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Abstract

In recent years, with the advances in experimental techniques, the characteristic

length scales of the materials synthesized, are becoming increasingly small. Many

of these microscopic structures found their places in important commercial applica-

tions. However, the thermal loads imposed on these devices and structures create

a major obstacle toward their applicability. This challenge is driving a renewed

interest among researchers from various disciplines, toward the topic of thermal

management. The interest in the topic of thermal transport in small scale struc-

tures, served as the motivation for the work performed in this dissertation. More

specifically, the following topics were investigated:

• Transport in One-Dimensional Nonlinear Systems: Thermal trans-

port in materials can be explained in terms of the diffusive motion of the

heat carriers at the microscopic level. An important and surprising situation

emerges in some low dimensional model systems; the thermal conductivity

diverges with system size. It was shown (Toda, 1979) that nonlinearity has

an important effect on the heat transport in low dimensional systems. We

investigate the transport of energy in a nonlinear one-dimensional chain. We

show that solitons are spontaneous generated when we apply forcing func-

tions at the end of the chain. We investigate the different characteristics of

these solitons generated in the chain.

• Transport in Fluids — Study of Pair Distribution Function: Ther-

mal transport in fluids depends on the distribution of particles in the fluid. It
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is well known that the two-particle distribution function can describe most of

the thermodynamic properties for classical fluids in thermal equilibrium. We

review the approximate integral equation theories (Percus-Yevick, Hypernet-

ted chain approximation) to obtain the pair distribution function of classical

fluids. We find that these methods are highly dependent on the choice of

the thermodynamic parameters of the fluid. We solve several Lennard-Jones

fluid systems with different density and temperature values and prepare a

density-temperature compressibility diagram. This diagram shows the re-

gion of applicability of these theories and helps us obtain the pair distribution

function for a Lennard-Jones fluid with known thermodynamic parameters.

We also suggest a modification of the integral-equation theories to obtain the

pair distribution functions of quantum fluids.

• Thermal Transport Across Interfaces: When thermal energy is trans-

ported from one material to another, there is a discontinuity in temperature

at the interface between them. This thermal boundary resistance is known

as Kapitza resistance. The scattering of phonons at interfaces is one of the

main reasons behind the presence of thermal boundary resistance. We ex-

plore the scattering of acoustic waves at several solid-solid interfaces using

lattice dynamical methods. We derive matrix equations to obtain the re-

flection and transmission coefficients for an acoustic wave incident on the

interface. These coefficients can reproduce the familiar expressions in the

continuum limit and are consistent with the conservation relations.

We discuss a method to obtain the thermal boundary resistance for neu-

tral solid-fluid interfaces. The acoustic mismatch theory works poorly for

solid-fluid interfaces. One reason is that this theory only includes the long

wavelength acoustic phonons. Our theory includes all the phonon modes

in the solid and all the sound modes in the fluid, in the calculation of the

thermal boundary resistance. We provide an application of the method to

obtain the thermal boundary resistance at the interface between solid Argon

and liquid Neon. Our method yields the value for Kapitza conductance for

solid Argon-fluid Neon interface to be 0.0374GW/Km2.
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êsn Polarization vector of reflected phonon, p. 95

Ii Amplitude of incident phonon, p. 95

Rsn Amplitude of reflected phonon, p. 95

kfn Component of the wavevector of transmitted wave of polar-
ization n perpendicular to the solid-fluid interface, p. 95

êfn Polarization vector of transmitted wave, p. 95

Tsn Amplitude of transmitted wave, p. 95

M Solid-fluid coupling matrix, p. 99

φk Angle between the component of the wavevector parallel to
the interface and x-axis, p. 100

U ,V Fluid-solid coupling matrices, p. 102

Cpn Coefficients of the reflection and transmission amplitudes in
the solid-fluid interface matrix equation, p. 104
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Chapter 1
Introduction

Transport phenomena are ubiquitous in nature and facilitate all physical trans-

formations in the universe. A comprehensive understanding of Nature cannot be

achieved without a thorough knowledge of the concepts encompassed in transport

phenomena. Transport of energy, mass and momentum play an important role

in a variety of natural processes. Transport, alongwith other physical and chemi-

cal processes leads to formation of fascinating structures, ranging from nanoscale

structures to new geographical landscapes. The transport of energy between the

sun and the earth drives the seasonal change in the weather. The synthesis of DNA

and proteins within cells requires the transport of energy and necessary ingredi-

ents to the relevant sites. Transport facilitates supply of nutrients and removal of

waste products at the cellular level and also, at a macroscopic level in all organic

systems. Ionic transport between the neurons is key to the proper functioning of

brains of animals. In short, transport phenomena involve all aspects of physical

changes in the universe and are fundamental to the success of life on the earth.

Generally speaking, transport phenomena involve all situations when a physical

system undergoes some transformation by transferring information with external

systems. This transfer is usually carried out by particles characteristic to the

system and the physical parameters involved in the transformation. Examples of

such carriers are electrons, photons, phonons, and molecules and the examples of

the physical parameters are mass, energy, and momentum.
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1.1 Transport in Microscopic Systems

The characteristic length scales of the materials synthesized are becoming increas-

ingly small with the advances in experimental techniques. Many of these micro-

scopic structures found their places in important commercial applications, while

research is going on toward finding materials with even smaller length scales. Ex-

amples of some of these structures are nanocomposites, semiconductor quantum

dots, and superlattices. Examples of applications include microelectromechanical

sensors, microelectronic and optoelectronic devices, and integrated circuit chips.

The thermal loads imposed on these devices and structures create a major obsta-

cle toward their applicability. This challenge is driving a renewed interest among

researchers from various disciplines, toward the topic of thermal management. In-

vestigations are going on to find ways to carry away heat from these small scale

structures more effectively. The size of the microstructure poses a greater concern,

because many times the size of the microstructure is comparable to the character-

istic length scales of the heat carriers in the system. Hence, researchers are not

only in the pursuit of devices with more efficient thermal management, but also

focused toward better understanding of the underlying physical mechanisms [10].

1.1.1 Low-Dimensional Systems: Effect of Nonlinearity

The investigation of heat transport in solids has a history of more than two hundred

years, dating back to the proposition of Fourier’s law. This law asserts that close

to equilibrium, the thermal flux is proportional to the gradient of temperature,

JQ = −κ∇T, (1.1)

where the heat flux JQ is the amount of heat transported through an unit surface

per unit time, ∇T is the local temperature gradient and the proportionality con-

stant κ is the thermal conductivity, an intensive variable, independent of the size

of the system. Fourier’s law explains the diffusion of thermal energy through the

system, which is referred to as the “normal transport” of heat in the literature

[11]. The diffusive nature of thermal transport can be understood in terms of the

motion of the heat carriers at the microscopic level. Electrons, lattice vibrations
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(phonons), atoms and molecules are the main carriers of thermal energy in the

solid. These carriers suffer random collisions while moving through the solid and

thermal energy diffuses through the system.

Fourier’s law is successful in providing an accurate description of heat transport

phenomena in three-dimensional systems. However, this is a phenomenological law

and there is no rigorous derivation of this law starting from a microscopic Hamil-

tonian description. This conceptual issue has motivated a large number of inves-

tigations on heat transport in model systems ([12], [13], [14]). An important and

surprising conclusion that emerges from these studies is that the thermal conduc-

tivity in some of these low dimensional model systems, is divergent [15]. Numerous

studies have sought to understand the mechanisms of heat transport in classical

low dimensional systems [14]. Toda [15] showed that in classical disordered sys-

tems, the thermal conductivity is enhanced by the introduction of anharmonicity.

A particularly important discovery that highlighted the role of nonlinearity in one-

dimensional heat transport was led by Fermi, Pasta and Ulam (FPU). A series

of computer experiments revealed that the time evolution of a one-dimensional

chain of coupled nonlinear classical oscillators, does not evolve towards equiparti-

tion but instead tend to return to the initial state ([16], [17], [18]). The FPU-like

systems brought the issue of “anomalous” heat transport into focus and since then,

a large number of investigation revealed the complex interplay among nonlinearity,

complete integrability, and deterministic chaos in these systems ([19], [20], [21]).

In recent years, the discovery of carbon nanotubes [22] and carbon nanowires

[23] has attracted an increasing attention towards one-dimensional and quasi-one-

dimensional systems. Studies reported an unusual high thermal conductivity for

these systems [24]. This discovery not only renewed the interest in the theoretical

investigation of low-dimensional systems but, created great promises for techno-

logical applications in microscopic systems as well.

1.1.2 Thermal Transport in Fluids

One of the most important challenges faced by technological developments in the

microelectronic industry, is to control the temperature by carrying the heat away

from these small scale structures effectively. This requires cooling agents with
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high thermal conductivity. The concept of nanofluids is proposed to overcome the

shortcomings of some of the conventional heat transfer materials ([25], [26]). The

suspended particles alter the correlation between the fluid atoms and influence

the transport properties of nanofluids. This in turn improves the heat transfer

performance of these systems.

Thermal transport in fluids can also be described by Fourier’s law Eq. (1.1), in

the linear response regime. The thermal conductivity in a fluid varies with density

and temperature. The mechanism behind heat transport is mainly because of

the random collisions between moving atoms or molecules. In addition, fluid can

also transport through self-diffusion, which does not involve transfer of energy via

collisions. The structure of the fluid or the knowledge of the correlation between

fluid atoms is crucial in the determination of the various transport properties of a

fluid.

1.1.3 Transport Across Boundaries: Surface Physics

Physics at the interfaces is always unpredictable and fascinating. With the de-

crease in the system size, the interfaces between materials become increasingly

important. When thermal energy is transported from one material to another,

the temperature is not continuous at the interface between them. This thermal

boundary resistance is called Kapitza resistance, named after Kapitza [27], who

first discovered the thermal boundary resistance for metal - superfluid helium in-

terfaces. The observations of thermal boundary resistance have been reported for

various different materials ([28], [29], [30], [31], [32], [33]) afterwards.

The first theoretical model, known as the acoustic mismatch model (AMT) was

proposed by Khalatnikov [34] (1952) to explain the origins of the thermal boundary

resistance. The difference in the densities and sound speeds result in a mismatch in

the acoustic impedances (Z = ρc, ρ is the mass density and c is the speed of sound)

between the two sides of the interface. The AMT model predicts the functional

relationship between the phonon transmission and the acoustic impedances. The

transmission coefficient tAB for phonons in the side A, incident normal to the
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interface with material B, would have the form:

TAB =
4ZAZB

(ZA + ZB)2
, (1.2)

This model assumes that no scattering takes place at the interface. The alternative

model, proposed by Schwartz [32] is known as the diffuse mismatch model (DMT).

DMT assumes that all the phonons that are incident on the interface gets scattered,

and the probability of scattering is directly proportional to the phonon density of

states of the two opposite sides of the interface.

Both of these models explain the existence of the thermal boundary resistance

but, they fail to give good estimates of thermal boundary resistance for real in-

terfaces. One of the main reasons is that these models do not incorporate the

structure of the interface in them. A great many studies have been carried out

to investigate the effect of surface defects on the phonon transmission across the

interface ([35], [36], [37]). A better theory was proposed by Young and Maris

[38] and later modified by Mahan and Pettersson [39], for solid-solid interfaces.

However, the theory for solid-fluid interfaces has not progressed as much. Some

molecular dynamics calculations are reported ([40], [41], [42], [43], [44]), but work

is still going on to formulate an analytical theory.

The dissertation is organized as follows. In Chapter 2, we discuss the trans-

port in one-dimensional monatomic lattices with nonlinear interaction potential

between the atoms. The discussion focuses on the spontaneous generation of soli-

tons in the quartic lattice and the investigation of the properties of the solitons

generated. Chapter 3 contains a study of the pair correlation in fluids. We review

the integral equation techniques for the theoretical determination of pair distri-

bution function of classical fluids and provide applications of these technique for

different fluids. In Chapter 4, we discuss the scattering of phonons at several solid-

solid model interfaces. In Chapter 5, we investigate the thermal transport at the

interface between an ideal gas solid and an ideal gas fluid. A method is described

here to evaluate the Kapitza resistance of the interface between a neutral insulat-

ing solid and a neutral fluid system. We provide an application of the method to

obtain the thermal boundary resistance at the interface between solid Argon and

liquid Neon.



Chapter 2
Transport in One-dimensional

Nonlinear Systems

2.1 Introduction

A general approach to non-equilibrium phenomena is to define the transport co-

efficients through phenomenological constitutive equations. Close to equilibrium,

energy transport in a solid is expressed through Fourier’s law (Eq. (1.1)). It is

found that Fourier’s law is not obeyed for the case of one-dimensional lattices.

The thermal conductivity diverges in the thermodynamic limit, as N1/2 where N

is the number of particles of the system [45]. In order to explain this behavior, it

is speculated that the transport in one-dimensional systems is dominated by non-

linear phenomena. Toda showed that a nonlinear lattice has modes that have an

infinite lifetime. This suggests that instead of treating the nonlinear interaction as

perturbation to the harmonic system, we need to formulate a theory for transport

in one-dimension which deals with the nonlinear interaction on its own.

2.1.1 Solitons

A soliton is a solitary wave, i.e. a spatially localized wave, with exceptional sta-

bility properties. The name, soliton, is chosen because of the reason that apart

from having wave-like properties, a soliton also exhibits particle-like properties: it

represents a local maximum in the energy density and it preserves its shape and
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velocity when it moves, just like a particle does. Solitons are widely used to de-

scribe various phenomena across many disciplines of science, from hydrodynamic

tsunamis and fiber optic communications to solid state physics and the dynamics

of biological molecules.

John Scott Russell, a hydrodynamic engineer, in 1834 [46] reported the first ob-

servations of solitary waves on a canal near Edinburgh. Several years later, in 1895,

Korteweg and de Vries [47] derived an equation to describe hydrodynamic solitons.

This phenomenon made a comeback during a numerical experiment carried out by

Fermi, Past and Ulam (FPU), in 1953, with one of the first computers at Los

Alamos [16]. They observed that when energy is fed into a one-dimensional lat-

tice of particles coupled to each other by an anharmonic potential, the anticipated

equipartition of energy among the different modes of the lattice is not achieved.

Instead, the supplied energy returns to the initial state. The solution to the FPU

paradox was provided by Zabusky and Kruskal in terms of solitons, ten years later

[48].

Solitons provide a very useful approach to describe the physics of a nonlinear

system. It is efficient to approximately describe the physics of the system by the

appropriate soliton solution and then consider the possible perturbations of the ex-

act soliton solution to improve the theory. Moreover, it is now known that solitons

can emerge spontaneously in a physical system in which some energy is fed in, even

if the excitation does not match exactly the soliton solution [49]. The energy can

be supplied as thermal energy or by an excitation with an electromagnetic wave

or in the form of mechanical stress. It has been found that many physical system

satisfy the criteria to sustain solitons, at least for some range of excitations. This

means that if a system possesses the necessary properties to allow the existence

of solitons, it is highly likely that any large excitation will indeed lead to their

formation and this feature explains the interest of solitons in physics.

2.1.2 Role in Transport

The interest in solitons arises from their role in thermal transport in one-dimensional

systems. Toda [15] first proposed that energy is mainly transported by solitons in

nonlinear lattices, and showed that in the case of a lattice with exponential inter-
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action, the heat flux in the isotopically disordered lattice is enhanced by the intro-

duction of the nonlinearity. In recent years, heat conductivity in low-dimensional

systems has attracted an increasing attention [45, 50, 51] due to the discovery of

nanotubes and nanowires. In these studies [45], it has been speculated that soli-

tonlike propagation is generically favored in one-dimensional systems. The study

of solitons in one-dimensional nonlinear lattices would help better understand the

heat transport in one-dimensional systems.

There have been numerous investigations on the lattice dynamics of quartic

and other nonlinear lattices using different analytical [48, 52, 53, 54, 55, 56, 57,

58, 59, 60, 61, 62, 63] and numerical approaches [49, 64, 65, 66, 67, 68, 69, 70]. In

these studies, the potential contains quadratic terms along with nonlinear cubic or

quartic terms (Fermi-Pasta-Ulam or FPU problem). The quadratic term describes

phonons on the lattices, which affect the existence and stability of solitons. In this

chapter, we investigate the traveling solitons on a purely quartic lattice. Phonons

do not exist in a pure quartic lattice and this would help us better understand the

nature of solitons in one-dimensional nonlinear lattices. We generate the solitons in

the quartic lattice with the application of various forcing functions and determine

the properties of the solitons thus obtained.

