of attributes

ranges from 6 to 254.

5.3.2 Multiclass and Pairwise Classification Methods

We compare probabilistic pairwise classification to four related methods:

5.3.2.1 Multiclass Classifiers

For some of our experiments, we use a base classifier that is itself capable of

performing multiclass classification. For example, we use decision trees, random forests

and k-nearest neighbor algorithms.
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Table 5.2: Properties of the 20 data sets used in our experimental studies.

dataset classes entropy numeric nominal train test sampled-from

anneal 4 0.6282 6 23 300 150 878
arrhythmia 5 0.7311 198 56 257 129 386
authorship 4 0.9363 70 0 300 150 841

autos 5 0.9328 15 10 134 68 202
cars 3 0.8693 6 1 270 136 406

collins 11 0.9543 19 0 300 150 451
dj30-1985-2003 20 0.9936 6 0 133 67 138123

ecoli 4 0.9008 6 0 204 103 307
eucalyptus 5 0.9725 14 5 300 150 736
halloffame 3 0.5010 15 1 300 150 1340

hypothyroid 3 0.4819 6 20 300 150 3707
letter 18 0.9920 16 0 136 68 18668

mfeat-morphological 10 0.9911 6 0 300 150 1888
optdigits 10 0.9971 58 0 300 150 5620

page-blocks 5 0.5945 10 0 300 150 5393
segment 7 0.9927 18 0 300 150 2086

synthetic-control 6 0.9976 60 0 300 150 600
vehicle 4 0.9923 18 0 300 150 846
vowel 11 0.9910 10 3 300 150 990

waveform 3 0.9942 40 0 300 150 5000

5.3.2.2 Voted Pairwise Classification (VPC)

This is the method proposed by Friedman in which each base classifier makes a

discrete vote for the prediction and the classifier makes a discrete classification rather

than a posterior probability prediction [38].

5.3.2.3 Hastie-Tibshirani (HT)

This is the pairwise coupling scheme proposed in [51] and implemented in Weka’s

class MultiClassClassifier in Weka version 3.7.0. This method is described in Section

5.1.1.2.

5.3.2.4 Wu-Lin-Weng (WLW)

WLW is the pairwise coupling scheme proposed in [103] and implemented in Lib-

SVM version 2.9. We perform the same preprocessing as implemented in LibSVM’s
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method svm predict probability, namely clamping probability predictions to be between

10−7 and 1 − 10−7, and calling the method multiclass probability, which is described

in Section 5.1.1.2. While it would be possible to use the entire LibSVM implementa-

tion to obtain predictions for WLW-SVM-121, we merely use the multiclass probability

method in order to reduce the number of differences between the different multiclass

and pairwise methods, ensuring that (a) there are no other pre- or post-processing steps

included in one framework but not the other and (b) the pairwise classifiers are iden-

tical between methods. In contrast, we use the Weka framework for HT because it is

compatible with any base classifier, whereas WLW full implementation in LibSVM is

only compatible with SVM-121. Preliminary studies showed a statistically significant

difference between the full LibSVM implementation of WLW-SVM-121 and the imple-

mentation in our framework, but we used our framework implementation in order to

make a more straightforward comparison between the methods.

5.3.3 Base Classifiers

We experiment with a variety of base classifiers, which are the classifiers used with

the various reduction schemes or used directly as multiclass classifiers. The first three

algorithms provide direct support for multiclass classification, so we are able to compare

multiclass classification algorithms to the pairwise coupling methods, complementing

results given in Fürnkranz [39] and Wu et al. [103]. We use the following classifiers:

5.3.3.1 Decision Tree (J48)

We use the decision tree classifier as implemented in Weka’s J48 (in Weka 3.7.0),

which is a reimplementation of Quinlan’s C4.5 decision trees [83]. We use Weka’s de-

fault parameter settings: a pruned decision tree that allows multiway splits on nominal

attributes.
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5.3.3.2 K-Nearest Neighbor (KNN)

We use the K-nearest neighbor algorithm (see [1]) as implemented in Weka’s IBk

class, and in our experiments, we fix k = 1 and use no distance weighting, so that

Euclidean distance is used for numerical attributes and Hamming distance is used for

nominal attributes.

5.3.3.3 Random Forests (RF-100)

We use the random forest algorithm as implemented in Weka’s RandomForest

class. Following Breiman [15], we set the number of trees in each forest to be L = 100

and set the number of features in the random inputs scheme to be (log2(d) + 1), where

d is the number of attributes. The size of the trees is unconstrained. In Section 5.5.2,

we investigate the performance as a function of the number of trees.

5.3.3.4 Support Vector Machines (SVM-121)

We use the SVM algorithm as implemented in LibSVM [103], using the Gaussian

kernel. To search over the hyperparameters {c, γ}, we perform a search over the coarse

7 × 7 grid of {−5,−1.666, 1.666, 5.0, 8.333, 11.666, 15.0}2 to first determine a value for

the cost hyperparameter c. Then a separate search is performed over a finer grid of

72 samples (ranging from −40 to 15) at the previously determined c-value to obtain

the value for γ. We used this sampling scheme since there was much more sensitivity

to the γ hyperparameter than to the c hyperparameter, and so that our scheme would

take a total of 121 samples, as done in many other grid searches, such as LibSVM

[103]. Platt scaling is used to fit a sigmoid to each of the SVM models to improve

probability estimates [82]. Additionally, since we are using LibSVM with probability

estimates enabled, a pairwise implementation of WLW is used to improve the pairwise

predictions before determining the full multiclass probability distributions by using the

methods identified above. This implementation therefore has a double-layer of the WLW
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method, once it estimate the binary probabilities and again to estimate the multiclass

probabilities.

5.4 Results

The experiments are performed over the following combinations of components: 4

base classifiers× 2 metrics× 5 multiclass/pairwise coupling methods× 20 data sets. For

a given pairwise classification method METHOD and base classifier BASE, we describe

the combination as METHOD-BASE. For example, probabilistic pairwise classification

with the J48 decision tree base classifier is named PPC-J48. When a method is used

directly as a multiclass classifier, we use the prefix MULTI, such as MULTI-J48. To

improve readability, aggregate behavior over all data sets is reported here in the main

text, while performance on individual data sets is discussed in the Appendix (Section

5.7). We first report on results for the accuracy metric (Section 5.4.1), then discuss

performance under probability predictions (Section 5.4.2).

In order to identify statistically significant differences between algorithms, we use

the nonparametric statistical tests recommended by Demšar [24] and refined by Garćıa

et al. [42]. In particular, we use the Holm test for comparing one algorithm against

many others; this is a nonparametric algorithm that controls for the family-wise error

rate, and yields adjusted p-values. To perform these computations, we use the software

provided by Garćıa et al. [42].

5.4.1 Accuracy

The accuracy metric counts the number of correctly classified instances, ignoring

probabilistic predictions: a = 1
N

∑N
i=1 1(ŷ(x) = y(x)), where ŷ(x) = argmaxi pi(x) is

the predicted class, x is the input attribute vector, and y(x) is the true class. Tables

and figures indicating performance on individual data sets are located in the Appendix.

Figure 5.2 indicates the behavior of each base classifier and reduction technique
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on the accuracy metric, averaged over all data sets. The first category (multiclass)

indicates using the specified classifier directly as a multiclass classifier rather than using

a pairwise coupling scheme. For the base classifiers J48, RF-100 and SVM-121, PPC

yields the highest average accuracy.
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Figure 5.2: Accuracy averaged over all 20 data sets for all combinations of base classifier
and reduction method, with one standard error indicated.

5.4.2 Predicting Probabilities

In this section, we test the ability of probabilistic pairwise classification to predict

well-calibrated probabilities. In order to evaluate the calibration of each method, we

use the Brier metric [16], also known as the mean squared error (MSE) metric, in which

b(x) = 1
d

∑
j(tj(x)− p̂j(x))2, where x is the input vector, tj is the target probability for

the the jth class, p̂j is the probability estimated by the classification method and d is

the dimensionality of the input vector. We take tj(x) to be 1 if the label belongs to the

jth class and 0 otherwise. This metric is used in other related work such as Wu et al.
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[103] and Zadrozny [106]. In the results presented below, we use the rectified Brier score

r(x) = (1− b(x))× 100 so that the results are structurally similar to percent accuracy;

namely that higher is better and that the values range between 0% and 100%. Again,

tables and figures indicating performance on each data set are located in the Appendix.