2.2 One-Dimensional Quartic Lattice

Our discussion is limited to the type of lattice, whose potential energy between

adjacent atoms contains a nonlinear quartic term,

V (Qj+1, Qj) = +
K4

4
(Qj+1 − Qj)

4, (2.1)

where, Qj(t) is the displacement of an atom at site j at time t, and K4 is the

quartic spring constant.

2.2.1 Equations of Motion

The interactions between the first neighbors are sufficient for a general description

of the classical vibrations on a one-dimensional lattice. Therefore, the general
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equation of motion for the jth atom in a quartic lattice consisting of N atoms is

m
d2

dt2
Qj = −K4

[

(Qj − Qj−1)
3 + (Qj − Qj+1)

3
]

, 2 ≤ j ≤ N. (2.2)

The one-dimensional chain is considered to have free boundaries. The equations

of motion for the end atoms of the chain are given by

m
d2

dt2
Q1 = −K4

[

(Q1 − Q2)
3
]

, (2.3)

m
d2

dt2
QN = −K4

[

(QN − QN−1)
3
]

(2.4)

In order to write the above equation in a dimensionless form, a parameter τ is

defined, that plays the role of time but has the dimensional unit of inverse distance,

τ = t
√

K4
m . The equations of motion, Eq.s (2.2 - 2.4) become

d2

dτ 2
Q1 = −(Q1 − Q2)

3, (2.5)

d2

dτ 2
QN = −(QN − QN−1)

3, (2.6)

d2

dτ 2
Qj = −(Qj − Qj−1)

3 − (Qj − Qj+1)
3, 2 ≤ j ≤ N. (2.7)

The above equations are the primary starting point of further calculations. An

interesting feature noted from the equations of motion is that if the equations Eq.s

(2.5 - 2.7) for all the atoms are added together, some sum rules can be generated:

∞
∑

j=0

Q̈j(τ) = 0, (2.8)

∞
∑

j=0

Q̇j(τ) = v0, (2.9)

∞
∑

j=0

Qj(τ) = v0τ. (2.10)
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2.2.2 Normal Modes of Quartic Lattices

In this part, we discuss the stationary solitons in the quartic lattices. The solution

of Eq. (2.5-2.7) can be factored into a time part and a space part following the

technique of Kiselev [71],

Qj(t) = qja0cn(a0τ), τ = t

√

K

m
(2.11)

The cnoidal function cn(u) is taken at k2 = 1/2, where d2cn(u)/du2 = −cn(u)3.

The constant a0 is an amplitude that factors out once the solution is inserted into

Eqs. (2.5-2.7). The remaining part is left as the equations for the constants qj

qj = (qj − qj−1)
3 + (qj − qj+1)

3, 2 ≤ j ≤ N (2.12)

Now, for j = 1, the first atom in the chain, Eq. (2.5) becomes

q1 = (q1 − q2)
3. (2.13)

The above equation can be solved for q2,

q2 = q1 − (q1)
1
3 . (2.14)

A similar equation can be written for q3

q3 = q2 − (q1 + q2)
1
3 . (2.15)

The result can be generalized to any value

sn =
n

∑

j=1

qj, qn+1 = qn − (sn)
1
3 . (2.16)

The real root of a negative number is taken: (−a)1/3 = −(a)1/3 if a > 0. Assuming

that the center-of-mass of the chain does not move, we get

sN = 0 (2.17)
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which is the eigenvalue condition. Since the chains have inversion symmetry, a

simpler way to solve the normal vibrational modes is presented using the feature

that the modes are either symmetric or antisymmetric. The technique depends

upon whether the chain has an even or odd number of atoms.

1. if N = 2M + 1 is odd, then:

• Antisymmetric solutions have the center atom with zero amplitude

qM+1 = 0, which gives

q3
M = sM . (2.18)

• Symmetric solutions have qM+1 ̸= 0. The eigenvalue condition can be

used to write

−
qM+1

2
= sM . (2.19)

2. If N = 2M is even, then:

• Antisymmetric chains have qM+l = −qM+1−l, which gives the eigenvalue

equation

8q3
M = sM . (2.20)

• Symmetric chains have qM+l = qM+1−l, so the eigenvalue equation needs

to take only half of the chain into consideration.

sM = 0. (2.21)

A table of solutions found using the above method is shown in Tab. 2.1. For larger

values of N , only half of the displacements are shown, since symmetry dictates

the others. For all values of N , N modes are found that are either symmetric or

antisymmetric in nature. In each case, a positive value for q1 is taken. The same

set of solutions is obtained with a changed sign if a negative starting value is taken.

The stationary soliton solutions for the infinite chain found by Kiselev [71,

72] were localized, and certainly were neither symmetric nor antisymmetric with

respect to the center of the chain. They were symmetric or antisymmetric with

respect to local displacements. So there is no reason to expect that all solutions

are symmetric or antisymmetric with the center of the chain. Therefore, to find
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N A/S q1 q2 q3 q4

2 A 1/
√

8 −1/
√

8
3 A 1 0 -1

S 1/
√

27 −2/
√

27 1/
√

27
4 A 0.053 -0.323 0.323 -0.053

A 1.936 0.690 -0.690 -1.936
S 0.353 -0.353 -0.353 0.353

5 A 0.316 -0.365 0
A 3.161 1.693 0
S 0.0087 -0.197 0.376
S 0.687 -0.195 -0.985

6 A 2×10−4 -0.0583 0.3290
A 1/

√
8 −1/

√
8 −1/

√
8

A 4.673 3.001 1.028
S 1 0 -1
S 0.188 -0.385 0.197

7 A 0.078 -0.349 0.298 0
A 0.495 -0.296 -0.880 0
A 6.471 4.608 2.378 0
S 6.5×10−7 -8.66×10−3 0.1967 -0.3762
S 0.350 -0.355 -0.187 0.390
S 1.475 0.337 -0.882 -1.858

Table 2.1. Eigenvalues of Symmetric (S) and Antisymmetric (A) Vibrations of Chains
of N Atoms

other solutions the eigenvalue condition Eq. (2.17) is used, which results in soliton

solutions in longer chains. From here on, these kind of solutions will be called

soliton solutions. For example, the following is a valid solution for N = 6:

q1 = 0.05313, q2 = −0.3228, q3 = 0.3233, q4 = −0.0538,

q5 = 7.6 × 10−4, q6 = −10−12 (2.22)

The result resembles the first symmetric mode for N = 4, with the two atoms

at the right end not moving much. The inverse is also a solution, with q1 = −10−7.

There appears to be more solutions than the number of atoms. The first symmetric

mode for N = 3 is also a soliton, since it strongly resembles the mode in N = 3,

where 1/
√

27 = 0.1925 ≈ 0.1967.
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2.2.3 Traveling Solitons

Here, we discuss the traveling solitons in the quartic lattices. Our focus is to show

the spontaneous generation of solitons in the lattice and to discuss the properties

of the solitons thus generated. A forcing function of zero duration or an impulse is

applied to one of the free ends of the chain of atoms to generate traveling solitons

on the quartic lattice. The ends remain unclamped (are free to move) at all times,

even after the application of the impulse.

The impulse can be mathematically represented by a delta function pulse,

f(τ) = v0δ(τ), here v0 is the impulse strength and has the dimension of [L]3.

The application of the impulse is numerically modeled as follows: at τ = 0, the

displacements of the atoms are zero (Qj = 0, 1 ≤ j ≤ N) and all the atoms, except

the one at the end, are at rest, (Q̇j = 0, 2 ≤ j ≤ N). The end atom has an initial

velocity, (Q̇1 = v0), due to the application of the impulse. Mass of an atom, m

and quartic spring constant, K4 are chosen to have unit values throughout this

investigation. The method of finite differences is used to solve the equations of

motion, Eq.s (2.5-2.7) numerically.

Figure 2.1 shows the displacements of the atoms in time. They all move to

the right a distance a0 and stop. The sum rules mentioned in Eqs. (2.8-2.10) are

obeyed in Fig. 2.1.

In order to find out the number of atoms in motion while the soliton propagates

through the chain, number of atoms that have relative displacements greater than

a chosen minimum value is counted. Reference [49] reports that only 3 atoms are in

motion at all times. It is found here that the number of atoms in motion depends

on the choice of the cut-off value for the minimum relative displacement. Table 2.2

shows the percentage of times number of atoms in motion for different choice of

the minimum relative displacement. As can be seen from the table, for the choice

of a lower minimum relative displacement, more number of atoms are in motion

and vice versa. For most values of the cut-off, initially only one or two atoms are

in motion while the soliton is in formation; once the soliton starts propagating, 3-4

atoms are in motion at all times.

Traveling solitons are found to exist in chains of atoms with free boundaries.

If the atom farthest from the point of application of the impulse, is clamped in its

position or is bound to a wall, soliton generation is not affected. If the atom at the



14

0.8

1

1.2

1.4

0.8

1

1.2

1.4

m
en

ts
, Q

j-
Q

j +
1

la
ce

m
en

ts
, Q

j

Q1 Q2 Q3 Q4 Q5
Q1-Q2 Q2-Q3 Q3-Q4 Q4-Q5

-0.2

0

0.2

0.4

0.6

-0.2

0

0.2

0.4

0.6

0 2 4 6 8 10 12

Re
la

tiv
e 

Di
sp

la
ce

m
e

Di
sp

la
c

ττττ (m-1)

Figure 2.1. Generation of solitons on quartic lattice with delta function pulse; Impulse
strength, v0 = 1units; Lattice parameters, K4 = 1, m = 1; Number of atoms in the
chain, N = 50;
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Times different number of atoms-in-motion (%)
Min Rel. Displ. 1 2 3 4 5

(Order)

10−1 2.12 46.73 51.05 0.00 0.00
10−2 1.37 2.97 80.15 15.50 0.00
10−3 0.87 2.65 39.6 56.88 0.00
10−4 0.55 2.47 7.69 89.30 0.00
10−5 0.35 2.25 4.87 69.41 23.13

Table 2.2. Percentage of times different number of atoms in motion during the propa-
gation of the soliton through the chain

point of application is clamped in its position after the application of the impulse,

a soliton is still generated but, its amplitude is comparable to the unclamped one

only for a high impulse strength. On the other hand, if the atom at the point of

application of the impulse is bound to a wall, the bound atom has an equation of

motion,

Q̇1 = v0, (2.23)

Q̈1 = −(Q1 − Q2)
3 − Q3

1, (2.24)

and

Q̈j = −(Qj − Qj+1)
3 − (Qj − Qj−1)

3, 2 ≤ j ≤ N. (2.25)

A soliton can never be generated in this case, for any value of v0. Instead, the atoms

at the other end of the chain all continue to vibrate, and the effect of impulse is

petered after a few atoms. However, a soliton is obtained for every value of v0 for

a chain with free boundaries.

2.2.3.1 Approximate Wave Form

The general solution for a traveling soliton can be written as

Qj = a0f [vj − ω(v)τ ], (2.26)
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where a0 is the maximum displacement of the atoms in the chain or the amplitude

of the soliton wave. The two parameters v and ω(v) can be treated as the “wave

vector”, and the “frequency” of the soliton wave respectively. It is a characteristics

of quartic lattices that “frequency” parameter of the soliton wave depends on the

amplitude a0. Hence ω(v) can be written as β(v)a0. Henceforth, the parameters

v and β would be referred as the “wave vector” and “frequency” of the soliton

solutions. It can be noted from Fig. 2.1 that the atoms displace smoothly to their

final value with no ringing (except for the end atom). The wave form shown in

Fig. 2.1 is approximately described by the formula

Qj(τ) =
a0

2
[1 − tanh(φj)] (2.27)

with

φj = vj − βa0. (2.28)

This formula is a good but not perfect description of the soliton motion. Using the

above form for the displacements of the atoms, the relative displacements between

the atoms can be written as

qj(τ) =
a

(cosh(vj − βa0τ))2
, (2.29)

where, a is the maximum relative displacements of the atoms.

Reference [49] has given a formula for the soliton solutions of the FPU problem

assuming that only three atoms are in motion at all times during the propagation

of the soliton,

⎧

⎨

⎩

qj = ±a
2 [1 + cos(2π

3 j − ωτ)] if − π < 2π
3 j − ωτ < π,

qj = 0 otherwise,
(2.30)

and the relations for the frequency ω(v) and the velocity v are given as functions

of a:

ω =
√

3 + (45/16)a2,

vS = ω/(2π/3) = 3
√

3 + (45/16)a2/(2π). (2.31)
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Reference [53] has reported an exact solution for the lattice waves in a quartic

lattice with period of three lattice sites. The lattice wave has a cosine solution,

qj = a cos(θj), θj ≡
2π

3
j − ω3τ, (2.32)

with

ω2
3 =

9

4m
a2K4 (2.33)

These formula can be rewritten in the same way as mentioned in reference [49] to

satisfy the soliton solutions in quartic lattice,

qj =
a

2
[1 + cos(

2π

3
j − ω3τ)] if − π <

2π

3
j − ωτ < π, (2.34)

with

ω2
3 =

9

4m
a2K4.

A comparison between these analytical solutions Eq.s (2.29,2.30,2.34) and our

numerical data is shown in Fig. 2.2. The numerical values of the relative dis-

placements of the 20th atom in the chain are plotted against time along with the

analytical values obtained using various formulas, [Eqs. (2.29, 2.30, 2.34)] in Fig.

2.2.

Now, an analytical solution for the displacements of the atoms of the period

three lattice wave is given in reference [53],

Qj = a0 sin(
2π

3
j − ω3τ −

π

3
). (2.35)

This formula is modified in a similar fashion as in Eq. (2.34),

Qj =
a0

2
[1 − sin(

2π

3
j − ω3τ −

π

3
)], −

π

2
<

2π

3
j − ω3τ −

π

3
<

π

2
. (2.36)

Analytical values are obtained using the above formula for atomic displacements

for both ω = ω3 and ω =
√

3 + (45/16)a2. The analytical values obtained using

the above analytical expressions Eqs. (2.27,2.36) are compared with numerical

data of the displacements of the 20th atom in the chain and is shown in Fig. 2.3.

As can be noticed from both Fig. 2.2 and Fig. 2.3 that the form of the analytical
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Figure 2.2. Comparison between the numerically and analytically obtained values of
the relative displacements of the 20th atom

solutions reported in reference [53, 49] as well as our proposed solution match with

that of the numerical data. The values obtained using the tanh solution match

closely the data for the atomic displacements but, it doesn’t match that well with

the tails of the numerical relative displacements data.

2.2.3.2 Parameters of the Soliton

Using the approximate wave form given in Eqs. (2.27, 2.28), the soliton parameters

(β, v) can be deduced from the numerical data in the following way. First, τj is

defined as the value of time when the displacement of the jth atom is half its

maximum amplitude and φj(τj) = 0, τj = vj/βa0. A numerical derivative of

Qj(τ) is taken at τ = τj,

d

dτ
Qj(τ) =

a2
0β

2 cosh(φj)2
, (2.37)

(
d

dτ
Qj(τ))τj

=
a2

0β

2
. (2.38)
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Figure 2.3. Comparison between the numerically and analytically obtained values of
the displacements of the 20th atom

The slope is proportional to β. The other parameter v is obtained from the dis-

placement of the (j + 1)th atom at τ = τj,

Qj+1(τj) =
a0

2
[1 − tanh(v)], (2.39)

v =
1

2
ln[

a0

Qj+1(τj)
− 1]. (2.40)

The values of these parameters, obtained using the above Eqs. (2.38, 2.40) for

some of the solitons, are shown in Tab. 2.3.

The values of the “frequency” parameters, β, obtained for the solitons generated

above, are constant and not functions of a0 or a. This is different from the cases

described in reference [53, 49], where ω is a function of a0. On the other hand, the

values of “wave vector” parameters are constant like reference [53, 49], but, they

are not equal to the “magic” wavenumber 2π/3.

Now, the strength of a pulse is defined as the area under the curve of f(τ) vs. τ .

In case of an impulse, the strength is simply v0. The interesting part of the results
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v0 a0 β v
0.50 0.93 1.03 2.45
1.00 1.32 1.03 2.45
1.50 1.62 1.03 2.45
2.00 1.87 1.03 2.45

Table 2.3. Parameters of a soliton on the quartic lattice generated by an impulse v0 on
a free end.

shown in Tab. 2.3 is that β and v are independent of v0, the impulse strength. The

only parameter that depends upon v0 is a0, soliton amplitude. The relationship

between the soliton amplitude and impulse strength can be understood in the

following manner: Energy supplied to the lattice by an impulse is Einitial = 1
2mv2

0.