Figure 5.3 shows the average performance of each base classifier and reduction

technique under the Brier metric, with a standard deviation for the PPC methods also

indicated. The first category multiclass indicates using the specified classifier directly

as a multiclass classifier. Again PPC has the highest average performance for the base

classifiers J48, RF-100 and SVM-121.
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Figure 5.3: Rectified Brier score averaged over all 20 data sets for all combinations of
base classifier and reduction method, with one standard error indicated.

5.4.3 Discussion

Figure 5.4 plots the average rank of each algorithm over all 20 data sets. Depic-

tion of average rank (as opposed to average accuracy or average rectified Brier score) is
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valuable since (a) it doesn’t assume that errors across different data sets are commen-

surate and (b) it doesn’t allow excellent performance on a single problem to obscure

mediocre performance on several other data sets. This visualization technique and re-

lated statistical tests are described in Demšar [24]. A vertical bar connects the top

algorithm to any other algorithm that is not statistically significantly different from it

under the Holm test [42] at a p ≤ 0.05 level of significance. Note that in all of these

instances PPC is either the highest ranking method (6 out of the 8 runs), or not sta-

tistically significantly different from the top ranking method. Therefore, we conclude

that for a variety of base classifiers, metrics and data sets, that PPC yields statistically

significantly better performance than other pairwise coupling methods and multiclass

classification using the base classifier.

We noted that the predictions and performance were not preserved under permu-

tation of the subproblem assignments. Specifically, while only k(k − 1)/2 pairwise and

k(k − 1)/2 pair-vs-rest terms need to be computed, we found that modeling µ̂ij and

computing µ̂ji = 1− µ̂ij for i = 1..k and j = 1..i− 1 provided slightly different results

than modeling µ̂ji and computing µ̂ij = 1 − µ̂ji. This suggests an asymmetry in the

behavior of the base classification algorithms. Future work could investigate whether it

is valuable to estimate and utilize both µ̂ij and µ̂ji independently in order to achieve a

smoother, more accurate response.

5.5 Additional Results

In order to understand the behavior of probabilistic pairwise classification, we

analyze the learning curves (Section 5.5.1), look at the accuracy as a function of more

accurate base classifiers (Section 5.5.2), perform a series of supplemental experiments

on synthetic data sets (Section 5.5.3), study performance as a function of number of

classes (Section 5.5.4), identify dependence on data set entropy (Section 5.5.5) and test

performance degradation under related simplified models (Section 5.5.6).
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Figure 5.4: Graphical depiction of the rank of each algorithm as averaged over all 20
data sets, shown for the accuracy metric (top row) and for the Brier metric (bottom
row). A vertical bar connects the top algorithm to any other algorithms(s) that are not
statistically significantly different from it, if any.

5.5.1 Learning Curves

In this section, we investigate the predictive accuracy as a function of the amount

of training data—the so-called learning curves. Since the statistical comparisons per-

formed in Section 5.4 use a single value for the amount of training data, it is valuable

to look at the dependence on the amount of training data in order to determine, for ex-

ample, whether the relative effectiveness of each method changes with varying training

sample sizes. For this experiment, we take the 10 largest data sets from the 20 data sets
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used in Section 5.4, again with a 2/3 training and 1/3 training proportion. We focus on

using the random forest classifier with 100 trees (RF-100), since it was demonstrated

to be competitive compared to the other base classifiers, and less computationally ex-

pensive than the model-selected SVM-121. The average results over all 10 data sets are

indicated in Figure 5.5; behavior on individual data sets is not qualitatively different

than the composite behavior, so plots for individual data sets are omitted.
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Figure 5.5: Accuracy as a function of the sample size (2/3 of which used for training),
averaged over the 10 largest data sets described in Table 5.2

Note that the relative performance of all 5 methods does not vary significantly as

the amount of training data is doubled; only voted pairwise classification (VPC) shows

an average change in rank, decreasing from the accuracy of WLW at low sample sizes to

the accuracy of HT at larger samples sizes. The fact that the ranks are predominantly

stable indicates that statistical comparisons in Section 5.4 apply to a larger ranger of
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training sample sizes. Also note that the amount of training data is crucial in deter-

mining the performance of the learning algorithm—for instance, the worst method with

570 data points (380 training points) outperforms the best method with 450 data points

(300 training points). Informally, the addition of 20% more data points is more valuable

than switching from the least to the most effective combination rule.

5.5.2 Varying the Base Classifier Accuracy

Many studies assume that the benefits of a reduction scheme with a poor or

untuned base classification algorithm will generalize to more accurate base classifiers

[27, 64, 2]. As pointed out by Rifkin and Klautau [85], it is essential to study the

reduction with well-tuned base classifiers, since we are interested in understanding the

behavior in the regime with the best predictive power. In this section, we investigate

the accuracy of the various methods as the performance of the base classifiers is varied,

by using random forests as the base classifier and increasing the number of trees. The

accuracy of random forest classifiers tends to increase monotonically with the number

of trees [15]. We use the following numbers of trees: {10, 50, 100, 200, 500, 1000}. Figure

5.6 depicts the average accuracy of each of the 5 methods as a function of the base-10

log of the number of classes.

While the average over 20 data sets indicates the advantage of PPC over the other

methods for varying numbers of trees, the variability between the methods decreases as

the number of trees increases. At 10 trees, the difference between the best and worst

performing methods is about 2.25%, while at 1000 trees, the difference between the

best and worst performing methods is only about 1.25%. While this average behavior

is indicated in Figure 5.6, the behavior on several individual data sets is indicated in

Figure 5.5.2, and varies dramatically across data sets.

For instance, in the anneal dataset, the accuracy of all methods basically level

out around 200 trees, without too much noise. In the dj30-1985-2003 data set, the
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Accuracy vs. Number of Trees Averaged over 20 Data Sets
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Figure 5.6: Accuracy as a function of the (log10 of the) number of trees in the random
forest base classifier, averaged over all 20 data sets described in Table 5.2

methods PPC and MULTI have a similar performance, significantly higher than the

other methods. In the eucalyptus data set, the multiclass classifier doesn’t improve

performance as the number of trees is increased. Broadly speaking, increasing the

number of trees is effective in all methods, and while the curves for VPC, HT and WLW

tend to level out around 200 trees (with the performance of HT slightly decreasing), the

multiclass method and PPC still attain increased accuracy with 500 or 1000 trees.

5.5.3 Synthetic Data Sets

One of the primary differences between the direct multiclass methods (such as

decision trees and nearest-neighbor methods) and pairwise classification methods is that

the direct multiclass methods operate on all classes simultaneously, while the pairwise
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Accuracy vs. Number of Trees for anneal
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(a) anneal

Accuracy vs. Number of Trees for dj30-1985-2003
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(b) dj30-1985-2003

Accuracy vs. Number of Trees for ecoli
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(c) ecoli

Accuracy vs. Number of Trees for eucalyptus
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(d) eucalyptus

Accuracy vs. Number of Trees for letter
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Accuracy vs. Number of Trees for vehicle
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Figure 5.7: Examples of accuracy as a function of the number of trees in the random
forest base classifier for 6 of the data sets.

classification methods are restricted to using one pair of classes at a time. In a PPC

prediction (see Equation (5.6)), the first term p(ci|ci ∪ cj ,x) is restricted to using pair-

wise discriminations, and is multiplied by a pair-vs-rest weight p(ci ∪ cj |L,x). In this

section, we hypothesize that PPC will be less effective than a direct multiclass method

for a problem in which it is valuable to operate on all classes simultaneously. Specif-

ically, we construct a 4-class dataset in which each class is generated by a Gaussian

distribution centered in one of the four quadrants. By varying the covariance matrices



126

of the Gaussian distributions, we are able to change the amount of noise in each prob-

lem. The motivation for the structure of this synthetic data set is that the decision tree

algorithm can see all four classes simultaneously, and therefore has the potential to use

information about classes A and B to inform the C −D decision boundary. Ideally, it

would use exactly the same decision boundaries for A−B as for C−D. Since the PPC

algorithm never sees more than two classes at a time, PPC will not be able to obtain

this same benefit. As for the data sets discussed in Section 5.3, 300 training points and

150 test points are used.

5.5.3.1 Noiseless Synthetic Data Set

Figure 5.8 indicates the 4-class synthetic problem described above, and the re-

sults of the MULTI-J48 classifier and PPC classifier using MULTI-J48 base classifiers

is indicated in Table 5.4. The results for this experiment are averaged over 100 random

draws from the underlying generative distribution; more runs are possible for this syn-

thetic study since the decision-tree based algorithms are computationally inexpensive.

Even though this is a simple learning problem, note that the the accuracies are not

exactly 100%; this result is due to the fact that the convex hull of training points is

responsible for inducing the decision boundary. Since 1/3 of the data is removed for

testing purposes, the decision tree obtains suboptimal decision boundaries. For this

data set, the decision tree outperforms probabilistic pairwise classification by 0.527%.