Now, atoms gain energy as a result of the propagation of a soliton, both K.E and

P.E. vary as ≈ K4a4
0. Hence, parameter a0 is expected to vary as a4

0 ∝ v2
0 or

a0 ∝ v1/2
0 from dimensional analysis. As can be noted from Tab. 2.3,

a0 = 1.322
√

v0, (2.41)

which matches the expectation that soliton amplitude should have a square root

relationship with the impulse strength.

Now, the maximum relative displacements between adjacent atoms, a, also

behave in a similar manner, a ∼ √
v0 (Fig. 2.4). Henceforth, the peak relative

displacement, a would be referred to as soliton amplitude. The maximum relative

displacements, a scale linearly with the maximum displacements, a0; the relation-

ship, as shown in Fig. 2.5, can be approximately described as a0 ≈ (4/3)a. As

the soliton propagates through the lattice sites, the time it takes for the relative

displacements to reach peak value, a, increase linearly. This relationship is utilized

to obtain the velocity of soliton, vS. Soliton velocities, vS are also observed to have

a square root relationship with impulse strength, vS ∼ √
v0. And the velocities

scale linearly with the soliton amplitudes as shown in the inset of Fig. 2.4.
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Figure 2.4. Power law relationship of soliton amplitude and soliton velocity with applied
impulse strength, v0; Inset: Soliton amplitude varies linearly with soliton velocity;

2.2.3.3 Stability of the Soliton

Stability of a soliton refers to its ability of maintaining its width and amplitude

throughout propagation. The observation that only 3-4 atoms are in motion during

soliton propagation, points toward the fact that the soliton is being able to main-

tain its width. Information about the amplitude can be obtained by comparing

the peak values of the relative displacements, a at different lattice sites. Figure 2.6

shows the soliton amplitudes at different lattice sites for various impulse strengths,

v0. The amplitudes are almost constant at all the lattice sites irrespective of im-

pulse strength. The constant value of the amplitudes indicates the formation of

stable solitons on the quartic lattice irrespective of impulse strengths.

This result is compared with the solitons generated on a one-dimensional Toda
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lattice with interaction potential given by

V (Qj+1, Qj) = +
a

b
exp(−b(Qj+1 − Qj)) + a(Qj+1 − Qj), (2.42)

with the application of external impulses, as shown in Fig. 2.7. Soliton amplitudes

at different lattice sites are shown in Fig. 2.8 for varied impulse strengths. For weak

impulses, the amplitude of soliton decreases as the wave moves along the chain,

but the amplitude remains almost constant for impulses beyond a critical strength.

A stable soliton is produced on the Toda lattice only when the input impulse is

beyond a critical strength. Similar behavior has been reported in literature for a

chain of capacitors modeled as Toda lattice [73]. The explanation for this behavior

is linked to the presence of phonons in Toda lattice which can be perceived from

the oscillatory tail of the displacement-time plot (Fig. 2.7). Some of the energy
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supplied to Toda lattice by the impulse is spent in the generation of phonons.

Therefore, higher impulse strength is required to produce a stable soliton. In

comparison, the energy supplied to the quartic lattice is used entirely for the

generation of solitons. Hence, a stable soliton is generated on the quartic lattice

for all impulse strengths.

2.2.4 Multiple Solitons

2.2.4.1 Pulse of Constant Height

The parameters (β, v) of solitons generated using an impulse, are found to be

constants independent of impulse strengths. This observation motivated the study

of generation of solitons using a different forcing function. A pulse of constant
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Figure 2.7. Generation of solitons on Toda lattice with constant impulse; Impulse
strength, v0 = 1 units; Toda lattice parameters a = 1, b = 1; Number of atoms in the
chain N = 50;

height is applied to the free end of the chain for a finite amount of time, f(τ) =

AΘ(τ)Θ(T − τ). The equations of motion can be written as

Q̇1 = Aτ, (2.43)

Q̈1 = −(Q1 − Q2)
3 + AΘ(τ)Θ(T − τ), (2.44)

Q̈j = −(Qj − Qj+1)
3 − (Qj − Qj−1)

3, 2 ≤ j ≤ N. (2.45)

Here, the dimension of A is [L]3 and that of T is same as τ . Numerical solutions

of the above equations for A = 1.5, T = 1 are shown in Fig. 2.9. The presence

of a second soliton can be discerned from the graph. It is interesting to note that

when a delta function pulse is applied to the end atom, only one soliton travels
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down the chain for all pulse strengths. In contrast, a second soliton is observed to

appear whenever strength of the constant-height pulse, A× T exceeds a threshold

value. In an attempt to make sure that this phenomenon does not arise due to

the finite size of the lattice, this numerical calculation is repeated for various chain

lengths (N = 50, N = 100, N = 200). The critical pulse strengths are found to be

the same for all chain lengths.

Now, pulse strength can be increased in two ways: (1) increasing pulse height

keeping the width constant, (2) increasing pulse width keeping the height constant.

Fig. 2.10 shows the minimum pulse height required to produce a second soliton

in the chain as the width varied. The minimum pulse height required increases

rapidly with decrease in pulse width. In fact, the relationship is observed to be
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Figure 2.9. Multiple solitons generated on quartic lattice with pulse of constant height;
Pulse strength AT = 1.5 units; Lattice parameters K4 = 1, m = 1; Number of atoms in
the chain N = 50; Inset: Second soliton in the chain;

A ≈ 1/T 3. Hence, as T → 0, A → ∞ which explains why multiple solitons are

never observed with a delta function pulse. On the other hand, the minimum pulse

width required to generate a second soliton increases slowly as the pulse height is

reduced as shown in the inset of Fig. 2.10. It can be concluded that it is easier

to produce a second soliton by varying the width of forcing function keeping the

height constant rather than varying the height keeping the width constant. Once

the pulse strength is increased beyond the threshold value, more and more solitons

are generated for increments of T keeping a constant pulse height.

Multiple soliton formation has also been observed on the Toda lattice (Fig.

2.11). The critical pulse strength required to produce a second soliton is higher

than that of the quartic lattice which can be attributed to the presence of phonons

on the Toda lattice. Due to the same reason, more energy is required to generate
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a third soliton and the increment in energy has to be a fixed amount to generate

successive solitons. Similar results were reported in Reference [73] for a chain of

capacitors modeled as the Toda lattice.

2.2.4.2 Sinusoidal Pulse

The discovery of multiple solitons with pulse of constant height inspired the inves-

tigation of the effect of pulse shape on generation of solitons. A sinusoidal pulse

(f(τ) = AΘ(τ)Θ(T
2 − τ) sin(2πτ

T )) is applied to the end atom for half the period

T/2,

Q̇1 = 0, (2.46)

Q̈1 = −(Q1 − Q2)
3 + A sin(

2πτ

T
)Θ(τ)Θ(

T

2
− τ), (2.47)
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Figure 2.11. Multiple solitons generated in Toda lattice with pulse of constant height;
Pulse strength AT = 5.4 units; Lattice parameters a = 1, b = 1; Number of atoms in
chain N = 50;

Q̈j = −(Qj − Qj+1)
3 − (Qj − Qj−1)

3, 2 ≤ j ≤ N. (2.48)

Here also, A has dimension of [L]3 and T that of τ . Strength of the pulse is

given by AT
π . As the pulse strength is increased, multiple solitons are generated

on the quartic lattice similar to the earlier case of pulse of constant height. It

is also observed that a weaker pulse is capable of producing multiple solitons if

the pulse strength is increased by broadening it rather than increasing the height.

Once the second soliton appears in the chain for a critical pulse strength, more

number of solitons appear for increments in pulse width as can be noted from

Fig. 2.12. Therefore, it can be concluded that the generation of multiple solitons

is independent of the pulse shape. Multiple solitons are always generated on the

quartic lattice for pulse strength beyond a threshold value, given the pulse is
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applied for a finite amount of time.

2.2.4.3 Parameters of Multiple Solitons

The parameters (β, v) are calculated for the multiple solitons, generated using

both the sinusoidal pulse and the pulse of constant height. All of these multiple

solitons are found to have parameters confined in a very narrow range of values,

β → (1.02, 1.03) and v → (2.45, 2.50). Similar result is also obtained using a delta

function pulse as shown in Tab. 2.3. Hence, it can be concluded that the pa-

rameters (β, v) of solitons generated on one-dimensional monatomic quartic lattice

are independent of forcing functions. The other parameter, soliton amplitude, a,

increases with the increase in pulse strength. The plot of a against pulse width is

shown in Fig. 2.12. The interesting feature to note here is that the amplitudes

of all the solitons smoothly increase towards a saturation value. The saturation

of the soliton amplitudes with the increase in pulse width, and, the narrow range

of (β, v) imply that the traveling solitons generated on the quartic lattice using a

forcing function, is very specific in nature. It can be predicted from this findings

that the energy of the solitons generated would have a upper bound, although this

investigation is not included in this article. The distribution of energy among the

multiple solitons is also left for future investigation.

2.3 Summary

A method to generate traveling solitons on a one-dimensional monatomic lattice

with quartic interatomic potential is presented here. The method includes appli-

cation of an external forcing function to one of the ends of a chain of atoms with

free boundaries. This method of numerically generating solitons has been referred

to as “sharp-pulse method” in literature [49]. As a result, the end atom attains a

finite velocity and this movement causes a soliton to move down the chain. The

solitons are observed to maintain their amplitudes and widths throughout propa-

gation for all pulse strengths. The effect of varying pulse width and height on the

parameters of solitons, (amplitude(a0 or a), β, v ) are investigated. The soliton

amplitudes are found to have a square-root relationship with the pulse strength for

a delta function pulse. As the pulse width increased keeping the pulse height con-
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stant, a new phenomenon is observed when the pulse width is beyond a threshold

value. Multiple stable solitons are observed to flow down the chain each maintain-

ing their individual identity as they cross through one another. It is found that the

pulse height needs to be excessively large in order to produce multiple solitons for

smaller pulse widths. This explains the absence of multiple solitons when a pulse

of zero width is used. The appearance of a second soliton in the chain is the onset

of generation of more number of solitons. All of these solitons share a very small

parameter space in β and v . The multiple solitons have the special property that

the amplitudes saturate with the increase in pulse strength. The generation and

properties of multiple solitons on the one-dimensional quartic lattice are found to

be independent of the forcing function.
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Chapter 3
Transport in Fluids: Study of Pair

Distribution Function

3.1 Introduction

The physical systems of our interest often have great many degrees of freedom. It

is difficult to formulate a theory, even an approximate theory, to describe such a

system. The ultimate aim of such a theory is to provide quantitative information

on the equilibrium properties of the physical system under consideration.

The knowledge of the probability densities and the distribution functions, help

us determine the thermodynamic properties of a system under equilibrium condi-

tions. Moreover, these functions provide a complete description of the microscopic

structure of the system, and also provide a quantitative measure of the correlations

between the positions of different particles. It is well known that the lowest-order

distribution functions, the pair distribution function can describe most of the ther-

modynamic properties for classical fluids in thermal equilibrium.

The distribution functions play a very important role in determining the nature

of the bulk excitations in the fluid. The knowledge of these excitations in the

fluid is essential to understand transport in fluids. Hence, it is crucial that we

investigate the nature of the distribution functions before formulating a transport

theory involving fluids.

In this chapter, we review the integral equation techniques, namely the Percus-
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Yevick method and the Hypernetted chain method, for determining the pair dis-

tribution functions for classical fluids. We apply these methods to obtain the pair

distribution function for Lennard-Jones fluids. These methods can generate stable

solutions only for fluids with densities and temperatures within a limited region.

We provide a guide map of these region and comment on the application of these

methods to obtain pair distribution function for a fluid with thermodynamic pa-

rameters within this specified region. This discussion would prove very useful when

we discuss the thermal transport in fluids in Chapter 5. In the last part of the

present chapter, we present a method to modify these theories for a quantum fluid

and apply this modified theory to obtain several thermodynamic properties for

Helium-4 fluid.

3.2 Relevant Expressions

3.2.1 Equilibrium Probability Densities

We consider a system of N identical particles in a volume Ω in thermal equilibrium

at temperature T . The system Hamiltonian is given by

HN = TN + VN . (3.1)

The Hamiltonian is assumed to be the sum of a coordinate-independent kinetic

energy and a momentum-independent potential energy,

TN =
N

∑

i=1

p2
i

2m
, VN =

1

2

∑

i̸=j

v(ri, rj). (3.2)

The n-body probability density for the particles in the system, can be defined as,

ρ(n)(r1, r2, . . . rn) =
N !

(N − n)!
⟨δ(r1 − r′1) . . . δ(rn − r′n)⟩. (3.3)

The average is taken in the grand canonical ensemble. Hence, we can also write

the density as
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ρ(n)(r1, r2, . . . rn)

=
1

Ξ

∞
∑

N≥n

zN

(N − n)!

∫

. . .

∫

exp[−βVN(r1, r2, . . . rN)]drn+1drn+2 . . . drN , (3.4)

where β = 1
kBT , z is the activity, or fugacity parameter and Ξ is the grand canonical

partition function, written as

Ξ =
∞

∑

N=0

zN

N !

∫

. . .

∫

exp[−βVN(r1, r2, . . . rN)]dr1dr2 . . . drN . (3.5)

The n-body probability density is the probability of simultaneously finding any

one of the n particles in the infinitesimal volume dr1 around r1, another particle

in dr2 around r2, and so on, independent of the positions of the remaining (N −n)

particles.

In a noninteracting system of n particles, the two-body probability density

attains the form, ρ(2)(r1, r2) = ρ(1)(r1)ρ(1)(r2) = ρ2. The deviation of the n-

body probability density for the interacting system from that of the noninteracting

system is known as Ursell function [74],

F2(r1, r2) = ρ(2)(r1, r2) − ρ(1)(r1)ρ
(1)(r2). (3.6)

This function is a measure of the strength of interaction in the system. The

normalization relation for the probability density is given by

∫

ρ(n)(r1, r2, . . . rn)dr1dr2 . . . drn = ⟨
N !

(N − n)!
⟩. (3.7)

The normalization condition Eq.(3.7), when applied to one-particle and two-particle

probability density gives ∫

ρ(1)(r)dr = N, (3.8)

and ∫ ∫

ρ(2)(r1, r2)dr1dr2 = ⟨N2⟩ − ⟨N⟩, (3.9)

respectively. Hence, the normalization relation for the deviation, Ursell function
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is given by:

∫ ∫

[ρ(2)(r1, r2) − ρ(1)(r1)ρ
(1)(r2)]dr1dr2 = ⟨N2⟩ − ⟨N⟩ − ⟨N⟩2. (3.10)

The above Eq. (3.10) shows that the relative mean square deviation of particle

number in a specific volume is

⟨N2⟩ − ⟨N⟩2.
⟨N⟩.

= 1 +
1

⟨N⟩

∫ ∫

F2(r1, r2)dr1dr2. (3.11)

3.2.2 Equilibrium Distribution Functions

In order to introduce the concept of the equilibrium distribution functions, let us

consider the limiting case when the interparticle separations are large. In this

limit, the positions of the particles become independent of each other and the

correlation between the positions of the particles decreases. Consequently, the n-

particle probability density factorizes into the product of n one-particle probability

densities:

ρ(n)(r1, r2, . . . rn) ≈ ρ(1)(r1)ρ
(1)(r2) . . . ρ(1)(rn). (3.12)

This factorization can be utilized to define a dimensionless n-particle distribution

function,

g(n)(r1, r2, . . . rn) =
ρ(n)(r1, r2, . . . rn)

∏n
i=1 ρ(1)(ri)

. (3.13)

For a uniform system under equilibrium, the properties of the system are trans-

lationally invariant and the one-particle probability density, ρ(1)(r), is a constant

(N
V = ρ), independent of position. For a homogeneous system, the above equation

becomes,

g(n)(r1, r2, . . . rn) =
1

ρn
ρ(n)(r1, r2, . . . rn). (3.14)

Using the definition of n-body probability density Eq. (3.4), and setting N−n = p,

we can obtain a general expression for the n-particle distribution function:

g(n)(r1, r2, . . . rn)

=
zn

ρnΞ

∞
∑

p≥0

zp

p!

∫

. . .

∫

exp[−βVn+p(r1, r2, . . . rn+p)]drn+1drn+2 . . . drn+p, (3.15)
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and specifically, for the the two-particle distribution function:

g(2)(r1, r2)

=
z2

ρ2Ξ

∞
∑

p≥0

zp

p!

∫

. . .