The two-tailed paired t-test indicates a statistically significant difference at the p ≤ 0.05

level; the actual p-value is p ≤ 3.15× 10−11. Therefore we have verified our hypothesis

that a multiclass classification method can outperform PPC on a problem for which

significant benefits can be obtained by operating on all subproblems simultaneously.
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Noiseless Synthetic Data Set

A B C D

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

x

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

y

Figure 5.8: Noiseless 4-class synthetic data set

5.5.3.2 Noisy Synthetic Data Set

We also repeated the above experiment with an increased amount of noise to

see whether the benefits of the multiclass decision tree will be retained. Figure 5.9

indicates the 4-class problem with a significant amount of noise. Again, the results

for this experiment are averaged over 100 random draws from the underlying genera-

tive distribution. The results from using decision trees (MULTI-J48) and probabilistic

pairwise classification with decision tree base classifiers (ppc-j48) are indicated in Table

??. The increased noise is responsible for the significantly decreased accuracy for both

algorithms, compared to the synthetic dataset presented in Section 5.5.3.1. In this case,

PPC outperforms MULTI-J48 by 1.48%; that is, on this sample data set, it is slightly

more accurate to reduce the dataset into
(

4
2

)
= 6 subproblems than to solve the 4-class
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Table 5.3: Accuracy results (%) for the comparatively noiseless synthetic data set. The
standard error over 100 random samplings is indicated in parentheses.

multi-j48 ppc-j48
99.2 (0.08) 98.7 (0.10)

problem using directly using a multiclass decision tree. The two-tailed paired t-test

indicates a statistically significant difference at the p ≤ 0.05 level; the actual p-value

is p ≤ 2.14 × 10−9. This result is contradictory to the result in Section 5.5.3.1, even

though the structure of the decision boundaries remains unchanged. It is not entirely

clear why multiclass decision trees do not maintain the same advantage in the noisy

synthetic problem as in the noiseless synthetic problem. One possible explanation for

the advantage of PPC is that the estimation and average of 6 subproblems performs a

valuable smoothing that is lacking in the direct multiclass method.

5.5.3.3 Summary

In this section, we hypothesized that a multiclass problem in which many sub-

problems share decision boundaries would favor operating on all classes simultaneously

(and thus a direct multiclass method) rather than limiting decision regions to pairwise

classifications. In Section 5.5.3.1, we constructed a synthetic data set that validated

this hypothesis. However, in a synthetic data set with identical decision boundaries

and only increased noise, PPC is surprisingly more effective. We suggested that PPC

may have an advantage in the noisy situation due to its averaging over a large number

Table 5.4: Accuracy results (%) for the noisy synthetic data set. The standard error
over 100 random samplings is indicated in parentheses.

multi-j48 ppc-j48
84.5 (0.34) 86.0 (0.31)
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Figure 5.9: Noisy 4-class data set

of estimates. Further experiments would be necessary in order to validate this new

hypothesis.

5.5.4 Performance vs. Number of Classes

For the J48 base classifier and accuracy metric, PPC exhibits excellent perfor-

mance gains for the data sets letter, optdigits, collins and vowel, which have 18, 10, 11,

and 11 classes, respectively. Since this larger performance gain occurs on four of the six

data sets with the largest number of classes, it suggests that PPC may have a bigger

advantage on data sets with more classes. First, we evaluate this hypothesis under the

20 benchmark data sets described in Section 5.3.1, then evaluate this hypothesis on new

data sets in which we incrementally increase the number of classes. In this section, we
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restrict our focus to using random forest as the base classifier, since it had competitive

performance on the benchmark data sets, and since it is computationally less expensive

than the model-selected support vector machine algorithm. We begin by quantifying

the relative gain over a multiclass algorithm as a function of the number of classes for

the benchmark data sets from Section 5.4.
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Figure 5.10: The accuracy relative to a random forest with 100 trees as a function of
the number of classes in the data set for voted pairwise classification (VPC), Hastie-
Tibshirani’s method (HT), Wu-Lin-Weng’s method (WLW), and probabilistic pairwise
classification (PPC). There is one data point for each of the 20 benchmark data sets
(see Section 5.3.1) and for each of the methods.

Figure 5.10 indicates the performance relative to random forest as a function of

the number of classes. For instance, a relative accuracy of 0% indicates (at that num-

ber of classes) that random forests and the pairwise classification method have identical

performance. A positive slope indicates that the algorithm improves its benefit over ran-

dom forests as the number of classes increases; a negative slope indicates that random

forests is more effective at a higher number of classes. For voted pairwise classification
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(VPC), Hastie-Tibshirani’s method (HT) and Wu-Lin-Weng’s method (WLW), there is

a negative correlation between the number of classes and the relative accuracy (with

multiclass random forests as the baseline). The results comparing the multiclass clas-

sifier to VPC, HT and WLW are consistent with the observation in Wu et al. [103]

that multiclass classification is more effective than the pairwise classification schemes

as the number of classes increases. In contrast, for probabilistic pairwise classification

(PPC), there is an average gain of about 1% over the range of 17 classes, indicating

that it is approximately as effective as the multiclass classifier as the number of classes

is increased. Qualitatively similar results are obtained for the Brier metric (omitted for

brevity).

Since the benchmark data sets were used to construct the hypothesis, they cannot

be used to validate the hypothesis; instead, we experiment with a set of 9 new multiclass

classification problems. These problems are formed using regression data sets whose

numeric target attribute is discretized into different classes. For instance, a regression

problem with outputs varying uniformly between 0 and 1 is transformed into a 3-class

classification problem by taking class 1 to be instances with output between 0 and 1
3 , and

so on. This technique used for conversion of regression into classification problems was

proposed in Frank and Hall [34] and used in Fürnkranz [41]. We used this method due

to its prominence in the related literature and because it provides a straightforward way

to gradually tune the number of classes in the corresponding multiclass classification

problems.

To obtain the data sets for this study, we started with the collection of 37 re-

gression data sets available from the Weka website (obtained from various sources) and

filtered out data sets that had less than 300 instances. The remaining data sets are

indicated in Table 5.5. As in Section 5.3, we use 2/3 of the points for training and 1/3

of the points for testing. We stop increasing the number of classes when the number of

instances per class drops below 10 (for training and testing).
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Table 5.5: Regression data sets converted to classification problems with varying num-
bers of classes.

dataset numeric nominal sampled-from

autoMpg 4 3 398
cholesterol 6 7 303

cleveland 6 7 303
housing 12 1 506

meta 19 2 528
pbc 10 8 418

quake 3 0 2178
sensory 0 11 576

strike 5 1 625

Results are indicated in Figure 5.11. The vertical axis indicates the accuracy

relative to the random forest algorithm; a value of 0% indicates that the pairwise classi-

fication algorithm had equivalent performance to the random forest classifier. A positive

slope indicates increased advantage over the random forest at a higher number of classes.

On the meta dataset, there is a negative correlation between number of classes and rel-

ative accuracy. In the housing data set, the relative accuracy is independent of the

number of classes. For the other 6 data sets, there are varying degrees of improvement.

The cholesterol data set attains the largest benefit; in this case, PPC increases rela-

tive improvement over the random forest algorithm by about 9.5% as the number of

classes is raised from 2 to 13. While there are exceptions, the results on discretized

data sets support the hypothesis that PPC confers more benefits at a higher number of

classes. One possible explanation for this behavior could be a bagging phenomenon, as

we discuss in Section 5.6.1.2.
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Figure 5.11: The accuracy relative to a random forest with 100 trees as a function of

the number of classes for regression data sets that have been discretized with varying

number of classes. The average over the 9 data sets is indicated by the wide red line

series.