∫

exp[−βVp+2(r1, r2, . . . rp+2)]dr3dr4 . . . drp+2. (3.16)

As we mentioned in the introduction of this chapter, the two-particle distribution

function is known to describe most of the thermodynamic properties of classical

fluids in equilibrium. The rest of this chapter is devoted to the discussion of the

techniques to obtain this function for classical fluids. We need to introduce some

more expressions before going into that discussion. In terms of the two-particle

distribution function, the two-particle probability density becomes,

ρ(2)(r1, r2) = ρ2g(r1, r2) (3.17)

and the Ursell function becomes F2(r1, r2) = ρ2[g(r1, r2) − 1].

If the system is isotropic, the two-particle distribution function or the pair

distribution function is a function of relative coordinates alone,

g(2)(r1, r2) = g(|r1 − r2|). (3.18)

The quantity g(r) is called the radial distribution function. In the limiting case of

a dilute gas, ρ → 0, z → 0 with ρ/z → 1 and Ξ → 1; the only term that contribute

to the sum in the RHS of Eq. (3.16) is the first term with p = 0:

g(n)(r1, r2, . . . rn) ∼
ρ→0

exp[−βVn(r1, r2, . . . rn)]. (3.19)

For a system of particles interacting through pairwise central forces, that is, when

the potential energy is of the form,

VN =
1

2

N
∑

i̸=j

v(|ri − rj|), (3.20)
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the radial distribution function can be approximated as

g(r) ∼
ρ→0

exp[−βv(r)]. (3.21)

3.2.3 Relations with thermodynamic quantities

There exist simple expressions for various thermodynamic quantities in terms of

the pair distribution function. The expression for internal energy per particle, u is

given by

βu =
3

2
+

1

2
ρ

∫

drv(r)g(r), (3.22)

and the virial pressure relation reads as:

βP

ρ
= 1 +

ρ

6

∫

dreβv(r)g(r)r ·∇e−βv(r). (3.23)

The Ornstein-Zernike compressibility formula is given by

∂ρ

∂βP
= 1 + ρ

∫

dr[g(r) − 1]. (3.24)

3.3 Integral equation theories for pair distribu-

tion functions

The integral equation theories for the pair distribution function of a homogeneous

fluid is derived by an elegant method, first proposed by Percus([74],[75]) and later

extended by various researchers during 1960’s and 70’s ([76], [77], [78], [79], [80],

[81]). The derivation involves an analysis of systems with inhomogeneity. The

inhomogeneity is artificially introduced to the homogeneous system, by fixing some

of the particles at the desired positions and subjecting the remaining particles to

the force field created by these fixed particles.

Lets consider a system with (m + n) particles, where m of them are fixed and

the n remaining particles move in the external potential created by these fixed

particles. The positions of the fixed particles are denoted as xi with i = 1, . . . m.

The form of the inter-particle potential is given in Eq. (3.2) and the imposed
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external potential is given by

V =
1

2

∑

i̸=j

v(ri, rj), U(r) =
m

∑

i=1

v(r,xi). (3.25)

As we “turn on” the inhomogeneity, the distribution of particles in the system is

affected. The starting point of the derivation is to establish a relationship between

the n-particle distribution function of the system with this imposed external po-

tential ρ(n)(r1, r2, . . . rn|U), with that of a regular system without this constraint

ρ(m+n)(x1,x2, . . .xm; r1, r2, . . . rn). It can be shown that [74]

ρ(m+n)(x1,x2, . . .xm; r1, r2, . . . rn)

ρ(m)(x1,x2, . . .xm)
= ρ(n)(r1, r2, . . . rn|U). (3.26)

For example, for a system with two particles, one of them fixed, we get ρ(2)(x; r)
ρ(1)(x)

=

ρ(1)(r|U). This statement says that the two-particle distribution function is the

same as one-particle distribution in the presence of an external potential, which is

almost trivially true.

As we are gradually turning on the external field U(r), the density of the system

changes from its original value ρ0(r) to ρ(r). We can treat this imposed external

potential as perturbation and expand any function in a series in the difference

(ρ(r) − ρ0(r)). The expansion of ρ(r)eβU(r) yields

ρ(r)eβU(r) = ρ0(r)e
βU(r) × [1 +

∫

c2(r, r1)|0(ρ(r1) − ρ0(r1))dr1

+
1

2

∫ ∫

(c3(r, r1, r2) − c2(r, r1)c2(r, r2))|0

× (ρ(r1) − ρ0(r1))(ρ(r2) − ρ0(r2))dr2 + . . .]. (3.27)

where c(r, r′) known as the direct correlation function and defined by the relation

δ(−βU(r))

δρ(r′)
≡

1

ρ(r′)
δ(r − r′) − c(r, r′). (3.28)

The direct correlation function represents the effect of a density change due to a

change in external potential and is related to the pair distribution function by the
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following formula

g(r, r′′) − 1 = c(r, r′′) +

∫

c(r, r′)ρ(r′)(g(r′, r′′) − 1)dr′. (3.29)

A detailed derivation of the above relation can be found in standard texts ([82]).

We assume U(r) = 0 and x is chosen to be at origin. Identifying ρ(r) and ρ0(r)

of the above equation (Eq. (3.27)) as ρ(1)(r|U) and ρ(1)(r), respectively, and using

the relation between them Eq. (3.13), we obtain

ρ(1)(r)g(r)eβv(r) = ρ(1)(r) + (ρ(1)(r))2

∫

c2(r, r1) |0 (g(r) − 1)dr1. (3.30)

Comparing Eq. (3.29) with Eq. (3.30), we find

c(r) = (1 − eβv(r))g(r), (3.31)

which is the basic expression of the Percus-Yevick (PY) equation. Eliminating c(r)

from Eq. (3.30) we can also write PY equation for a uniform system as

g(r)eβv(r) = 1 + ρ

∫

(g(r − r′) − 1)(1 − eβv(r′))g(r)dr′. (3.32)

A similar procedure can be followed to obtain the integral form of the Hypernetted-

chain equation (HNC):

log g(r) + βv(r) = ρ

∫

[g(r − r′) − 1] [g(r′) − 1 − log g(r′) − βv(r′)] dr′. (3.33)

The functional of choice to be expanded is log
[

ρ(1)(1|φ)
z∗(1)

]

. Comparing with Eq.

(3.29) we note that the direct correlation function in HNC theory is given by

c(r) = g(r) − 1 − βv(r) − log[g(r)]. (3.34)

Both the equations show correctly that g(r) ∼ exp[−βv(r)] in the limit ρ → 0 in

accordance with Eq. (3.21).
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Figure 3.1. Flowchart for computing pair distribution function using HNC integral
equation theory

3.4 Method of implementation

The integral equations are numerically solved using iterative methods. We intro-

duce the function N(r) ≡ g(r)− c(r)− 1. We start with an initial guess for c(0)(r)

and N (0)(r). The Fourier transform c̃(0)(k) is then used to obtain the Fourier

transform Ñ (1)(k). The inverse Fourier transform N (1)(r) is then inserted into the

appropriate relation to obtain an improved guess c(1)(r). We use uniform system,

so all these functions depend on the magnitude of the length variables only. We

have given a flowchart for computing the pair distribution function using the HNC

method in Fig. 3.1.

The starting guess of c(0)(r) = e−βv(r) − 1 is only good for very low densities
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only. The method do not converge rapidly enough for higher densities or sometimes

do not converge at all. For higher densities, we need to use a different starting

guess. After obtaining a good starting point (ρ∗
0, T

∗
0 ) using the method described

in the flowchart shown in Fig. 3.1, the final values Ñ (1)(k) from the set (ρ∗
0, T

∗
0 ) is

used as the starting guess for the set (ρ∗
1, T

∗
1 ) in the following manner:

[

Ñ (0)(k)
]

(ρ∗1,T ∗

1 )
=

ρ∗
1

ρ∗
0

[

Ñ (0)(k)
]

(ρ∗0,T ∗

0 )
. (3.35)

The iteration procedure described here gives consistent result as long as ρc̃(0)(k) <

1, or else, either the process diverges or converges to an erroneous result of negative

compressibility. Therefore, we need to choose the (ρ, T )-points in the region where

this condition is satisfied.

3.5 Results

We use a 12-6 Lennard-Jones interaction as the potential between the particles in

the system. The form is given by

v(r) = 4ϵ

[
(σ

r

)12

−
(σ

r

)6
]

, (3.36)

where σ is the “diameter” of the particles when v(r) = 0 and ϵ represents the depth

of the potential minimum. The parameters σ and ϵ are then used to introduce the

dimensionless variables in the following way:

r∗ =
r

σ
, k∗ = kσ

ρ∗ = ρσ3, T ∗ =
kBT

ϵ
(3.37)

We have moved around this region by making successive small steps as shown

in the table given in Table 3.1. Proceeding this way we found out the region in

the fluid-phase diagram, where we can find stable solutions for pair distribution

function. The values of the inverse compressibility found in this method are shown

in Table 3.1 and also shown in Fig. 3.2.

The boundary of the instability region can be observed clearly. The solutions
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T ∗\ρ∗ 0.10 0.11 0.1125 0.15 0.20
1.20 0.3007 0.2226 0.1944
1.25 0.3007
1.30 0.4082 0.1782
1.40 0.5127 0.3272
1.50 0.4324 0.3302

T ∗\ρ∗ 0.25 0.30 0.35 0.40 0.45 0.60
1.50 0.2828 0.2882 0.3497 0.4814 0.7087 2.4138

T ∗\ρ∗ 0.70 0.75 0.80 0.85 0.90
0.40 3.8842
0.45 6.6542
0.50 8.4523
0.60 1.4308 3.8542 11.2372
0.65 2.2673 4.6286 12.1836
0.68 0.6337
0.70 0.9249 3.0013 5.6648 13.2002
0.75 1.6070 3.6510 5.9915 12.1486
0.78 0.3820 1.9936 3.9916 6.3733 15.4406
0.79 0.4894
0.80 0.5946
0.85 1.0988
0.95 2.0084
1.00 2.3953
1.05 2.7605
1.10 3.1181
1.15 3.4408
1.20 3.6224
1.30 3.8991
1.40 4.4522
1.50 4.7614

Table 3.1. Points in the ρ∗ − T ∗ diagram where the method gives consistent results.

are unstable beyond this region. The number of iteration steps required to obtain

a consistent solution increases rapidly as the chosen (ρ, T ) points move closer to

the boundary of this region. Hence, it is difficult to obtain stable solutions very

close to the boundary. Results for pair distribution functions for three different

sets of (ρ, T ) are shown in Fig. 3.3. The results show familiar pattern for pair

distribution function values: g(r∗) ≈ 0 for r∗ " 1 and g(r∗) → 1 as r∗ → ∞.
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Figure 3.2. Compressibility isotherms for varying density values.

The peaks in the g values are higher and more closely spaced for higher values of

densities, as expected.

3.6 Discussion

We determined the values of pair distribution functions for fluids at different den-

sities and temperatures using the integral equation theories. Although we have

used a specific form of the potential, namely the 12-6 Lennard-Jones potential,

these methods can be used with any other form of potential as well. We found out

that these methods can generate stable solutions for pair distribution function for

fluids with densities and temperatures only within a specific region. The map of

the region is very useful while determining the structure of a unknown fluid with

known density and temperature parameters. The region gives a limit for the values

of the density and temperature for the fluid of interest, and then we can use any of

the methods described above to solve for its pair distribution from the knowledge

of the interaction potential.

These methods work equally well for low-dimensional systems which can be

used for fluids in confined systems or adsorbed on top of other systems. Also,

we can apply these methods to obtain the pair distribution function for fluids in

contact with another surface or in the presence of an external potential, as we
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Figure 3.3. Pair distribution function results for three different density and temperature
values.

show in chapter 5. We can extend these methods to obtain the pair distribution

function of a mixture of binary fluids as well.

3.7 Modification for a quantum fluid

In this section, we modify the integral equation techniques to obtain the pair dis-

tribution function for liquid helium-4. The properties of liquid helium can be un-

derstood to a great extent in terms of short-range correlations emanating from the

strong interactions between particles. The interactions are usually represented by

a central pair potential of short range, the most common form being the Lennard-

Jones(LJ) potential. An alternate to the LJ potential is the hard-sphere potential.

A major success of the hard-sphere potential was that the exact solution of the

PY equation can be obtained for this potential ([83], [84]).

For liquid helium, quantum effects are important and has to be incorporated in

the theory. Some of the calculations for obtaining the pair distribution function of

liquid helium employed Quantum Monte Carlo methods ([85], [86]) but most of the

pair distribution function studies used only classical methods ([4] - [6]). There are
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several works of the calculation of pair distribution function by either modifying

the hard-sphere potential (e.g. considering an extended hard core potential [87])

or adding another form of potential outside the hard-sphere (e.g. an attractive

square-well potential). These calculations have been mostly classical ([88], [89]).

Here we present a calculation of pair distribution function of liquid helium-4 with

square-well potential, incorporating quantum effects.

3.7.1 Theory

3.7.1.1 Ground-State Wavefunction

The Hamiltonian for a system of N 4He atoms of mass m in a volume Ω, interacting

through a central pair potential V (|r|) is given by,

H = −
N

∑

i=1

!2

2m
∇2

i +
∑

i<j

V (|ri − rj|). (3.38)

The best wavefunction for liquid 4He is the correlated basis function of the Jastrow

form. For a many-particle fluid, the wavefunction can be written as

Ψ(r1, r2, . . . , rN) =
N
∏

i<j

ψ(|ri − rj|) (3.39)

= exp
∑

i<j

ln[ψ(|ri − rj|)] (3.40)

Now, we must choose a reasonable form for the pair function ψ(r); this func-

tion should be small for short distances and should approach a constant for large

distances. At small distances, where the two particles interact strongly the pair

function is not expected to be very different from the solution of the two-body

problem. We choose the potential function between pairs of 4He atoms to be of

the form of a hard-sphere with an attractive square well,

V (r) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

∞ r < a

−V0 a < r < b

0 b < r

(3.41)
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then the Schŕ’odinger equation for the two atom wavefunction, in relative coordi-

nates, is

Eψ(r) =
[

−
!2∇2

m
+ V (r)

]

ψ(r). (3.42)

The eigenfunctions (l = 0) can be written as

ψ(r) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

0 r < a

A sin[p(r − a)] a < r < b

sin(kr + δ) b < r,

(3.43)

p2 = k2 +
mV0

!2
, (3.44)

E =
!2k2

m
. (3.45)

Now, two 4He atoms form a very weakly bound state, with E ≈ 0. Hence, we can

approximate the eigenfunction as

ψ(r) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

0 r < a

sin[p0(r − a)] a < r < b

1 b < r,

(3.46)

p2
0 =

mV0

!2
, (3.47)

sin[p0(b − a)] = 1, p0(b − a) =
π

2
(3.48)

3.7.1.2 Integral Equation Methods

One important advantage of using correlated basis functions is that the form of

the diagonal density matrix |Ψ|2 is mathematically identical to that of a classical

fluid. Accurate computational methods are available which work well for liquids of

neutral atoms. The most successful methods are based on the Percus-Yevick(PY)

integral equation and the Hypernetted Chain(HNC) approximation. We can refor-

mulate the PY equation Eq. (3.32) for the pair distribution function of a system
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of 4He atoms with pair wavefunction described by Eq.3.46 and write it as

g(r)

ψ2(r)
= 1 + n

∫

dy[g(y) − 1]g(r − y)[1 −
1

ψ2(r − y)
]. (3.49)

Performing the integration over angular variables and defining g(r)
ψ2(r) = g′(r), Eq.3.49

can be written as

g′(r) = 1 +
2πn

r

∫ ∞

0

ydy[ψ2(y)g′(y) − 1]

∫ r+y

|r−y|

zdzg′(z)[ψ2(z) − 1]. (3.50)

On the other hand, the Hypernetted Chain integral equation (HNC) for the pair

distribution function of the system of interest is given by

log
g(r)

ψ2(r)
= n

∫

dy[g(y) − 1][g(r − y) − 1 − log
g(r − y)

ψ2(r − y)
]. (3.51)

Using a similar definition for g′(r) as in PY equation (Eq.3.49) and after performing

the integration over angular variables, we have

log g′(r) =
2πn

r

∫ ∞

0

ydy[ψ2(y)g′(y)−1]

∫ r+y

|r−y|

dzz[ψ2(z)g′(z)−1− log g′(z)] (3.52)

3.7.1.3 Ground State Properties

The ground-state energy E0 is given by the expectation values of the Hamiltonian

in Eq.3.1,

E0 = ⟨H⟩ =

∫

ΨHΨdr1 . . . drN

/ ∫

Ψ2dr1 . . . (3.53)

If the many-body wavefunction, Ψ has the form shown in Eq.3.39, it is straight-

forward to show that

∫

ΨHΨdr1 . . . drN =

∫
∑

i<j

[

−
!2

m
∇2

i ln ψ(rij) + V (rij)
]

Ψ2dr1 . . . drN (3.54)

In terms of the pair distribution function, the potential energy per particle can be

written as
⟨P.E.⟩

N
=

n

2

∫

d3rV (r)g(r), (3.55)
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and in our case, it is reduced to V0 = 15.2598 K. The kinetic energy per particle

can be obtained using

⟨K.E.⟩
N

=
n!2

4m

∫

d3r
d(ln[ψ(r)])

dr

dg(r)

dr
, (3.56)

and, in our case, Eq.3.56 becomes

⟨K.E.⟩
N

=
n!2π

m
(p2

0

∫ b

a

drg′(r)r2 − 2p0

∫ b

a

drg′(r)r sin[p0(r − a)] cos[p0(r − a)]).