5.5.5 Performance vs. Entropy

In this section, we investigate the related issue of performance as a function of the

normalized entropy of the class distribution; note that the probabilities of class mem-

bership (the terms pi) are not equivalent to class priors which determine the normalized

entropy. Recall that normalized class entropy (defined in Section 5.3.1) varies from 0

to 1, with a value of 0 meaning that all instances share the same class and a value of 1

meaning that the class distribution is uniform. In order to test the behavior of PPC and

other algorithms under varying class distributions, we plot the accuracy as a function

of normalized class entropy. The results on the accuracy metric are indicated in Figure

5.12, with each combination method compared to the direct multiclass method RF-100.
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There are many data sets of varying difficulty that all have nearly unity normalized

entropy, so the results are very noisy. Over the domain of normalized entropies from

0.5 to 1.0, the largest difference is between PPC and HT, with an average difference of

approximately 3% near a normalized entropy of unity for the linear fits. These small

and noisy differences do not indicate a significantly different performance for the various

methods as a function of normalized entropy; further investigation would be necessary in

order to isolate an effect of the class distributions, possibly using a discretization scheme

such as the one used in Section 5.5.4. In contrast, note that in Hastie & Tibshirani’s

assumption that pi + pj ≈ 2/k, the probability values pi and pj are true probabilities

of class membership rather than priors over class distributions. Wu et al. show that

Hastie & Tibshirani’s method indeed performs more poorly as the probabilities of class

membership are skewed [103].
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Figure 5.12: The entropy relative to a random forest with 100 trees as a function of

the number of classes in the data set for voted pairwise classification (VPC), Hastie-

Tibshirani’s method (HT), Wu-Lin-Weng’s method (WLW), and probabilistic pairwise

classification (PPC)

5.5.6 Degrading Performance by Omitting Terms

Probabilistic pairwise classification makes each probabilistic prediction based on

the product of two terms (see Equation (5.6)):

p̂(ci|L,x) =
1

k − 1

∑
j 6=i

p̂(ci|ci ∪ cj ,x)p̂(ci ∪ cj |L,x) (5.9)

By setting the terms to be the normalized constants p̂(ci|ci ∪ cj ,x) = 2
k(k−1) and/or

p̂(ci ∪ cj |L,x) = 1
k , we can better understand the relative importance of these terms

in producing the overall multiclass probability estimates. Table 5.6 shows the average

accuracy scores for the MULTI-J48 classifier, with statistically significant differences in-

dicated in Table 5.7. We use the Holm test to identify statistically significant differences
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between every pair of methods, and find that of the 6 scheme × scheme comparisons, the

only pair that doesn’t exhibit a statistically significantly different behavior under the

accuracy metric is the comparison of the no-weight degradation to the no-pair reduction.

Therefore, we conclude that both terms are equally important in making the pairwise

classification. Note that there are special cases in which the degradations actually per-

form more accurately than the PPC itself, such as for the anneal dataset. Specifically,

assuming a uniform distribution over the p̂(ci|ci ∪ cj ,x) term or the p̂(ci ∪ cj |L,x) term

produces approximately 0.2% performance benefit for the anneal data set. Furthermore,

removal of both the weight and pairwise terms still yields relatively large accuracy on

some of the data sets (cars: 64%, halloffame: 85.3%, hypothyroid : 85.3%). These ac-

curacies seem to be commensurate with the entropies of the data sets: (cars: 0.869,

halloffame: 0.501, hypothyroid : 0.482).

Table 5.6: Accuracy scores for the J48 base classifier with various degradations, each
cell is averaged over 10 random samplings.

dataset ppc-j48 no-weight no-pair no-pair-and-no-weight
anneal 0.982 0.984 0.984 0.059333

arrhythmia 0.777519 0.727907 0.770543 0.063566
authorship 0.939333 0.916 0.852667 0.212667

autos 0.705882 0.691176 0.7 0.119118
cars 0.822059 0.808824 0.803676 0.641912

collins 0.404 0.367333 0.406 0.097333
dj30-1985-2003 0.231343 0.220896 0.222388 0.049254

ecoli 0.849515 0.853398 0.840777 0.120388
eucalyptus 0.600667 0.591333 0.586667 0.140667
halloffame 0.89 0.885333 0.874667 0.853333

hypothyroid 0.984667 0.984 0.98 0.852667
letter 0.561765 0.485294 0.542647 0.052941

mfeat-morphological 0.730667 0.716667 0.730667 0.072667
optdigits 0.899333 0.826 0.904 0.098

page-blocks 0.932667 0.915333 0.93 0.060667
segment 0.94 0.911333 0.94 0.139333

synthetic-control 0.937333 0.887333 0.931333 0.17
vehicle 0.725333 0.698667 0.674667 0.248

vowel 0.693333 0.616667 0.688667 0.094
waveform 0.709333 0.7 0.672667 0.346

average 0.765837 0.739375 0.751802 0.224592
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Table 5.7: Adjusted p-values under the specified degradations for the accuracies indi-
cated in Table 5.6.

hypothesis pHolm

ppc-j48 vs .ppc-j48-no-pair-and-no-weight 2.25× 10−10

ppc-j48-no-pair vs .ppc-j48-no-pair-and-no-weight 6.87× 10−5

ppc-j48-no-weight vs .ppc-j48-no-pair-and-no-weight 7.49× 10−4

ppc-j48 vs .ppc-j48-no-weight 0.012
ppc-j48 vs .ppc-j48-no-pair 0.04693

ppc-j48-no-weight vs .ppc-j48-no-pair 0.540291

5.6 Conclusion

In this chapter, we introduced a new multiclass classification algorithm called

probabilistic pairwise classification (PPC). The derivation of the method is based on the

Theorem of Total Probability, and the method reduces a k-class classification problem

into k(k−1)
2 pairwise classification problems and k(k−1)

2 pair-vs-rest problems. Because

PPC transforms multiclass problems into a set of binary problems, it can be combined

with any binary or multiclass base classifier. Like related pairwise coupling methods

[51, 103], PPC incorporates probabilistic predictions (rather than discrete votes) and

produces a probability estimate (rather than a discrete classification). Our experimental

results over 20 data sets, 4 base classifiers and 2 metrics show that PPC outranks related

methods or is not statistically significantly different from the highest ranking method.

There is some variability across methods; for instance, for the k-nearest neighbor base

classifier and the accuracy metric, no method is statistically significantly different from

the highest average ranking method, which is voted pairwise classification. Under the

Brier metric, PPC ranked first on all 20 data sets. In order to understand the tradeoffs

of PPC versus direct multiclass classification, we constructed synthetic data sets that

were meant to favor a multiclass decision tree MULTI-J48 instead of PPC-J48. We

showed that under some circumstances it is more valuable to perform a direct multiclass

classification, but this result was sensitive to the amount of noise in the problem. By
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discretizing regression data sets into classification problems with varying numbers of

classes, we showed that the advantage of PPC over a multiclass random forest tends to

increase with the number of classes, while voted pairwise classification and the methods

from Hastie-Tibshirani and Wu-Lin-Weng exhibited poorer relative performance as the

number of classes increased. Our results also indicate that the choice of base classifier

has a large impact on the effectiveness of each method; for instance, k-nearest neighbor

as a base classifier was not competitive with decision trees, random forests or support-

vector machine base classifiers on either the accuracy or the Brier metric. Furthermore,

we showed the value of increased strength of base classifiers and of increased amount of

training data. PPC exhibits excellent performance an a variety of problems and metrics,

but may be contraindicated in problems for which it is prohibitively computationally

expensive to train k(k−1)
2 pair-vs-rest classifiers on the entire training sample.

5.6.1 Future Work

5.6.1.1 Faster Pair-Vs-Rest Classifiers

The bottleneck in training a PPC classifier is the training of the pair-vs-rest

classifiers. Unlike the pairwise subproblems, the pair-vs-rest subproblems incorporate

all data points (with the pair as the positive indicator class and the other classes as

the negative indicator class). When using an expensive classification algorithm, such

as support vector machines with a model selection scheme, this algorithm can take

superlinearly longer to execute because of the increased number of training points.

One possible way to alleviate this problem would be to use a more efficient (while

less accurate) classification algorithm for the pair-vs-rest predictions, while still using a

more expensive algorithm to handle the smaller pairwise problems. For instance, while

using a model-selected SVM for the pairwise classifications, a decision tree might be

used to make the pair-vs-rest classifications. There is no inherent reason that each
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term needs to be produced by the same classification algorithm, and it is plausible

that for some problems, different classification algorithms would be suitable for the

pairwise discrimination than for the pair-vs-rest discrimination. Experimental studies

with several different settings for pairwise and pair-vs-rest classifiers could be used to

evaluate the performance of this mixed-base-classifier technique.

5.6.1.2 Relationship to Bagging

Bagging (short for bootstrap aggregating) is a classifier combination method that

aims to improve predictive accuracy by producing many classifier based on resamplings

(bootstrap samples) of the training set and averaging or voting their predictions [11].

Bagging reduces variance and prevents overfitting, but only provides an advantage for

unstable classifiers. The fact that probabilistic pairwise classification exhibits a higher

benefit for J48 (an unstable algorithm) than for KNN (a stable algorithm) suggests that

the benefit is due to a bagging-like phenomenon. Bagging operates by resampling over

data points in the training set by drawing bootstrap samples (samples with the same size

as the original training set, with replacement.) In PPC, resamplings is done over classes

rather than training points; however, this resampling may result in a similar benefit that

models are able to complement each other to increase the multiclass classification accu-

racy. One argument against this explanation is that the relative benefit of PPC over the

base multiclass classifier does not always show a positive correlation. If class-bagging

were the explanation for the advantage of PPC, then the benefit should correspond to

the number of pairwise classifiers, which varies as the square of the number of classes.