(3.57)

The liquid structure function S(k) (for k ̸= 0) is related to the pair distribution

function g(r) by the following relation

S(k) = 1 + n

∫

dr[g(r) − 1] exp(−ik.r). (3.58)

After carrying out the angular integration, the expression for liquid structure factor

becomes

S(k) = 1 +
4πn

|k|

∫ ∞

0

rdr[g(r) − 1] sin(|k||r|). (3.59)

3.7.2 Method

The PY integral equation (Eq.3.50) and the HNC approximation integral equation

(Eq.3.52) are solved self-consistently for r ≤ R = 100 Å. The equilibrium density of

the system of 4He atoms is chosen to be n = 0.0218 Å−3 or 2.18×1022 atoms/cm3.

The hard-sphere radius for the potential function is taken to be a = 2.6 Å,the

width and depth are chosen as b = 4 Å and V0 = −15.26 K respectively.

In any numerical method it is necessary to truncate the infinite integrals at

some stage. These integrals are replaced by a finite sum, assuming that g(r) ≈ 1

beyond some large but finite radial distance R. We carried out two calculations

for the self-consistent PY equation (Eq.3.50), one using R = 30 Å and another

R = 100 Å to investigate the effect of the size of the cutoff. The maximum

difference between the two sets of g(r) values for all distances is 3e−5. For the

HNC equations, we performed three calculations using R = 50 Å, 60 Å and 70

Å. The three sets of g(r) values differ not more than by 0.005 for all distances.
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We used Simpson’s three-point approximation to evaluate the integrals at every

step of the iteration, using N points evenly distributed over the range (0, R). The

step size chosen for the Simpson grid was 0.01, giving the value of N as 10000 for

R = 100 Å. To investigate the influence of the step size on the accuracy of the

results we performed two calculations for R = 20 Å, one using 2000 points and

one using 4000 points. It is found that the two sets differ nowhere by more than

0.002. The starting value of g′(r) is chosen to be 1 for all values of r. The input

values for the next iteration is calculated according to the mixing formula

g′(i)
in (r) = αg′(i−1)

out (r) + (1 − α)g′(i−1)
in (r). (3.60)

where α = 0.1 is used to achieve desired convergence. The iterations are assumed

to give convergence when value of the residual Res is less than 1, where Res defined

by

Res =
∑ [

g′(i)
out − g′(i−1)

out

]2
. (3.61)

3.7.3 Results

The values of the pair distribution function for 4He obtained using PY (Eq.3.50)

and HNC equations (Eq.3.52) are shown in Fig.3.4.

The pair distribution function exhibits familiar features, e.g. g(r) → 1 for

large distances. Figure 3.4 shows our results in comparison with earlier classical

calculations ([4]-[6]) as also the x-ray [1] and neutron-diffraction data [2, 3]. The

different symbols represent the experimental data while the different lines represent

theoretical calculations.

We would like to point out here that while the earlier classical calculations

yield values which are lower than the experimental data, our values for the pair

distribution function lies above the experimental results. We would ascribe this

discrepancy to the choice of parameters for the potential function. We used fixed

values for the parameters (a, b, V0) throughout our calculation. Some of the ear-

lier papers (classical calculations) [5, 90] have discussed the effect of varying the

parameters to both the pair distribution function and the liquid structure factor.

The earlier paper [5] has shown that the peak of the pair distribution function in-

creases with the increase in the hard-sphere radius. And the recent article [90] has
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Figure 3.4. Comparison of the computed quantum mechanical pair distribution func-
tion with earlier classical calculations and experimental data. The solid line represents
the values obtained using Percus-Yevick equation, while the dashed line represents the
values obtained using HNC equation. The diamonds are the x-ray data of Gordon et

al. [1]. The squares and the triangles show the neutron-diffraction data of Henshaw [2]
and Svensson et al. [3], respectively. The dash-dash-dot (McMillan [4]), dash-dot (Mur-
phy [5] using PY equation), dotted (Murphy [5] using HNC equation) and dash-dot-dot
(Francis [6]) lines represent earlier classical calculations.

shown that the peak value of the liquid structure factor increases with the increase

of width and depth of the square well part of the potential. Hence, we need to

choose the values of the parameter carefully in order to obtain a good quantitative

agreement between the theoretically obtained pair distribution function values and

the experimental data. The better way would be to obtain the parameters using

variational calculation.

The numerically obtained values of the pair distribution function is utilized

to obtain the ground state energy for 4He. The average value for the potential

energy per particle and the average value of the kinetic energy per particle are

−41.67 K and 36.78 K respectively. Hence, the average ground state energy per

particle is found to be −4.89 K for the pair distribution function obtained using PY

equation. This value differ from the experimentally obtained ground state energy
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Figure 3.5. Liquid structure factor values of 4He in comparison with experiment and
earlier classical calculations. The solid line represents the values obtained using PY
equation, while the dashed line represents the values obtained using HNC equation. Our
results from HNC approximation match the experiment closely. The diamonds are the x-
ray data of Gordon etal . [1]. The squares and the triangles show the neutron-diffraction
data of Henshaw [2] and Svensson etal . [3] respectively. The dash-dash-dot (McMillan
[4]) and dash-dot-dot (Francis [6]) lines represent earlier classical calculations. The dash-
dot line is computed using Feynman [7] theory with the experimental velocity of sound
(267 m/sec).

of 4He atoms by about 31.

Using our results of the pair distribution function and the relation between the

pair distribution function and the liquid structure factor (Eq.3.58), we now calcu-

late the liquid structure factor of 4He. The results are shown in Fig.3.5 along with

earlier theoretical calculations as well as the x-ray and neutron-diffraction data.

We use a similar representation as used in the graph for pair distribution function

before: different symbols corresponds to the experimental data and different lines

corresponds to theoretical calculations. The theoretical structure factor curves in

Fig.3.5 agree well with the experimental data except in the region of diffraction

maximum at 2Å−1. Our results using the HNC approximation match the experi-

mental results closely. Here again, we note that our calculation using PY equation
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produces a higher peak value while earlier classical calculations produce a lower

peak compared to the experimental data. As we discussed in the second para-

graph of this section, the choice of the values of the parameters in the potential

function is responsible for this discrepancy between results from PY equation and

experiment.

The structure factor is expected to approach the Feynman value [7] for small

k,

S(k) ≈
!k

2mc
, k → 0, (3.62)

where c is the velocity of sound. This limit is shown by the dash-dot line in Fig.3.5.

The structure factors obtained using both the PY and HNC equations approach

a constant as k tends to zero. The reason for this discrepancy is that we have

restricted ourselves to a pair function that remains a constant for large distances.

3.7.4 Discussion

We proposed a calculation of quantum mechanical pair distribution function using

the Percus-Yevick (Eq.3.49) and Hypernetted chain integral equations (Eq.3.51).

The interaction potential between the 4He atoms are assumed to be given by a hard-

sphere and an attractive square-well. The short-range correlations in liquid helium

are commonly treated by writing the many-body wavefunction as a product of

pair functions, known as the Jastrow function [91]. We solve exactly the two-body

Schrdinger equation for the hard-sphere plus attractive square well potential, and

then use the pair wave function to construct the many-body Jastrow wavefunction.

The important advantage of such a wavefunction is the formal analogy between

its energy expectation values with the configuration-space integrals encountered in

classical equilibrium statistical mechanics. We calculate pair distribution function,

g(r) of liquid 4He using two approximate integral equation methods, the Percus-

Yevick (PY) and Hypernetted Chain (HNC) approximation. We use the values of

the pair distribution function to obtain the ground state energy and liquid structure

factor, S(k). We compare our theoretically obtained values of g(r) and S(k) to the

experimental results ([1] - [3]) and also to earlier classical calculations ([4] - [6]).

There is a good qualitative agreement between the theoretically obtained values

of the pair distribution function, the liquid structure factor and the experimental
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data. However, both of these computed physical quantities have higher peak values

compared to the experimental results and the oscillations in the values are more

pronounced for large distances. Also, the cutoff in the pair distribution function

is shifted by a small amount. The parameters of the interaction potential adjust

the position and sharpness of the cutoff and the peak in the pair distribution

function. In order to get good quantitative agreement, we need to adjust the

parameters of the interaction potential. It would be useful to incorporate a more

realistic potential between the atoms, e.g. Aziz potential [92] and compare the pair

distribution function, obtained using our proposed method, with experiments.



Chapter 4
Scattering of Phonons at Solid-Solid

Interfaces: Several Model

Calculations

4.1 Introduction

When heat is conducted from one material to another, there exists a temperature

discontinuity, ∆T at the interface between them. For small heat flow across the

interface, the temperature discontinuity is proportional to the heat flow JQ:

∆T = RJQ. (4.1)

The proportionality constant R is a measure of the thermal boundary resistance

(TBR) of the interface and is called the Kapitza resistance. The thermal boundary

resistance is inversely proportional to the area of the interface and has the unit of

degrees area per Watt. The inverse of the Kapitza resistance, σ is known as the

thermal boundary conductance,

JQ = σ∆T, σ =
1

R
. (4.2)

The interest in the problem began with the discovery of the temperature discon-

tinuity at the interface between superfluid Helium and various metals, by Kapitza
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[27] in 1941. It was thought of as a superfluid phenomenon, but similar observa-

tions have been reported between various different materials ([28]-[33]) afterwards.

Kapitza resistance is still not understood in spite of the detailed knowledge of the

energy transport in wide variety of solids and in helium II. Observed values of the

thermal boundary resistance are always less than expected from theory, i.e., there

is more energy exchange across the interface than can be presently accounted for.

The heart of the difficulty in the understanding of Kapitza resistance lies in the

physics of the interface. Kapitza resistance has been found to vary with the rough-

ness, gas adsorption, and surface oxidation of the interface. The study of Kapitza

resistance has an important practical application in reaching low temperatures.

The first theoretical formulation to explain the thermal boundary resistance

was presented by Khalatnikov [34] (1952). The model is known as the acoustic

mismatch model (AMT). In the acoustic mismatch model, the simplifying assump-

tion is made that the phonon dispersion is governed by continuum acoustics. The

model only considers the scattering of phonons of long wavelength at the interface.

AMT gives fairly accurate predictions for real interfaces at low temperatures, but

the predictions of the model fail at higher temperatures. Moreover, the theory

completely neglects the structure of the interface on an atomic scale, because of

its continuum character. However, the structure of the interface is crucial in de-

termining the scattering of phonons, specially in the case when the wavelength of

the phonon is comparable to the thickness of the interface.

In this chapter, we explore the scattering of acoustic waves at several solid-solid

interfaces. First, we consider the interface between two one-dimensional harmonic

chains. We derive analytical expressions for the reflection and transmission co-

efficients for an acoustic wave incident on the interface. These coefficients can

reproduce the familiar expressions in the continuum limit and are consistent with

the conservation relations. We next consider the scattering of phonons at the in-

terface between two two-dimensional rhombic lattices. The acoustic waves can be

of either polarization, longitudinal or transverse. We show that waves of either

polarization are completely reflected from the interface. We discuss the interface

between two two-dimensional square lattices as well, to show how the arrange-

ment of masses can influence the nature of scattering of phonons at the interface.

Finally, we discuss the interface between two three-dimensional FCC lattices to



56

Figure 4.1. One-dimensional lattice model of solid-solid interface

complete the discussion.

4.2 One-Dimensional Lattice Model

Our model system consists of two one-dimensional harmonic chains of different

masses and spring constants, connected by a third spring. The system is shown in

Fig. 4.1, with the interface marked by the dashed line. The equilibrium distance

between two adjacent masses is assumed to be equal to a for the left-chain in Fig.

4.1 and equal to a′ for the right-chain, respectively. Let Qj be the longitudinal

displacement of mass at the jth lattice site from its equilibrium position. The

equations of motions for the masses in our model system are given by

m1Q̈j = K1(Qj+1 + Qj−1 − 2Qj), j ≤ −1,

m1Q̈0 = K3(Q1 − Q0) + K1(Q−1 − Q0),

m2Q̈1 = K2(Q2 − Q1) + K3(Q0 − Q1),

m2Q̈j = K2(Qj+1 + Qj−1 − 2Qj), j ≥ 2. (4.3)

The first and the fourth equation represent the equations of motion for the masses

in the bulk of the left and the right harmonic chains, respectively. While, the

second and the third equation represent the equations of motion for the masses

at the interface. We consider an incoming wave with amplitude I, in medium

1 represented by the left-chain. The wave would be partially reflected back to

medium 1 with reflection amplitude, R and partially transmitted to medium 2

with transmission amplitude, T . The traveling wave solutions to Eq.s (4.3) can be
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written as

uj =

⎧

⎨

⎩

I exp i(jq1a − ω1t) + R exp i(−jq1a − ω1t) j ≤ 0,

T exp i(jq2a′ − ω2t) j ≥ 1.
(4.4)

The above equations Eq. (4.4) are solutions to the equations of motion Eq. (4.3),

if ω1 = ω2 = ω. Inserting the solutions to the first and fourth equation in Eq.

(4.3), we get

ω2 =
2K1

m1
(1 − cos(q1a)) =

2K2

m2
(1 − cos(q2a

′)), (4.5)
√

K1

m1
sin(

q1a

2
) =

√

K2

m2
sin(

q2a′

2
) (4.6)

This relation determines q2 as a function of q1.

Now, we describe the procedure to obtain the reflection and transmission co-

efficients, by simultaneously solving the equations of motion given in Eq. (4.3).

Inserting the solution Eq. (4.4) into the second equation in Eq. (4.3) and canceling

the factor of e−iωt from both sides of the equation, we obtain

m1ω
2(I + R) = K3(I + R − Teiq2a′

) + K1(I + R − (Ie−iq1a + Reiq1a)).(4.7)

In the absence of the interface, the equation of motion for the 0th mass can be

written as

m1Q̈0 = K1(Q1 + Q−1 − 2Q0), (4.8)

and inserting the solution Eq. (4.4), we obtain

m1ω
2(I + R) = K1(2(I + R) − (Ieiq1a + Re−iq1a) − (Ie−iq1a + Reiq1a)). (4.9)

Hence,

K1(2(I + R) − (Ieiq1a + Re−iq1a) − (Ie−iq1a + Reiq1a))

= K3(I + R − Teiq2a′

) + K1(I + R − (Ie−iq1a + Reiq1a)),
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subtracting we get

K1((I + R) − (Ieiq1a + Re−iq1a)) = K3(I + R − Teiq2a′

),

R[K1(1 − e−iq1a) − K3] + TK3e
iq2a′

= I[K3 − K1(1 − eiq1a)]. (4.10)

In a similar way, the equation of motion for the 1st mass yields,

K2(T − Teiq2a′

) = K3(I + R − Teiq2a′

),

RK3 − T [K2(1 − eiq2a′

) + K3e
iq2a′

] = −IK3. (4.11)

We can combine the two equations for the two masses near the interface, in a

matrix form as below:

(

K1(1 − e−iq1a) − K3 K3eiq2a′

K3 −
(

K2(1 − eiq2a′

) + K3eiq2a′
)

) (

R

T

)

(4.12)

= I

(

K3 − K1(1 − eiq1a)

−K3

)

.