Some preliminary results indicate that as the number of classes is increased, the rela-

tive benefit of PPC increases (see Section 5.5.4). Future work could identify whether

class-bagging is responsible for the benefit in PPC, and could additionally investigate

whether instance-bagging on subproblems combined with PPC can lead to additional

performance improvements, augmenting studies such as Fürnkranz [40].
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5.7 Appendix

This section reports the performance of each base classifier under the accuracy

metric (see Section 5.7.1) and the Brier metric (see Section 5.7.2). Composite results

(aggregated over data sets) are reported in Section 5.4. The following sections break

down the results first by metric, then by base classifier, with results given for each

multiclass classification method (multiclass classifier or pairwise classification method)

and dataset. In each of the tables, the standard deviation is indicated in parentheses.

The averages are computed over 10 random resamples, or 5 resamples for the SVM-121

methods.

5.7.1 Accuracy Metric

5.7.1.1 Decision Tree (J48)

Table 5.8 indicates the accuracy of the various pairwise classification methods

while using the decision tree MULTI-J48 as the base classifier. Note that PPC has only

four losses over the 20 data sets, which is statistically significant at p ≤ 0.05 under the

Holm test. Figure 5.13 shows the relative gain in accuracy over a multiclass J48 decision

tree. Note that the PPC has a higher gain than VPC, HT and WLW for many data

sets, and that for many data sets, PPC has a positive gain over MULTI-J48 while VPC,

HT and WLW have a negative gain.

5.7.1.2 Nearest Neighbor (KNN)

Table 5.9 indicates the accuracy of the various pairwise classification methods

while using the K-nearest neighbor algorithm as the base classifier. Figure 5.14 shows

the relative gain in accuracy over a multiclass KNN classifier.
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Table 5.8: Results for j48 under the accuracy metric

dataset multi-j48 vpc-j48 ht-j48 wlw-j48 ppc-j48

anneal 98.20 (1.04) 98.40 (0.84) 98.33 (0.85) 98.40 (0.78) 98.20 (0.71)
arrhythmia 70.47 (4.01) 71.24 (3.36) 72.95 (2.65) 72.40 (2.11) 77.75 (2.61)
authorship 91.93 (1.35) 91.40 (2.10) 91.40 (2.19) 91.00 (2.25) 93.93 (1.62)

autos 70.88 (7.78) 68.24 (6.66) 68.68 (6.97) 68.38 (6.33) 70.59 (6.69)
cars 80.37 (2.84) 80.51 (2.95) 80.88 (2.96) 80.81 (3.26) 82.21 (2.98)

collins 35.00 (4.36) 36.80 (2.59) 37.20 (3.77) 37.20 (3.90) 40.40 (4.61)
dj30-1985-2003 25.37 (6.05) 20.60 (6.04) 21.94 (6.05) 21.04 (7.75) 23.13 (6.18)

ecoli 84.37 (2.61) 84.37 (4.45) 85.15 (3.69) 85.24 (3.98) 84.95 (4.25)
eucalyptus 57.27 (4.12) 57.73 (4.90) 58.80 (4.72) 59.13 (4.73) 60.07 (2.84)
halloffame 87.93 (2.71) 88.60 (3.68) 88.27 (4.08) 88.60 (3.60) 89.00 (3.92)

hypothyroid 98.07 (1.76) 98.27 (1.55) 98.00 (1.51) 98.40 (1.58) 98.47 (1.48)
letter 42.21 (7.17) 48.82 (7.65) 48.53 (7.27) 49.71 (8.74) 56.18 (7.81)

mfeat-morphological 69.93 (4.55) 71.93 (3.89) 71.67 (3.75) 71.73 (3.99) 73.07 (3.68)
optdigits 72.40 (3.46) 81.80 (3.08) 82.60 (3.56) 83.13 (3.34) 89.93 (3.15)

page-blocks 92.20 (1.48) 91.67 (2.85) 90.93 (2.61) 91.87 (2.91) 93.27 (1.79)
segment 92.47 (2.35) 90.93 (2.92) 91.20 (2.66) 91.60 (2.52) 94.00 (2.15)

synthetic-control 86.53 (2.70) 87.67 (3.90) 88.27 (3.42) 88.07 (3.52) 93.73 (2.54)
vehicle 70.87 (4.44) 70.53 (4.00) 70.13 (4.20) 69.93 (4.01) 72.53 (3.22)
vowel 60.00 (5.25) 60.80 (2.51) 61.27 (3.42) 61.13 (3.27) 69.33 (3.27)

waveform 69.07 (2.90) 70.00 (2.55) 70.47 (2.06) 70.00 (2.53) 70.93 (2.74)
average 72.78 73.52 73.83 73.89 76.58

average rank 3.9 3.7 3.2 2.9 1.4

Table 5.9: Results for knn under the accuracy metric

dataset multi-knn vpc-knn ht-knn wlw-knn ppc-knn

anneal 96.33 (1.38) 96.33 (1.38) 96.33 (1.38) 96.33 (1.38) 96.33 (1.38)
arrhythmia 60.16 (4.09) 59.61 (4.01) 59.61 (3.98) 59.61 (3.98) 60.16 (4.09)
authorship 99.20 (1.03) 99.13 (0.89) 99.13 (0.89) 99.13 (0.89) 99.20 (1.03)

autos 73.82 (4.54) 73.68 (4.62) 73.68 (4.62) 73.68 (4.62) 73.82 (4.54)
cars 75.00 (3.10) 75.44 (2.84) 75.44 (2.84) 75.44 (2.84) 75.29 (2.62)

collins 35.00 (3.45) 35.80 (2.79) 36.07 (2.42) 35.87 (2.51) 35.00 (3.45)
dj30-1985-2003 28.51 (4.95) 29.70 (5.05) 29.70 (5.05) 29.70 (5.05) 28.51 (4.95)

ecoli 81.75 (3.23) 81.36 (3.39) 81.36 (3.39) 81.36 (3.39) 81.75 (3.23)
eucalyptus 49.33 (3.62) 49.00 (3.59) 49.00 (3.59) 49.00 (3.59) 49.33 (3.62)
halloffame 87.13 (2.81) 87.33 (2.55) 87.33 (2.55) 87.33 (2.55) 87.47 (2.66)

hypothyroid 83.80 (3.76) 85.07 (3.33) 84.93 (3.42) 84.93 (3.42) 84.40 (3.37)
letter 53.97 (7.50) 52.94 (7.87) 52.94 (7.56) 53.09 (7.42) 53.97 (7.50)

mfeat-morphological 68.07 (2.52) 68.33 (2.02) 68.33 (2.02) 68.33 (2.02) 68.07 (2.52)
optdigits 94.87 (2.65) 94.73 (2.14) 94.73 (2.14) 94.73 (2.14) 94.87 (2.65)

page-blocks 89.40 (1.84) 90.20 (2.16) 90.20 (2.04) 90.20 (2.04) 89.40 (1.84)
segment 91.00 (2.76) 90.60 (2.77) 90.60 (2.77) 90.53 (2.70) 91.00 (2.76)

synthetic-control 95.27 (1.73) 95.53 (1.63) 95.53 (1.63) 95.53 (1.63) 95.27 (1.73)
vehicle 69.13 (4.41) 69.40 (2.73) 69.27 (2.96) 69.27 (3.15) 69.20 (4.46)
vowel 75.40 (3.09) 75.67 (3.08) 75.67 (3.08) 75.67 (3.08) 75.40 (3.09)

waveform 69.60 (2.40) 69.67 (2.78) 69.67 (2.78) 69.67 (2.78) 69.60 (2.40)
average 73.84 73.98 73.98 73.97 73.90

average rank 3.3 2.8 2.9 3 3
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Figure 5.13: Relative accuracy for decision trees under accuracy metric.

Figure 5.14: Relative accuracy for k-nearest neighbor under accuracy metric.

5.7.1.3 Random Forests (RF-100)

Table 5.10 indicates the accuracy of the various pairwise classification methods

while using the random forest algorithm as the base classifier. Figure 5.15 shows the
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relative gain in accuracy over a multiclass random forest classifier.

Figure 5.15: Relative accuracy for Random Forest under accuracy metric.

5.7.1.4 Support Vector Machines (SVM-121)

Table 5.11 indicates the accuracy of the various pairwise classification methods

while using the support vector machine as the base classifier.

5.7.2 Predicting Probabilities

5.7.2.1 Decision Tree

Table 5.12 indicates the rectified Brier score of the various pairwise classification

methods while using the decision tree J48 as the base classifier. Figure 5.16 shows the

relative gain in rectified Brier score over a multiclass J48 decision tree.
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Table 5.10: Results for rf100 under the accuracy metric

dataset multi-rf-100 vpc-rf-100 ht-rf-100 wlw-rf-100 ppc-rf-100

anneal 99.20 (0.61) 98.93 (0.90) 99.07 (0.72) 98.87 (1.04) 99.00 (0.72)
arrhythmia 72.40 (3.00) 72.95 (2.67) 71.63 (2.61) 72.40 (3.19) 72.95 (2.79)
authorship 98.73 (0.86) 98.80 (1.08) 98.67 (1.04) 98.73 (1.11) 99.00 (0.85)

autos 77.94 (3.40) 80.44 (3.54) 80.88 (4.16) 81.18 (3.38) 80.29 (4.50)
cars 84.26 (2.82) 83.38 (4.94) 84.04 (3.95) 84.41 (4.67) 84.41 (3.95)

collins 42.67 (2.01) 44.60 (3.41) 43.87 (4.21) 44.67 (3.27) 44.33 (2.69)
dj30-1985-2003 26.27 (5.64) 22.84 (5.54) 22.24 (5.00) 22.84 (4.45) 26.12 (5.51)

ecoli 85.05 (3.72) 86.12 (3.69) 86.60 (3.33) 86.02 (3.21) 85.83 (3.46)
eucalyptus 51.87 (3.74) 56.87 (4.21) 57.20 (3.11) 57.73 (4.73) 56.13 (3.76)
halloffame 90.73 (2.56) 90.47 (1.91) 90.53 (1.91) 90.33 (1.87) 90.53 (1.91)

hypothyroid 97.27 (1.42) 96.80 (1.69) 96.47 (1.81) 96.40 (2.14) 96.47 (2.01)
letter 56.32 (4.86) 52.50 (9.51) 49.85 (7.83) 53.09 (8.89) 58.24 (8.15)

mfeat-morphological 70.13 (2.99) 71.40 (2.77) 72.53 (2.72) 71.53 (2.67) 71.40 (3.72)
optdigits 93.80 (2.18) 92.20 (2.79) 92.00 (2.83) 92.53 (2.79) 93.40 (2.30)

page-blocks 93.87 (2.53) 93.93 (2.46) 93.53 (2.22) 93.80 (2.22) 93.87 (2.20)
segment 94.27 (1.78) 93.40 (2.50) 93.47 (2.28) 93.60 (2.58) 94.40 (2.02)

synthetic-control 97.87 (0.88) 97.60 (0.90) 96.87 (0.95) 97.73 (1.05) 98.20 (0.89)
vehicle 76.07 (2.16) 75.00 (2.87) 75.60 (1.55) 75.33 (3.16) 76.67 (2.85)
vowel 74.87 (3.64) 73.40 (4.43) 69.27 (3.99) 73.80 (4.03) 75.47 (4.31)

waveform 81.00 (3.30) 80.20 (2.69) 82.07 (2.05) 80.73 (2.91) 81.87 (2.31)
average 78.23 78.09 77.82 78.29 78.93

average rank 2.8 3.4 3.5 3.1 2.2
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Table 5.11: Results for svm121 under the accuracy metric

dataset vpc-svm-121 ht-svm-121 wlw-svm-121 ppc-svm-121

anneal 97.47 (0.30) 97.60 (0.76) 97.33 (0.82) 97.33 (0.67)
arrhythmia 73.33 (3.03) 72.71 (2.87) 73.02 (3.17) 72.71 (3.07)
authorship 99.47 (0.87) 99.33 (0.82) 99.47 (0.56) 99.73 (0.60)

autos 67.06 (2.23) 69.12 (4.99) 67.06 (2.46) 68.82 (1.61)
cars 77.50 (2.18) 76.18 (2.63) 77.50 (3.47) 77.50 (2.88)

collins 40.27 (3.58) 44.93 (4.34) 42.80 (3.57) 44.40 (4.96)
dj30-1985-2003 14.63 (5.21) 19.40 (3.66) 16.72 (3.72) 29.25 (5.44)

ecoli 82.33 (5.29) 81.75 (4.47) 82.33 (5.25) 83.50 (2.91)
eucalyptus 52.80 (2.80) 56.00 (2.79) 53.73 (1.92) 55.20 (2.64)
halloffame 90.93 (1.92) 90.53 (2.38) 91.07 (2.93) 90.93 (3.08)

hypothyroid 90.80 (3.84) 90.27 (3.70) 90.40 (3.61) 90.40 (2.89)
letter 37.94 (9.32) 45.88 (9.38) 39.71 (8.25) 56.76 (8.74)

mfeat-morphological 72.67 (4.85) 70.93 (4.89) 72.93 (3.93) 74.27 (2.43)
optdigits 90.27 (5.97) 92.80 (2.18) 92.80 (2.60) 93.73 (1.67)

page-blocks 89.20 (2.38) 90.80 (2.23) 89.33 (2.36) 91.60 (2.48)
segment 90.93 (1.86) 89.20 (3.21) 92.00 (1.94) 92.00 (1.76)

synthetic-control 90.53 (10.00) 97.47 (1.73) 98.13 (1.10) 98.00 (1.05)
vehicle 79.33 (1.41) 79.33 (1.33) 79.73 (2.34) 80.00 (2.26)
vowel 77.33 (4.03) 76.40 (2.97) 78.93 (3.39) 80.93 (1.74)

waveform 82.40 (3.67) 82.67 (3.43) 82.53 (3.57) 83.20 (3.51)
average 74.86 76.17 75.88 78.01

average rank 3.1 2.8 2.4 1.7
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Table 5.12: Results for j48 under the rectified Brier metric

dataset multi-j48 vpc-j48 ht-j48 wlw-j48 ppc-j48

anneal 99.15 (0.48) 99.20 (0.42) 99.20 (0.40) 99.23 (0.40) 99.30 (0.35)
arrhythmia 89.43 (1.45) 88.50 (1.34) 91.01 (0.90) 90.95 (0.87) 92.85 (0.69)
authorship 96.20 (0.79) 95.70 (1.05) 96.23 (1.16) 96.08 (1.15) 97.23 (0.45)

autos 90.47 (2.46) 87.29 (2.66) 90.51 (1.37) 90.25 (1.80) 91.89 (0.94)
cars 88.74 (1.88) 87.01 (1.96) 90.14 (1.87) 89.79 (2.04) 91.03 (1.54)

collins 89.49 (0.76) 88.51 (0.47) 92.29 (0.45) 91.86 (0.49) 93.34 (0.27)
dj30-1985-2003 94.14 (0.52) 92.06 (0.60) 95.57 (0.28) 95.51 (0.32) 95.66 (0.17)

ecoli 93.49 (1.39) 92.18 (2.22) 93.92 (1.46) 93.82 (1.49) 94.35 (1.19)
eucalyptus 87.21 (1.12) 83.09 (1.96) 89.17 (1.01) 88.79 (1.17) 89.77 (0.47)
halloffame 92.79 (1.84) 92.40 (2.46) 93.29 (2.55) 93.58 (2.43) 94.31 (1.60)

hypothyroid 98.76 (1.08) 98.84 (1.03) 98.68 (0.95) 98.91 (0.98) 98.94 (0.98)
letter 94.45 (0.68) 94.31 (0.85) 96.27 (0.32) 96.18 (0.38) 96.52 (0.28)

mfeat-morphological 95.36 (0.76) 94.39 (0.78) 95.98 (0.45) 95.89 (0.52) 96.19 (0.38)
optdigits 95.04 (0.56) 96.36 (0.62) 97.37 (0.36) 97.18 (0.36) 97.96 (0.25)

page-blocks 97.24 (0.47) 96.67 (1.14) 96.88 (0.77) 97.13 (0.84) 97.83 (0.51)
segment 97.94 (0.59) 97.41 (0.83) 98.03 (0.62) 97.97 (0.67) 98.53 (0.34)

synthetic-control 95.61 (0.89) 95.89 (1.30) 96.63 (0.97) 96.54 (1.01) 98.05 (0.37)
vehicle 87.62 (1.74) 85.27 (2.00) 89.39 (1.21) 89.18 (1.27) 90.72 (0.98)

vowel 93.89 (0.79) 92.87 (0.46) 95.07 (0.33) 94.85 (0.34) 95.81 (0.27)
waveform 80.78 (2.09) 80.00 (1.70) 81.78 (1.65) 81.65 (1.71) 85.68 (1.60)

average 92.89 91.90 93.87 93.77 94.80
average rank 4 4.8 2.4 3 1
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Figure 5.16: Relative Brier score for decision trees.