The reflection and transmission amplitudes are

R

I
=

1

∆
(1 − f31 − eiθ1 + eiθ2(f31 + f32 − 1) + ei(θ1+θ2)(f32 − 1)), (4.13)

T

I
= −

1

∆
2if32 sin(θ1), (4.14)

with

∆ = −1 + f31 + e−iθ1 − eiθ2(f31 + f32 − 1) + ei(−θ1+θ2)(f32 − 1), (4.15)

and θ1 = q1a , θ2 = q2a
′, f31 ≡

K3

K1
and f32 ≡

K3

K2
. (4.16)

The reflection and transmission coefficients are then given by |RI |
2 = Rn

d and |TI |
2 =

Tn

d , respectively, with

Rn = (f31 + f32 − 1)2 + 1 + (f31 − 1)2 + (f32 − 1)2

+2 cos θ1 (f31 − 1 − (f32 − 1) (f31 + f32 − 1))
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Figure 4.2. Amplitude of reflection and transmission coefficients for a phonon going
from medium 1 to medium 2 as a function of incident phonon wave vector; the coefficients
obey conservation relation.

+2 cos θ2 (f32 − 1 − (f31 − 1) (f31 + f32 − 1))

+2 cos(θ1 + θ2) (f31 − 1) (f32 − 1) − 2 cos(θ1 − θ2) (f31 + f32 − 1) ,

Tn = 4f 2
32 sin θ2

1,

and d = (f31 + f32 − 1)2 + 1 + (f31 − 1)2 + (f32 − 1)2

+2 cos θ1 (f31 − 1 − (f32 − 1) (f31 + f32 − 1))

+2 cos θ2 (f32 − 1 − (f31 − 1) (f31 + f32 − 1))

−2 cos(θ1 + θ2) (f31 + f32 − 1) + 2 cos(θ1 − θ2) (f31 − 1) (f32 − 1) . (4.17)

Figure 4.2 shows an example of the values of the reflection and transmission coef-

ficients as a function of the incident wave vector. The consistency of these expres-

sions can be verified by momentum conservation, which can be shown as follows:

1 − |
R

I
|2 =

d − Rn

d
=

2

d
(− cos(θ1 + θ2) + cos(θ1 − θ2)) f31f32
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=
4

d
sin θ1 sin θ2f31f32 =

1

d

(
f31 sin θ2

f32 sin θ1

)

4f 2
32 sin θ2

1

=

(
m2v2

m1v1

)

|
T

I
|2, (4.18)

where, v’s are the phonon group velocities,

v1 =
dω

dq1
=

√

K1

m1
a cos

θ1

2
,

and v2 =

√

K2

m2
a′ cos

θ2

2
. (4.19)

The thermal energy carried by the incoming phonon is the product of the phonon

energy !ω, the phonon group velocity v(= dω
dq ), the phonon amplitude, |I|2. The

thermal energy carried by the reflected and the transmitted waves can be obtained

in a similar fashion. Now,

!

(
1

2

dω2

dq1

)(

1 − |
R

I
|2

)

=
!

d

(
K1a

m1
sin θ1

)

(4 sin θ1 sin θ2f31f32)

=
!

d

(
K1a

m1
sin θ2

f31

f32

)
(

4f 2
32 sin θ2

1

)

= !

(
K1a

m1

K2

K1
sin θ2

)

|
T

I
|2

= !

(
am2

m1a′

K2a′

m2
sin θ2

)

|
T

I
|2

=
m2/a′

m1/a
!

(
1

2

dω2

dq2

)

|
T

I
|2, (4.20)

which shows that the three thermal currents are related by the following expression

JI = JR +
m2/a′

m1/a
JT . (4.21)

It is well known [93] in the continuum theory of acoustics that the reflection and

transmission coefficients for a normally incident wave between two media which

do not sustain shear stress are given by

R

I

(c)

=
ρ2v2 − ρ1v1

ρ2v2 + ρ1v1
,

T

I

(c)

=
2ρ1v1

ρ2v2 + ρ1v1
, (4.22)
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Figure 4.3. Two-dimensional solid-solid interface between two rhombic lattices;

where ρi and vi stand for the mass density and speed of sound in medium i.

Expanding the reflection and transmission coefficients shown in Eq. (4.17) to the

order (θ2
2) and using the relation Eq. (4.6) between θ1 and θ2, we get

lim
q2→0

|
R

I
| =

√
K2m2 −

√
K1m1√

K2m2 +
√

K1m1

,

lim
q2→0

|
T

I
| =

2
√

K1m1√
K2m2 +

√
K1m1

. (4.23)

In the continuum limit, v ≈
√

K
ma ⇒

(
m
a

)

v ≈
√

Km. Hence, the reflection and

transmission coefficients obtained for the one-dimensional model system, match the

expressions for continuum acoustics correctly if we make the obvious connection

ρv ←→
√

Km.

4.3 Two-Dimensional Rhombic Lattice

In the present section, we consider an interface between two two-dimensional rhom-

bic lattices and explore the scattering of phonons at the interface in a fashion

similar to the one-dimensional case. Our model system is shown in Fig. 4.3. In

lattice A, the masses m1 are connected to the four nearest neighbors by springs of

spring constant K1. The masses m2 in lattice B are connected to their four nearest

neighbors by springs of spring constant K2. The masses on opposite sides of the

interface are connected by springs of spring constant K3. The spacing between
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the nearest neighbor masses in each of the lattices is a
√

2. The combined lattice

preserves the rhombic lattice structure. The boundary layer is at z = 0.

4.3.1 Phonon Modes

First, we calculate the sound modes in the bulk of a two-dimensional rhombic

lattice, of lattice constant a. The Hamiltonian of the system is written as

H =
∑

j

P 2
j

2m
+ V,

V =
K

2

∑

δ

[δ̂ · (Qj − Qj+δ)]
2 (4.24)

with δ̂ = a(±1,±1), the vector distance to the nearest neighbors.

In the component form, the potential energy can be written as

V =
K

2

∑

l,m

[
(

Qx
l,m + Qz

l,m√
2

−
Qx

l+1,m+1 + Qz
l+1,m+1√

2

)2

+

(−Qx
l,m − Qz

l,m√
2

−
−Qx

l−1,m−1 − Qz
l−1,m−1√

2

)2

+

(
Qx

l,m − Qz
l,m√

2
−

Qx
l+1,m−1 − Qz

l+1,m−1√
2

)2

+

(−Qx
l,m + Qz

l,m√
2

−
−Qx

l−1,m+1 + Qz
l−1,m+1√

2

)2
]

. (4.25)

The x component of the equations of motion is given by

−mQ̈x
l,m =

K

2

[

4Qx
l,m − Qx

l+1,m+1 − Qx
l−1,m−1 − Qx

l+1,m−1 − Qx
l−1,m+1

− Qz
l+1,m+1 − Qz

l−1,m−1 + Qz
l+1,m−1 + Qz

l−1,m+1

]

. (4.26)

The z-component of the equation of motion can be written in a similar fashion by

replacing x ↔ z. The solutions to these equations are assumed to be of the form

Ql,m = ê exp i(q · rlm − ωt), (4.27)
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where ê is the polarization vector and q is the wave vector. Inserting Eq. (4.27)

into the equations of motion, we obtain

m

2K
ω2ex = (1 − cos qxa cos qza)ex + ez sin qxa sin qza

and
m

2K
ω2ez = (1 − cos qxa cos qza)ez + ex sin qxa sin qza, (4.28)

which has the following solutions

• Longitudinal phonons:

ω2
L =

2K

M
(1 − cos(qx + qz)a) (4.29)

êl =
1√
2

(

1

1

)

(4.30)

• Transverse phonons:

ω2
T =

2K

M
(1 − cos(qx − qz)a) (4.31)

êt =
1√
2

(

1

−1

)

(4.32)

4.3.2 Boundary Conditions

We consider an incident wave with amplitude Ii and polarization êi, that ap-

proaches the interface from the side of lattice A shown in Fig. 4.3. The incident

wave can be of either polarization, i = (l, t). This lattice has the feature that the

polarization vectors are independent of the direction of the wave vector ans point

along the bond directions. This implies that for an incident wave with a particular

polarization, there can be only one wave reflected with the opposite polarization,

i.e for an incident longitudinal wave the reflected wave would have polarization

vector ê = −êt and for an incident transverse wave, the reflected wave would have

polarization vector ê = −êl. The incident, reflected and transmitted waves have

the same wave vector parallel to the interface, qx ≡ q. They also have the same

value for the frequency, ω. The wave vectors along z-direction for the longitudinal
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and transverse waves are different, such that

ω(q, qi) = ωL(q,±ql) = ωT (q,±qt),

which gives, cos(q ± qi)a = cos(q ∓ qR)a, (4.33)

K1

m1
(1 − cos(q ± qi)a) =

K2

m2
(1 − cos(q ± qT )a), (4.34)

where qR and qT are the z-component of the wave vectors for the reflected and

transmitted wave, respectively. The ± represents the two different cases for the

two polarizations.

4.3.3 Reflection and Transmission Amplitudes

The reflection and transmission coefficients for the scattering of phonons at the

interface, are obtained by solving the equations of motion for the masses next to

the interface. The displacements of the masses near the interface can be written

as a linear combination of the three different waves,

Ql,m =
1

∑

p=0

Apê
(p) exp i(q(p) · rlm − ωt), for masses ∈ lattice A

Wl,m = A2ê
(2) exp i(q(2) · rlm − ωt), for masses ∈ lattice B. (4.35)

Here, the incident phonon with amplitude A0 has wavevector q(0) and polarization

ê(0), the reflected phonon with amplitude A1 has wavevector q(1) and polarization

ê(1) and the transmitted phonon with amplitude A2 has wavevector q(2) and po-

larization ê(2). We choose the origin of coordinates to be at the position of a mass

in lattice A, for convenience. The x-component of the equation of motion for the

(0, 0)th mass is given by

−m1Q̈
x
0,0 =

K1

2

[

2Qx
0,0 − Qx

−1,−1 − Qx
1,−1 + Qz

1,−1 − Qz
−1,−1

]

+
K3

2

[

2Qx
0,0 − W x

1,1 − W x
−1,1 + W z

−1,1 − W z
1,1

]

. (4.36)
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In the absence of interface, the equation of motion for the (0, 0)th has the following

form

−m1Q̈
x
0,0 =

K1

2

[

4Qx
0,0 − Qx

−1,−1 − Qx
1,−1 − Qx

1,1 − Qx
−1,1

+Qz
1,−1 − Qz

−1,−1 + Qz
−1,1 − Qz

1,1

]

. (4.37)

Subtracting we obtain

K1

2

[

2Qx
0,0 − Qx

1,1 − Qx
−1,1 + Qz

−1,1 − Qz
1,1

]

=
K3

2

[

2Qx
0,0 − W x

1,1 − W x
−1,1 + W z

−1,1 − W z
1,1

]

. (4.38)

Inserting the solutions given in Eq. (4.27), we obtain

A1[
(

K1(1 − cos(qxa)e−iq(1)a) − K3

)

e(1)
x − K1

(

i sin(qxa)e−iq(1)a
)

e(1)
z ]

+A2K3[cos(qxa)eiq(2)ae(2)
x + i sin(qxa)eiq(2)ae(2)

z ]

= A0[
(

K3 − K1(1 − cos(qxa)eiq(0)a)
)

e(0)
x + K1

(

i sin(qxa)eiq(0)a
)

e(0)
z ]. (4.39)

We obtain a similar equation for the z-component of the displacement of the (0, 0)th

mass with the replacement of ex ↔ ez.

Following the same method, we obtain for the mass in lattice B, next to interface

A1K3[cos(qxa)e(1)
x − i sin(qxa)e(1)

z ]

+A2[
(

K2(1 − cos(qxa)e−iq(2)a) − K3

)

eiq(2)ae(2)
x + K1i sin(qxa)e(1)

z ]

= −A0K3[cos(qxa)e(0)
x − i sin(qxa)e(0)

z ]. (4.40)

The equation for the z-component yields a similar expression by replacing ex ↔
ez. Eq. (4.39) and Eq. (4.40) are simultaneously solved for the reflection and

transmission amplitudes. The transmission coefficients for either polarization is

given by |TI |
2 = Tn

d , respectively, where

Tn = f 2
32

[

sin

(
θl + θt

2

)]2

, (4.41)
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Figure 4.4. Phonon reflection and transmission coefficients at the interface between
two rhombic lattices.

and d =
1

4
((f31 + f32 − 1)2 + 1 + (f31 − 1)2 + (f32 − 1)2

−2(f31 + f32 − 1) cos(θ(2) + θ(1)) − 2(2 + (f31 + f32)(f32 − 2)) cos(θx − θ(1))

−2((f31 − 1)(f31 + f32 − 1) + 1 − f32) cos(θx − θ(2))

+2(f31 − 1)(f32 − 1) cos(θ(2) − θ(1) + 2θx)). (4.42)

Since, θl and θt can only be separated by integer multiples of 2π, we can see from

Eq. (4.33) that Tn = 0 for incident wave of either polarization. This result implies

that, incident wave of either polarization is completely reflected from the interface

between two two-dimensional rhombic lattices. Figure 4.4 shows the values of

the phonon reflection and transmission coefficients at the interface between two

rhombic lattices for a particular choice of lattice parameters.

4.4 Two-Dimensional Square Lattice

The somewhat interesting result of the last section inspired us to study one an-

other model interface for a two-dimensional system. Here, we consider an interface

between two two-dimensional square lattices. The system is shown in Fig. 4.5.

We discuss the scattering of phonons at the interface in a way similar to the rhom-

bic lattice example before. In lattice A, the masses m1 are connected to the four

nearest neighbors by springs of spring constant K and to the four next nearest
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Figure 4.5. Two-dimensional solid-solid interface between two square lattices;

neighbors by springs of stiffness K ′. The second neighbor springs stabilize the

structure, and give reasonable dispersion for transverse modes. We solve for the

case when K = 2K1, K ′ = K1, which is the isotropic case at long wavelength. The

masses m2 in lattice B are connected to their four nearest neighbors by springs of

stiffness 2K2 and to their next nearest neighbors by springs of stiffness K2. The

mass at the interface is connected to the nearest mass on opposite side of the in-

terface, by spring of spring constant 2K3 and to the next nearest neighbor masses,

by springs of stiffness K3. The boundary layer is at z = 0.

4.4.1 Phonon Modes

First, we discuss the bulk modes of phonons on a two-dimensional square lattice,

of lattice constant a. The Hamiltonian of the system is written as

H =
∑

j

P 2
j

2m
+ V,

V =
K

2

∑

δ1

[δ̂1 · (Qj − Qj+δ1)]
2 +

K ′

2

∑

δ

[δ̂2 · (Qj − Qj+δ2)]
2 (4.43)

where the four first neighbors are at δ̂1 = a(±1, 0), a(0,±1), and the four second

neighbors are at δ̂2 = a(±1,±1). In the component form, the potential energy can

be written as

V = K1

∑

l,m

[
(

Qx
l,m − Qx

l+1,m

)2
+

(

Qx
l,m − Qx

l−1,m

)2
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+
(

Qz
l,m − Qz

l,m+1

)2
+

(

Qz
l,m − Qz

l,m−1

)2
]

+
K1

2

∑

l,m

[
(

Qx
l,m + Qz

l,m√
2

−
Qx

l+1,m+1 + Qz
l+1,m+1√

2

)2

+

(−Qx
l,m − Qz

l,m√
2

−
−Qx

l−1,m−1 − Qz
l−1,m−1√

2

)2

+

(
Qx

l,m − Qz
l,m√

2
−

Qx
l+1,m−1 − Qz

l+1,m−1√
2

)2

+

(−Qx
l,m + Qz

l,m√
2

−
−Qx

l−1,m+1 + Qz
l−1,m+1√

2

)2
]

. (4.44)

The x component of the equations of motion is given by

−m1Q̈
x
l,m = 2K1

[

2Qx
l,m − Qx

l,m+1 − Qx
l,m−1

]

+
K1

2

[

4Qx
l,m − Qx

l+1,m+1 − Qx
l−1,m−1

−Qx
l+1,m−1 − Qx

l−1,m+1 + Qz
l+1,m+1 − Qz

l−1,m−1 + Qz
l+1,m−1 + Qz

l−1,m+1

]

. (4.45)

The z-component of the equation of motion can be written in a similar fashion by

replacing x ↔ z. The solutions to these equations are assumed to be of the form

Ql,m = ê exp i(q · rlm − ωt), (4.46)

where ê is the polarization vector and q is the wave vector. Inserting Eq. (4.46)

into the equations of motion, we obtain

m1

2K1
ω2ex = [3 − 2 cos(θx) − cos(θx) cos(θz)] ex

+ [sin(θx) sin(θz)] ez

and
m1

2K1
ω2ez = [3 − (1 + 2 cos(θx)) cos(θz)] ez (4.47)

+ [sin(θx) sin(θz)] ex,

where θi = kia. The above equations Eq. (4.47) have the following solutions

• Longitudinal phonons:

ω2
L =

2K1

m1
[4 − cos(θx) − (1 + 2 cos(θx) cos(θz)] (4.48)
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êl = N

(

sin(θz/2) cos(θx/2)

cos(θz/2) sin(θx/2)

)

(4.49)

• Transverse phonons:

ω2
T =

2K1

m1
[2 − cos(θx) − cos(θz)] (4.50)

êt = N

(

cos(θz/2) sin(θx/2)

− sin(θz/2) cos(θx/2)

)

(4.51)

N2 =
1

√

1 − cos(θz) cos(θx)
(4.52)

4.4.2 Boundary Conditions

We consider an incident wave with amplitude Ii and polarization êi, that ap-

proaches the interface from the side of lattice A shown in Fig. 4.5. The incident

wave can be of either polarization, i = (l, t). In general, there can be two reflected

waves, with amplitudes Rl, Rt and polarizations êRl, êRt and two transmitted

waves, with amplitudes Tl, Tt and polarizations êT l, êTt. The incident, reflected

and transmitted waves have the same wave vector parallel to the interface, qx ≡ q.