5.7.2.2 Nearest Neighbor

Table 5.13 indicates the rectified Brier score of the various pairwise classification

methods while using the K-nearest neighbor algorithm as the base classifier. Figure

5.17 shows the relative gain in rectified Brier score over a multiclass KNN classifier.

5.7.2.3 Random Forests

Table 5.14 indicates the rectified Brier score of the various pairwise classification

methods while using the random forest algorithm as the base classifier. Figure 5.18

shows the relative gain in rectified Brier score over a multiclass random forest classifier.

5.7.2.4 Support Vector Machines

Table 5.15 indicates the rectified Brier score of the various pairwise classification

methods while using the support vector machine as the base classifier.
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Table 5.13: Results for knn under the rectified Brier metric

dataset multi-knn vpc-knn ht-knn wlw-knn ppc-knn

anneal 98.19 (0.68) 98.17 (0.69) 98.21 (0.67) 98.20 (0.68) 98.19 (0.68)
arrhythmia 84.36 (1.60) 83.84 (1.60) 84.54 (1.48) 84.33 (1.48) 84.79 (1.55)
authorship 99.60 (0.51) 99.57 (0.45) 99.56 (0.43) 99.57 (0.44) 99.64 (0.44)

autos 89.89 (1.75) 89.47 (1.85) 90.45 (1.60) 90.02 (1.72) 89.95 (1.76)
cars 83.51 (2.04) 83.63 (1.89) 83.96 (1.85) 83.85 (1.87) 83.90 (1.91)

collins 88.59 (0.60) 88.33 (0.51) 90.57 (0.38) 89.27 (0.46) 88.96 (0.60)
dj30-1985-2003 93.70 (0.43) 92.97 (0.50) 95.43 (0.15) 94.97 (0.29) 93.81 (0.44)

ecoli 91.04 (1.58) 90.68 (1.69) 91.29 (1.63) 90.99 (1.73) 91.27 (1.56)
eucalyptus 80.06 (1.43) 79.60 (1.43) 80.73 (1.39) 80.17 (1.44) 80.66 (1.66)
halloffame 91.50 (1.86) 91.56 (1.70) 91.76 (1.65) 91.72 (1.66) 91.81 (1.78)

hypothyroid 89.30 (2.48) 90.04 (2.22) 90.13 (2.24) 90.12 (2.23) 89.97 (2.24)
letter 95.41 (0.74) 94.77 (0.87) 95.96 (0.26) 95.95 (0.54) 95.49 (0.71)

mfeat-morphological 93.81 (0.49) 93.67 (0.40) 94.78 (0.31) 94.05 (0.37) 93.87 (0.48)
optdigits 99.00 (0.51) 98.95 (0.43) 98.84 (0.33) 98.98 (0.40) 99.01 (0.50)

page-blocks 95.83 (0.73) 96.08 (0.86) 96.27 (0.77) 96.22 (0.79) 96.09 (0.74)
segment 97.48 (0.77) 97.31 (0.79) 97.51 (0.70) 97.42 (0.76) 97.54 (0.77)

synthetic-control 98.45 (0.57) 98.51 (0.54) 98.57 (0.49) 98.55 (0.53) 98.53 (0.56)
vehicle 84.77 (2.18) 84.70 (1.36) 85.28 (1.38) 84.99 (1.40) 85.41 (1.99)
vowel 95.68 (0.54) 95.58 (0.56) 95.99 (0.45) 95.82 (0.52) 95.72 (0.52)

waveform 79.93 (1.58) 79.78 (1.85) 80.27 (1.80) 80.06 (1.83) 80.57 (1.72)
average 91.51 91.36 92.01 91.76 91.76

average rank 3.9 4.6 1.6 2.6 2.2

Table 5.14: Results for rf100 under the rectified Brier metric

dataset multi-rf-100 vpc-rf-100 ht-rf-100 wlw-rf-100 ppc-rf-100

anneal 99.35 (0.11) 99.47 (0.45) 99.33 (0.13) 99.32 (0.16) 99.36 (0.13)
arrhythmia 92.24 (0.57) 89.18 (1.07) 91.99 (0.48) 92.11 (0.51) 92.31 (0.52)
authorship 98.15 (0.15) 99.40 (0.54) 97.91 (0.21) 97.91 (0.20) 98.08 (0.18)

autos 93.80 (0.47) 92.18 (1.42) 93.78 (0.48) 93.83 (0.46) 93.92 (0.49)
cars 92.61 (0.94) 88.92 (3.29) 92.47 (1.07) 92.26 (1.27) 92.47 (1.13)

collins 93.61 (0.13) 89.93 (0.62) 93.61 (0.15) 93.66 (0.16) 93.70 (0.16)
dj30-1985-2003 95.35 (0.42) 92.28 (0.55) 95.58 (0.26) 95.61 (0.28) 95.59 (0.31)

ecoli 94.54 (1.31) 93.06 (1.85) 94.68 (1.32) 94.65 (1.26) 94.71 (1.29)
eucalyptus 87.94 (0.61) 82.75 (1.68) 89.03 (0.54) 89.17 (0.59) 88.86 (0.56)
halloffame 95.52 (0.77) 93.64 (1.28) 95.56 (0.75) 95.52 (0.80) 95.53 (0.77)

hypothyroid 98.55 (0.44) 97.87 (1.12) 98.24 (0.55) 98.32 (0.60) 98.33 (0.62)
letter 96.62 (0.23) 94.72 (1.06) 95.99 (0.19) 96.08 (0.19) 96.60 (0.23)

mfeat-morphological 95.97 (0.39) 94.28 (0.55) 96.09 (0.38) 96.03 (0.38) 96.09 (0.38)
optdigits 97.79 (0.16) 98.44 (0.56) 96.98 (0.17) 97.02 (0.19) 97.69 (0.18)

page-blocks 98.14 (0.54) 97.57 (0.99) 98.04 (0.45) 98.09 (0.51) 98.12 (0.48)
segment 98.63 (0.24) 98.11 (0.72) 98.45 (0.34) 98.48 (0.36) 98.62 (0.29)

synthetic-control 98.58 (0.19) 99.20 (0.30) 98.41 (0.14) 98.51 (0.14) 98.62 (0.15)
vehicle 92.16 (0.46) 87.50 (1.43) 91.95 (0.48) 91.93 (0.54) 92.23 (0.50)
vowel 96.23 (0.33) 95.16 (0.80) 95.36 (0.23) 95.67 (0.22) 96.28 (0.25)

waveform 90.36 (0.57) 86.80 (1.79) 90.48 (0.40) 90.24 (0.50) 90.34 (0.50)
average 95.31 93.52 95.20 95.22 95.37

average rank 2.4 4.2 3.3 3.2 1.9
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Table 5.15: Results for svm121 under the rectified Brier metric

dataset vpc-svm-121 ht-svm-121 wlw-svm-121 ppc-svm-121

anneal 98.73 (0.15) 98.86 (0.19) 98.83 (0.16) 98.93 (0.14)
arrhythmia 89.33 (1.21) 92.00 (0.77) 91.92 (0.71) 91.86 (0.64)
authorship 99.73 (0.43) 99.24 (0.36) 99.24 (0.46) 99.55 (0.24)

autos 86.82 (0.89) 91.09 (0.95) 91.14 (0.44) 91.95 (0.38)
cars 85.00 (1.45) 90.61 (0.49) 90.79 (0.74) 91.00 (0.78)

collins 89.14 (0.65) 93.67 (0.17) 93.65 (0.19) 93.67 (0.14)
dj30-1985-2003 91.46 (0.52) 95.46 (0.03) 95.41 (0.06) 95.64 (0.07)

ecoli 91.17 (2.65) 93.66 (1.31) 93.84 (1.37) 93.85 (1.13)
eucalyptus 81.12 (1.12) 88.71 (0.35) 88.62 (0.20) 88.60 (0.22)
halloffame 93.96 (1.28) 95.10 (1.03) 95.28 (1.03) 95.43 (1.10)

hypothyroid 93.87 (2.56) 94.92 (1.70) 95.35 (2.10) 96.01 (0.97)
letter 93.10 (1.04) 95.52 (0.12) 95.46 (0.16) 96.44 (0.32)

mfeat-morphological 94.53 (0.97) 95.83 (0.37) 95.93 (0.25) 96.29 (0.42)
optdigits 98.05 (1.19) 97.90 (0.40) 98.05 (0.63) 98.91 (0.27)

page-blocks 95.68 (0.95) 97.04 (0.72) 96.93 (0.72) 97.38 (0.62)
segment 97.41 (0.53) 97.43 (0.43) 97.67 (0.47) 98.03 (0.33)

synthetic-control 96.84 (3.33) 98.24 (0.93) 98.68 (0.45) 99.39 (0.14)
vehicle 89.67 (0.71) 93.19 (0.24) 93.41 (0.40) 93.43 (0.44)
vowel 95.88 (0.73) 96.47 (0.33) 96.93 (0.31) 97.50 (0.26)

waveform 88.27 (2.45) 91.79 (1.09) 91.76 (1.26) 91.76 (1.06)
average 92.49 94.84 94.94 95.28

average rank 3.8 2.5 2.4 1.3
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Figure 5.17: Relative Brier score for KNN.

Figure 5.18: Relative Brier score for RF-100.



Chapter 6

Conclusion

6.1 Conclusions

In this thesis, we investigated several previously unexplored aspects of multi-

class classification, focusing in particular on the related issues of model combination

and model selection, and how to perform model selection for models that are com-

bined. We experimented with previously unexplored algorithms in commensurate model

combination and complementary model combination. Specifically, we showed that lin-

ear combinations of multiclass classifiers benefit significantly from ridge regularization

(Chapter 3), and that applying one weight per prediction rather than one weight per

classifier allows classifiers to focus on subproblems. We also showed that when mul-

ticlass classification problems are reduced to binary classification problems, it is often

more effective to perform shared-hyperparameter optimization than to optimize each

subproblem independently (Chapter 4). Shared-hyperparameter optimization is more

effective because it provides regularization, reducing the probability of choosing poor

binary models, and because subproblems typically share similar structure. Finally, we

proposed an algorithm called probabilistic pairwise classification (PPC) that overcomes

a well-known flaw in other pairwise classification approaches, and is also conceptually

simple and easy to implement. Evaluation of PPC on real-world data sets indicates

that it is superior not only to other commonly used pairwise classification approaches,

but can also be used to improve the classification performance of multiclass classifiers.
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The tradeoff is that PPC is computationally more expensive, but this cost is mitigated

somewhat by the fact that it is easily parallelizable.

6.2 Future Work

In regularized linear combinations of multiclass classifiers (Chapter 3), we used

the single-point maximum-likelihood estimates implicit in the ridge and lasso regular-

izers. An interesting extension of this work would be to examine the full Bayesian

solutions corresponding to the Gaussian prior over weights (corresponding to ridge reg-

ularization) Laplacian prior over weights (corresponding to lasso regularization). Other

work could study additional regularization by selecting a single regularization hyperpa-

rameter for use in all subproblems or constraining the weights to be non-negative for

each subproblem.

Most of this work has focused on the accuracy metric (Chapters 3 - 5), with some

studies under the Brier metric (Chapter 5). Future work should investigate how our

results on model selection and regularization transfer to other domain-specific metrics.

One of the issues with model selection in subproblems induced by multiclass

classification is the relationship between the binary metric and the multiclass metric.

Other studies have shown that a mismatch between the training metric and the target

metric is problematic [17]. Further studies could investigate the relationship between

the training and target metrics in the case of multiclass to binary reduction methods.

While this thesis focused on the complementary issues of model selection and

model combination, and how to perform model selection for models that are combined,

we have only used the shared-hyperparameters technique for the PPC algorithm. An-

other valuable line of research would be to see whether PPC attains a higher benefit

from independent optimization than that attained by one-vs-all or other pairwise classi-

fication techniques. Since the Theorem of Total Probability is the foundation for PPC,

being able to more accurately estimate each term in the total probability should lead
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to more accurate multiclass predictions. However, further studies would need to be

performed to identify whether PPC requires shared-hyperparameters for the same rea-

sons as one-vs-all and other pairwise classification techniques, namely that smoothing

over subproblems provides a necessary regularization and that subproblems are often

similar. One aspect of PPC that may make it more amenable to improved accuracy

by independent optimization is that it already has a level of smoothing (see Equation

(5.7)), which may alleviate the need for shared hyperparameter constraints.
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Appendix A

Software and Supporting Material

Companion software, data sets, errata and other supporting material are available

at http://spot.colorado.edu/~reids/thesis/.



Appendix B

Data Set Descriptions

(1) anneal (Annealing Data Set): Predict class for a steel annealing problem,

given percentage of carbon, hardness, strength, thickness, width, length. This

dataset is conspicuously missing important metadata, such as its origin and

the meaning of the classes to be predicted; however, it is available from the

UCI repository and appears in many experimental studies for machine learning

algorithms. For more details, please see http://archive.ics.uci.edu/ml/

datasets/Annealing.

(2) arrhythmia (Cardiac Arrhythmia Database): Predict whether a cardiac arryth-

mia exists, and if so, which class it belongs to (of 15 classes), given patient age,

gender, height, heart rate and temporal characteristics of the cardiac waveform

(3) authorship (from Analysis of Categorical Data): Predict whether an author was

{Austen, London, Milton, Shakespeare} based on word counts of 68 words such

as {a, all, also, an, and}.

(4) autos (1985 Auto Imports Database): Predict the symboling or risk factor (from

-3 to 3) based on features such as engine size, length, weight, stroke, bore, price,

etc.

(5) cars: Predict whether a car is American, European or Japanese based on MPG,

number of cylinders, engine displacement in cubic inches, horsepower, vehicle
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weight, time to accelerate from 0 to 60 mph, etc.

(6) collins: Predict the genre of a text from the Brown corpus using features such

as FirstPerson, InnerThinking, ThinkPositive, Reasoning, TimeInterval, etc.

(7) dj30-1985-2003 : Predict the identity of a stock, given attributes such as its

opening and closing values on a given date.

(8) ecoli : Predict localization sites in gram-negative bacteria given McGeoch’s

method for signal sequence recognition, von Heijne’s method for signal sequence

recognition, score of discriminant analysis of the amino acid content of outer

membrane and periplasmic proteins, etc.

(9) eucalyptus (from agridatasets): Predict which eucalyptus seedlots are best for

soil conservation in a seasonally dry hill country, out of {none,low,average,good,best}.

The attributes include features such as {altitude, rainfall, frosts, year of plant-

ing, species, seedlot, height and stem, crown and branch form}. Note that this

class could be modeled as ordinal, but in our experiments is treated as nominal.

(10) halloffame (from Analyzing Categorical Data, p. 418): Predict whether a base-

ball player was {not inducted into the Hall of Fame, elected into the Hall of

Fame by the Baseball Writers’ Association of America, selected by a vote of the

Veterans Committee if not elected by the members of the BBWAA}

(11) hypothyroid : Predict presence, absence or severity of thyroid disease in patients,

given measurements such as age, TSH, T3, TT4, T4U, FTI, TBG

(12) letter : Predict letter (A-Z) generated by one of 20 fonts and distorted, given

features extracted from a pixellar representation such as statistical moments

and edge counts.

(13) mfeat-morphological : Predict the handwritten numeral (0-9) based on Fourier
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coefficients of character shapes, profile correlations, Karhunen-Love coefficients,

pixel averages, Zernike moments and morphological features. The instances

were constructed from Dutch utility maps.

(14) optdigits: Predict the handwritten numeral (0-9) based on pixel counts over

windows on an 8x8 grid.

(15) page-blocks: Predict whether a page block is (text, horizontal line, picture,

vertical line or graphic) given its height, length, area, eccentricity, percentage

of black pixels, etc.

(16) segment : Predict whether an image segment is (brickface, sky, foliage, cement,

window, path, grass) based on 19 input attributes such as column, row, number

of lines passing through the region, contrast of horizontally adjacent pixels in

the region, average intensity, average red, green and blue values, etc.

(17) synthetic-control : Predict which of the following trends a timeseries takes:

(Cyclic,Decreasing-trend,Downward-shift,Increasing-trend,Normal,Upward-shift)

given 60 timeseries samples.

(18) vehicle: Predict whether a vehicle silhouette is (opel,saab,bus,van) based on

extracted features such as compactness, circularity, distance-circularity, radius

ratio, kurtosis about major and minor axes.

(19) vowel : Predict the audio form of a vowel (hid, hId, hEd, hAd, hYd, had, hOd,

hod, hUd, hud, hed) given 9 extracted features.

(20) waveform: Predict which of three wave types a waveform belongs to given 21

noisy attributes.