They also have the same value for the frequency, ω. The wave vectors along z-

direction for the incident (qi), reflected (qR) and transmitted (qT ) waves are all

different.

In order to obtain simple algebraic equations for the wavevectors for reflected

and transmitted waves, we define s(p) = exp(iqz(p)a), with p = i, l, t. When

a longitudinal phonon with wavevector (q, qi) is incident on the surface, the z-

component of the wavevectors for the reflected and transmitted waves are obtained

the following way:

• Reflected waves:

– Longitudinal phonons

qRl = −qi

⇒ sRl = exp(−iqia) = s−1
i (4.53)
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– Transverse phonons

2K1

m1

[

2 − cos(θx) −
(

sRt + s−1
Rt

2

)]

=
2K1

m1
[4 − cos(θx) − (1 + 2 cos(θx) cos(qia)] (4.54)

⇒
sRt + s−1

Rt

2
= (1 + 2 cos(θx) cos(qia) − 2 ≡ A. (4.55)

The wavevector sRt is the solution of the quadratic equation:

s2
Rt − 2AsRt + 1 = 0. (4.56)

If A2 < 1, the solutions are complex with |sRt| = 1, and we obtain

a propagating wave. We choose the solution with negative imaginary

part:

sRt = A − i
√

1 − A2. (4.57)

On the other hand, if A2 ≥ 1, the solution are real. We choose the

solution with |sRt| ≤ 1:

sRt = A − sign(A)
√

A2 − 1. (4.58)

The wave does not propagate. We still include this solution in our

calculation to satisfy zero stress boundary condition.

• Transmitted waves:

– Longitudinal phonons require to have

2K2

m2

[

4 − cos(θx) − (1 + 2 cos(θx)

(
sT l + s−1

T l

2

)]

=
2K1

m1
[4 − cos(θx) − (1 + 2 cos(θx) cos(qia)]

⇒
sT l + s−1

T l

2
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=
4 − cos(θx) − m2

m1

K1
K2

[4 − cos(θx) − (1 + 2 cos(θx) cos(qia)]

1 + 2 cos(θx)
. (4.59)

The solutions of the quadratic equation are chosen using the method

similar to the case for reflected transverse phonons.

– Similarly, for transverse phonons we have

2K2

m2

[

2 − cos(θx) −
(

sTt + s−1
Tt

2

)]

=
2K1

m1
[4 − cos(θx) − (1 + 2 cos(θx) cos(qia)]

⇒
sTt + s−1

Tt

2

= 2 − cos(θx) −
m2

m1

K1

K2
[4 − cos(θx) − (1 + 2 cos(θx) cos(qia)] . (4.60)

The same procedure can be repeated for the case when a transverse

phonon approaches the interface.

In all cases the reflected waves have polarization:

êl = N

(

− sin(θRl/2) cos(θx/2)

cos(θRl/2) sin(θx/2)

)

,

êt = N

(

cos(θRt/2) sin(θx/2)

sin(θRt/2) cos(θx/2)

)

, (4.61)

and the transmitted waves have polarization:

êl = N

(

sin(θRl/2) cos(θx/2)

cos(θRl/2) sin(θx/2)

)

,

êt = N

(

cos(θTt/2) sin(θx/2)

− sin(θTt/2) cos(θx/2)

)

. (4.62)

4.4.3 Reflection and Transmission Amplitudes

We follow a similar procedure as taken in the case of two dimensional rhombic

lattice, to obtain the reflection and transmission amplitudes. The displacements
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of the masses near the interface are written as

Ql,m =
2

∑

p=0

Apê
(p) exp i(q(p) · rlm − ωt), for masses ∈ lattice A

Wl,m =
4

∑

p=3

Apê
(p) exp i(q(p) · rlm − ωt), for masses ∈ lattice B. (4.63)

The incident phonon with amplitude A0 has wavevector q(0) and polarization ê(0).

The reflected phonon with amplitude Ap(p = 1, 2) has wavevector q(p) and polariza-

tion ê(p) and the transmitted phonon with amplitude Ap(p = 3, 4) has wavevector

q(p) and polarization ê(p). As before, we choose the origin of coordinates to be at

the position of a mass in lattice A near the interface, for convenience. We then

write the equations of motion of the masses in lattices A and B next to the inter-

face. The x-component for the equation of motion for the (0, 0)th mass is given

by

−m1Q̈
x
0,0 = 2K1

[

2Qx
0,0 − Qx

0,1 − Qx
0,−1

]

+
K1

2

[

2Qx
0,0 − Qx

−1,−1 − Qx
1,−1 + Qz

1,−1 − Qz
−1,−1

]

+
K3

2

[

2Qx
0,0 − W x

1,1 − W x
−1,1 + W z

−1,1 − W z
1,1

]

. (4.64)

In the absence of interface, the equation of motion for the (0, 0)th has the following

form

−m1Q̈
x
0,0 = 2K1

[

2Qx
0,0 − Qx

0,1 − Qx
0,−1

]

+
K1

2

[

4Qx
0,0 − Qx

−1,−1 − Qx
1,−1 − Qx

1,1 − Qx
−1,1

+Qz
1,−1 − Qz

−1,−1 + Qz
−1,1 − Qz

1,1

]

. (4.65)

Subtracting we obtain

K1

2

[

2Qx
0,0 − Qx

1,1 − Qx
−1,1 + Qz

−1,1 − Qz
1,1

]

=
K3

2

[

2Qx
0,0 − W x

1,1 − W x
−1,1 + W z

−1,1 − W z
1,1

]

. (4.66)
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Similarly, for the z-component we obtain

2K1

[

Qz
0,0 − Qz

0,1

]

+
K1

2

[

2Qz
0,0 − Qz

1,1 − Qz
−1,1 + Qx

−1,1 − Qx
1,1

]

= 2K3

[

Qz
0,0 − Qz

0,1

]

+
K3

2

[

2Qz
0,0 − W z

1,1 − W z
−1,1 + W x

−1,1 − W x
1,1

]

. (4.67)

Inserting the solutions given in Eq.(4.63) into Eq.s(4.66) and (4.67), we obtain

2
∑

p=1

Ap[
(

K1(1 − cos(qxa)e−iq
(p)
z a) − K3

)

e(p)
x − K1

(

i sin(qxa)e−iq
(p)
z a

)

e(p)
z ]

+K3

4
∑

p=3

Ap[cos(qxa)eiq
(p)
z ae(p)

x + i sin(qxa)eiq
(p)
z ae(p)

z ]

= A0[
(

K3 − K1(1 − cos(qxa)eiq
(0)
z a)

)

e(0)
x + K1

(

i sin(qxa)eiq
(0)
z a

)

e(0)
z ], (4.68)

2
∑

p=1

Ap[
(

3(K1 − K3) − K1(2 + cos(qxa)e−iq
(p)
z a)

)

e(p)
z − K1

(

i sin(qxa)e−iq
(p)
z a

)

e(p)
x ]

+K3

4
∑

p=3

Ap[(2 + cos(qxa))eiq
(p)
z ae(p)

z + i sin(qxa)eiq
(p)
z ae(p)

x ]

= A0[
(

3(K3 − K1) + K1(2 + cos(qxa)eiq
(0)
z a)

)

e(0)
z + K1

(

i sin(qxa)eiq
(0)
z a

)

e(0)
x ].

(4.69)

Following the same method, we obtain for the mass in lattice B, next to interface

K3

2
∑

p=1

Ap[cos(qxa)e(p)
x − i sin(qxa)e(p)

z ]

+
4

∑

p=3

Ap[
(

K2(e
iq

(p)
z a − cos(qxa)) − K3e

iq
(p)
z a

)

e(p)
x + K2

(

i sin(qxa)eiq
(p)
z a

)

e(p)
z ]

= K3A0[− cos(qxa)e(0)
x + i sin(qxa)e(0)

z ], (4.70)

K3

2
∑

p=1

Ap[(2 + cos(qxa))e(p)
z − i sin(qxa)e(p)

x ]

+
4

∑

p=3

Ap[
(

3(K2 − K3)e
iq

(p)
z a − K2(2 + cos(qxa))

)

e(p)
z + K2 (i sin(qxa)) e(p)

x ]

= K3A0[− (2 + cos(qxa)) e(0)
z + i sin(qxa)e(0)

x ]. (4.71)
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The reflection and transmission amplitudes are obtained be simultaneously solving

the equation
4

∑

p=0

MnpAp = 0, n = 1, . . . 4, (4.72)

where

M1p (p = 0) = −
(

(K1 − K3) − K1 cos(qxa)eiq
(p)
z a

)

e(p)
x

+iK1 sin(qxa)eiq
(p)
z ae(p)

z ,

M1p (p = 1, 2) =
(

(K1 − K3) − K1 cos(qxa)e−iq
(p)
z a

)

e(p)
x

−iK1 sin(qxa)e−iq
(p)
z ae(p)

z ,

M1p (p = 3, 4) = K3 cos(qxa)eiq
(p)
z ae(p)

x + iK3 sin(qxa)eiq
(p)
z ae(p)

z ,

M2p (p = 0) = −
(

3(K1 − K3) − K1(2 + cos(qxa))eiq
(p)
z a

)

e(p)
z

+iK1 sin(qxa)eiq
(p)
z ae(p)

x ,

M2p (p = 1, 2) =
(

3(K1 − K3) − K1(2 + cos(qxa))e−iq
(p)
z a

)

e(p)
z

−iK1 sin(qxa)e−iq
(p)
z ae(p)

x ,

M2p (p = 3, 4) = K3(2 + cos(qxa))eiq
(p)
z ae(p)

z + iK3 sin(qxa)eiq
(p)
z ae(p)

x , (4.73)

M3p (p = 0, 1, 2) = K3 cos(qxa)e(p)
x − iK3 sin(qxa)e(p)

z ,

M3p (p = 3, 4) =
(

(K2 − K3)e
iq

(p)
z a − K2 cos(qxa)

)

e(p)
x + iK2 sin(qxa)e(p)

z ,

M4p (p = 0, 1, 2) = K3(2 + cos(qxa))e(p)
z − iK3 sin(qxa)e(p)

x ,

M4p (p = 3, 4) =
(

3(K2 − K3)e
iq

(p)
z a − K2(2 + cos(qxa))

)

e(p)
z

+iK2 sin(qxa)e(p)
x .

The reflection and transmission coefficients are defined as Rti = |A1|2, Rli =

|A2|2, Tti = |A3|2, Tli = |A4|2, where Rni(n = t, l) is the coefficient of reflection

into nth mode and Tni(n = t, l) is the coefficient of transmission into the nth mode.

The coefficients satisfy the following conservation rule

JI = JR +
m2

m1
JT , (4.74)
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Figure 4.6. Phonon reflection and transmission coefficients at the interface between
two square lattices.

with

JI = !

(
1

2
∇kω

2
i

)

|A0|2,

JR = !

(
1

2
∇kω

2
Rn

)

|Rni|2, (4.75)

JT = !

(
1

2
∇kω

2
Tn

)

|Tni|2.

Figure 4.6 shows the values of the phonon reflection and transmission coefficients

at the interface between two square lattices for a particular choice of lattice pa-

rameters.

4.5 Three-Dimensional FCC Lattice

In the present section, we consider the interface between two three-dimensional

lattices. Although the three-dimensional system has an added degree of complexity

over the one and two-dimensional systems we considered in the previous sections,

we can follow the exact same procedure to discuss the scattering problem. The

two FCC lattices are divided by an interface between two (001) planes of masses

as shown in Fig. 4.7. The origin is assumed to be at the site of the (0,0,0) mass,
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Figure 4.7. Solid-solid interface between two FCC lattices.

Figure 4.8. Top view of the solid-solid interface between two FCC lattices.

shown in Fig.4.7. The nearest neighbors of the (0,0,0) mass is marked by filled

circles. The boundary layer is marked by the z = 0 plane. Figure 4.8 shows the

top view of the interface. In lattice A, the masses m1 are connected to their 12

nearest neighbors by springs of spring constant K1. The masses m2 in lattice B

are connected to their 12 nearest neighbors by springs of stiffness K2. The mass at

the interface is connected to the nearest mass on opposite side of the interface, by

spring of spring constant K3. The spacing between the nearest neighbor masses in

each of the lattices is a
√

2.
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4.5.1 Phonon Modes

The Hamiltonian of the system can be similarly written as

H =
∑

j

P 2
j

2m
+ V,

V =
K

2

∑

δ

[δ̂ · (Qj − Qj+δ)]
2. (4.76)

The twelve nearest neighbors are at δ̂1 = a(±1,±1, 0), a(±1, 0,±1), a(0,±1,±1).

We consider only the nearest neighbor interaction to discuss the phonon modes of

the lattice. For insulating solids with short range interaction between the atoms, we

can obtain the correct dispersion relation with just the nearest neighbor interaction

(We show this in detail in the next chapter for solid Argon). The equation of motion

for a mass in the bulk is given by

−m1Q̈ = K
∑

δ

[δ̂δ̂ · (Qj − Qj+δ)]. (4.77)

In component form the equation of motion can be written as

−m1Q̈
x
l,m,n =

K

2

[

Qx
l+1,m+1,n + Qx

l+1,m,n+1 + Qx
l+1,m−1,n + Qx

l+1,m,n−1

+ Qx
l−1,m+1,n + Qx

l−1,m,n+1 + Qx
l−1,m−1,n + Qx

l−1,m,n−1 − 8Qx
l,m,n

+ Qy
l+1,m+1,n + Qy

l−1,m−1,n − Qy
l+1,m−1,n − Qy

l−1,m+1,n

+Qz
l+1,m,n+1 + Qz

l−1,m,n−1 − Qz
l+1,m,n−1 − Qz

l−1,m,n+1

]

. (4.78)

The equations for Q̈y
l,m,n and Q̈z

l,m,n are obtained by cyclic permutation of the

subscripts and the superscripts in the above equation. The solutions to these

equations are assumed to be of the form

Ql,m,n = ê exp i(q · rlmn − ωt), (4.79)

where ê is the polarization vector and q is the wave vector and ω is the frequency

of the phonon. Substitution of the solution Eq.(4.79) into the equation of motion
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Eq.(4.78) yields,

Dê = ω2ê. (4.80)

The dynamical matrix D is given by

D =
K1

2m1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

8 − 4 cos(θx) cos(θy)

−4 cos(θx) cos(θz)
4 sin(θx) sin(θy) 4 sin(θx) sin(θz)

4 sin(θx) sin(θy)
8 − 4 cos(θx) cos(θy)

−4 cos(θy) cos(θz)
4 sin(θy) sin(θz)

4 sin(θx) sin(θz) 4 sin(θy) sin(θz)
8 − 4 cos(θx) cos(θz)

−4 cos(θy) cos(θz)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(4.81)

where θi ≡ qia. The eigenvalue equation Eq.(4.80) has a solution if the secular

determinant of the dynamical matrix vanishes,

∣
∣D − ω2I

∣
∣ = 0. (4.82)

For given values of the wave vector q, the above equation Eq.(4.82) can be solved

for the roots of ω2. On the other hand, given values of the frequency ω and any

two components of the wavevectors, we can obtain the the third component of

the wavevector by solving Eq.(4.82). However, in a significant fraction of cases,

numerical solution of Eq.(4.82) is difficult and usually requires large amount of

computation time. We transform Eq.(4.82) into an algebraic equation that can be

solved easily. To carry out the transformation we define

X = 2 cos(θx), Y = 2 cos(θy), Z = 2 cos(θz), (4.83)

and Ω =
2Msω2

K
− 8. (4.84)

After some algebra, Eq.(4.82) can be written in the form

Ω3 + C2Ω
2 + C1Ω + C0 = 0, (4.85)

where,
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C2 = 2(XY + Y Z + ZX),

C1 = 3(X + Y + Z)XY Z + 8(X2 + Y 2 + Z2) − 48,

C0 = 4(XY Z)2 + 4(X2 + Y 2)(XY − Z2)

+ 4(Y 2 + Z2)(Y Z − X2)

+ 4(Z2 + X2)(ZX − Y 2) + 32(X2 + Y 2 + Z2)

− 32(XY + Y Z + ZX) + 8(X + Y + Z)XY Z − 128.

The roots of the algebraic equation Eq.(4.85) can be used to obtain the phonon

frequencies of the FCC lattice. The simplified form of the equation can be used

to evaluate the phonon group velocities. The z-component of the group velocity is

given by

vz =
∂ω

∂Z

∂Z

∂qz
= −

Ka

2Mω

∂Ω

∂Z
sin(θz)

=
Ka

2Mω
sin(θz)

[[

Ω2∂C2

∂Z
+ Ω

∂C1

∂Z
+

∂C0

∂Z

]

/(3Ω2 + 2C2Ω + C1)

]

.(4.86)

Similar expressions can be obtained for the x and y-components of the group

velocities by permutation of the variables. In order to obtain the z-component of

the wave vector, we define eZ = exp(iθz) and write Eq.(4.82) as a polynomial in

eZ,

CZ3eZ
6 + CZ2eZ

5 + CZ1eZ
4 + CZ0eZ

3 + CZ1eZ
2 + CZ2eZ + CZ3 = 0,

(4.87)

where,

CZ3 = 4(X + Y ),

CZ2 = (8 + 3XY )Ω + 8XY + 32 − 8(X2 + Y 2) + 4X2Y 2,

CZ1 = 2(X + Y )Ω2 + 3XY (X + Y )Ω + 8XY (X + Y )

− 20(X + Y ) + 4(X3 + Y 3),

CZ0 = Ω3 + 2XY Ω2 + 8(X2 + Y 2 − 4)Ω + 6XY Ω

+ 4(X2 + Y 2)XY − 16XY + 16(X2 + Y 2) − 64.
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For each root eZl (l = 1, . . . 6), there is a corresponding root 1/eZl. We found

that most of the roots are real, but some of them have a non-zero imaginary part.

We choose the roots with positive imaginary part. Using the values of the wave

vectors, we can solve Eq.(4.80), for the polarization vectors of the phonons.

4.5.2 Reflection and Transmission Amplitudes

The displacements of masses in the two FCC lattices near the interface can be

written as a linear contribution from the incident, reflected and transmitted waves,

Ql,m,n =
3

∑

p=0

Apê
(p) exp i(q(p) · rlm − ωt), for masses ∈ lattice A (4.88)

Wl,m,n =
6

∑

p=4

Apê
(p) exp i(q(p) · rlm − ωt), for masses ∈ lattice B. (4.89)

The incident phonon with amplitude A0 has wavevector q(0) and polarization ê(0).

The reflected phonon with amplitude Ap(p = 1, 2, 3) has wavevector q(p) and po-

larization ê(p) and the transmitted phonon with amplitude Ap(p = 4, 5, 6) has

wavevector q(p) and polarization ê(p). As before, we choose the origin of coordi-

nates to be at the position of a mass in lattice A at the interface, as shown in

Fig.4.7. The nearest neighbors of the (0, 0, 0)th mass, in lattice A and lattice B are

marked by filled circles. We solve the equations of motion of the masses in lattices

A and B next to the interface to obtain the reflection and transmission amplitudes.

The x-component for the equation of motion for the (0, 0, 0)th mass is given by

−m1Q̈
x
0,0,0 =

K1

2

[

Qx
1,1,0 + Qx

1,−1,0 + Qx
−1,1,0 + Qx

−1,−1,0 + Qx
−1,0,−1 + Qx

1,0,−1

−6Qx
0,0,0 + Qy

1,1,0 − Qy
1,−1,0 − Qy

−1,1,0 + Qy
−1,−1,0 + Qz

−1,0,−1 − Qz
1,0,−1

]

+
K3

2

[

W x
1,0,1 + W x

−1,0,1 − 2Qx
0,0,0 + W z

1,0,1 − W z
−1,0,1

]

. (4.90)

In the absence of interface, the equation of motion for the (0, 0, 0)th has the fol-

lowing form

−m1Q̈
x
0,0,0 =

K1

2

[

Qx
1,1,0 + Qx

1,−1,0 + Qx
−1,1,0 + Qx

−1,−1,0 + Qx
−1,0,−1 + Qx

1,0,−1
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Qx
1,0,1 + Qx

−1,0,1 − 8Qx
0,0,0 + Qy

1,1,0 − Qy
1,−1,0 − Qy

−1,1,0 + Qy
−1,−1,0

+Qz
−1,0,−1 − Qz

1,0,−1 + Qz
1,0,1 − Qz

−1,0,1

]

. (4.91)

Subtracting we obtain

K1

2

[

Qx
1,0,1 + Qx

−1,0,1 − 2Qx
0,0,0 + Qz

1,0,1 − Qz
−1,0,1

]

=
K3

2

[

W x
1,0,1 + W x

−1,0,1 − 2Qx
0,0,0 + W z

1,0,1 − W z
−1,0,1

]

. (4.92)

Similarly, for the y and z-component we obtain

K1

2

[

Qy
0,1,1 + Qy

0,−1,1 − 2Qy
0,0,0 + Qz

0,1,1 − Qz
0,−1,1

]

=
K3

2

[

W y
0,1,1 + W y

0,−1,1 − 2Qy
0,0,0 + W z

0,1,1 − W z
0,−1,1

]

, (4.93)

K1

2

[

Qz
1,0,1 + Qz

−1,0,1 + Qz
0,1,1 + Qz

0,−1,1 − 4Qz
0,0,0

+Qx
1,0,1 − Qx

−1,0,1 + Qy
0,1,1 − Qy

0,−1,1

]

(4.94)

=
K1

2

[

W z
1,0,1 + W z

−1,0,1 + W z
0,1,1 + W z

0,−1,1 − 4Qz
0,0,0 ,

+W x
1,0,1 − W x

−1,0,1 + W y
0,1,1 − W y

0,−1,1

]

, (4.95)

respectively. Inserting the solutions given in Eq.(4.88) into Eq.s(4.92-4.95), we

obtain

K1

3
∑

p=1

Ap[

(

1 −
K3

K1
− cos(qxa)e−iq

(p)
z a

)

e(p)
x −

(

i sin(qxa)e−iq
(p)
z a

)

e(p)
z ]

+K3

6
∑

p=4

Ap[cos(qxa)eiq
(p)
z ae(p)

x + i sin(qxa)eiq
(p)
z ae(p)

z ]

= A0[−
(

1 −
K3

K1
− cos(qxa)eiq

(0)
z a)

)

e(0)
x +

(

i sin(qxa)eiq
(0)
z a

)

e(0)
z ], (4.96)

K1

3
∑

p=1

Ap[

(

1 −
K3

K1
− cos(qya)e−iq

(p)
z a

)

e(p)
y −

(

i sin(qya)e−iq
(p)
z a

)

e(p)
z ]
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+K3

6
∑

p=4

Ap[cos(qya)eiq
(p)
z ae(p)

y + i sin(qya)eiq
(p)
z ae(p)

z ]

= A0[−
(

1 −
K3

K1
− cos(qya)eiq

(0)
z a)

)

e(0)
y +

(

i sin(qya)eiq
(0)
z a

)

e(0)
z ], (4.97)

K1

3
∑

p=1

Ap[

(

2(1 −
K3

K1
) − (cos(qxa) + cos(qya))e−iq

(p)
z a

)

e(p)
z

−
(

i sin(qxa)e−iq
(p)
z a

)

e(p)
x −

(

i sin(qya)e−iq
(p)
z a

)

e(p)
y ]

+K3

6
∑

p=4

Ap[(cos(qxa) + cos(qya)eiq
(p)
z ae(p)

z

+i sin(qxa)eiq
(p)
z ae(p)

x + i sin(qya)eiq
(p)
z ae(p)

y ]

= A0[−
(

2(1 −
K3

K1
) − (cos(qxa) + cos(qya))eiq

(0)
z a

)

e(0)
z

+
(

i sin(qxa)eiq
(0)
z a

)

e(0)
x +

(

i sin(qya)eiq
(0)
z a

)

e(0)
y ]. (4.98)

Following the same method, we obtain for the mass in lattice B, next to interface

K3

3
∑

p=1

Ap[cos(qxa)e(p)
x − i sin(qxa)e(p)

z ]

+K2

6
∑

p=4

Ap[

((

1 −
K3

K2

)

eiq
(p)
z a − cos(qxa)

)

e(p)
x + i sin(qxa)e(p)

z ]

= K3A0[− cos(qxa)e(0)
x + i sin(qxa)e(0)

z ], (4.99)

K3

3
∑

p=1

Ap[cos(qxa)e(p)
x − i sin(qxa)e(p)

z ]

+K2

6
∑

p=4

Ap[

((

1 −
K3

K2

)

eiq
(p)
z a − cos(qya)

)

e(p)
y + i sin(qxya)e(p)

z ]

= K3A0[− cos(qya)e(0)
y + i sin(qya)e(0)

z ], (4.100)

K3

3
∑

p=1

Ap[(cos(qxa) + cos(qya))e(p)
z − i sin(qxa)e(p)

x − i sin(qya)e(p)
y ]

+K2

6
∑

p=4

Ap[

(

2

(

1 −
K3

K2

)

eiq
(p)
z a − (cos(qxa) + cos(qya))

)

e(p)
z
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+i sin(qxa)e(p)
x + i sin(qya)e(p)

y ]

= K3A0[(cos(qxa) + cos(qya))e(0)
z − i sin(qxa)e(0)

x − i sin(qya)e(0)
y ]. (4.101)

The reflection and transmission amplitudes are obtained be simultaneously solving

the equation
6

∑

p=0

MnpAp = 0, n = 1, . . . 6, (4.102)

where

M1p(p = 0) = K1

((

1 −
K3

K1

)

− cos(qxa)eiq
(0)
z a

)

e(0)
x

− iK1 sin(qxa)eiq
(0)
z ae(p0)

z ,

M1p(p = 1, 2, 3) = K1

((

1 −
K3

K1

)

− cos(qxa)e−iq
(p)
z a

)

e(p)
x

− iK1 sin(qxa)e−iq
(p)
z ae(p)

z ,

M1p(p = 4, 5, 6) = K3 cos(qxa)eiq
(p)
z ae(p)

x + iK3 sin(qxa)eiq
(p)
z ae(p)

z ,

M2p(p = 0) = K1

((

1 −
K3

K1

)

− cos(qya)eiq
(0)
z a

)

e(0)
y

− iK1 sin(qya)eiq
(0)
z ae(0)

z ,

M2p(p = 1, 2, 3) = K1

((

1 −
K3

K1

)

− cos(qya)e−iq
(p)
z a

)

e(p)
y

− iK1 sin(qya)e−iq
(p)
z ae(p)

z ,

M2p(p = 4, 5, 6) = K3 cos(qya)eiq
(p)
z ae(p)

y + iK3 sin(qya)eiq
(p)
z ae(p)

z ,

M3p(p = 0) = K1

(

2

(

1 −
K3

K1

)

− (cos(qxa) + cos(qya))eiq
(0)
z a

)

e(0)
z

− iK1 sin(qxa)eiq
(0)
z ae(0)

x − iK1 sin(qya)eiq
(0)
z ae(0)

y ,

M3p(p = 1, 2, 3) = K1

(

2

(

1 −
K3

K1

)

− (cos(qxa) + cos(qya))e−iq
(p)
z a

)

e(p)
z

− iK1 sin(qxa)e−iq
(p)
z ae(p)

x − iK1 sin(qya)e−iq
(p)
z ae(p)

y ,

M3p(p = 4, 5, 6) = K3(cos(qxa) + cos(qya))eiq
(p)
z ae(p)

z

+ iK3 sin(qxa)eiq
(p)
z ae(p)

x + iK3 sin(qya)eiq
(p)
z ae(p)

y , (4.103)

M4p(p = 0, 1, 2, 3) = K3 cos(qxa)e(p)
x − iK3 sin(qxa)e(p)

z ,
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M4p(p = 4, 5, 6) = K2

((

1 −
K3

K2

)

eiq
(p)
z a − cos(qxa)

)

e(p)
x

+ iK2 sin(qxa)e(p)
z ,

M5p(p = 0, 1, 2, 3) = K3 cos(qya)e(p)
y − iK3 sin(qya)e(p)

z ,

M5p(p = 4, 5, 6) = K2

((

1 −
K3

K2

)

eiq
(p)
z a − cos(qya)

)

e(p)
y

+ iK2 sin(qya)e(p)
z ,

M6p(p = 0, 1, 2, 3) = K3(cos(qya) + cos(qxa))e(p)
z − iK3 sin(qxa)e(p)

x

− iK3 sin(qya)e(p)
y ,

M6p(p = 4, 5, 6) = K2

(

2

(

1 −
K3

K2

)

eiq
(p)
z a − (cos(qxa) + cos(qya))

)

e(p)
z

+ iK2 sin(qxa)e(p)
x + iK2 sin(qya)e(p)

y .

The reflection and transmission coefficients are defined as Rli = |A1|2, Rt1i =

|A2|2, Rt2i = |A3|2, Tli = |A4|2, Tt1i = |A5|2, Tt2i = |A6|2, where Rni(n = l, t1, t2)

is the coefficient of reflection into nth mode and Tni(n = l, t1, t2) is the coefficient of

transmission into the nth mode. The coefficients satisfy the following conservation

rule

JI = JR +
m2

m1
JT , (4.104)

with

JI = !

(
1

2
∇kω

2
i

)

|A0|2,

JR = !

(
1

2
∇kω

2
Rn

)

|Rni|2, (4.105)

JT = !

(
1

2
∇kω

2
Tn

)

|Tni|2.

Figure 4.9 shows the values of the phonon reflection and transmission coefficients at

the interface between two FCC lattices for a particular choice of lattice parameters.
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Figure 4.9. Phonon reflection coefficients at the interface between two FCC lattices
with K3/K1 = 2, K3/K2 = 2 and m2/m1 = 1. Here ω′ = ω/

√

K/m1.

4.6 Discussion

In this chapter, we discuss the scattering of acoustic waves at several solid-solid in-

terfaces. Although there are some articles in the existing literature ([94], [95], [38])

which discuss the topic, we found most of them lacking a detailed description of the

method. Here, we provide a thorough prescription for calculation of reflection and

transmission of phonons at solid-solid model interfaces. Our discussion includes

examples from different dimensions: the interface between two one-dimensional

harmonic chains, the interface between two two-dimensional rhombic lattices, the

interface between two two-dimensional square lattices and lastly, the interface be-

tween two FCC lattices. We include two examples for the two-dimensional case to

show how the arrangements of atoms can influence the scattering of phonons at

interfaces. We obtain analytical expressions of phonon reflection and transmission

coefficients for the first three cases. The three-dimensional case is more complex

and involves analysis with transcendental functions. Here we present a method to

simplify the equations by converting them into simple algebraic equations. These
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Figure 4.10. Phonon transmission coefficients at the interface between two FCC lattices
with K3/K1 = 2, K3/K2 = 2 and m2/m1 = 1. Here ω′ = ω/

√

K/m1.

coefficients are consistent with the conservation relations and reproduce the famil-

iar forms in the continuum limit. The method we prescribed is quite general and

would be useful for application to other interfaces as well.



Chapter 5
Scattering of Phonon at Solid-Fluid

Interface: Kapitza Resistance

5.1 Introduction

The thermal resistance at the interface between two materials is known as Kapitza

resistance, named after Kapitza [27] who first observed that there exists a tem-

perature discontinuity at the interface between superfluid liquid helium, and other

metals. In this chapter, we continue to explore the scattering of phonons at inter-

faces. The focus of our discussion is the interface between a solid and a fluid. We

confine ourselves to the discussion of insulating solids only, where heat is mainly

transported by phonons. Also, our discussion includes only classical fluids. Scat-

tering of phonons at an interface, is the primary reason behind the presence of the

thermal boundary resistance. The resistance can be determined from the knowl-

edge of the phonon transmission and reflection coefficients at the interface.

The Young-Maris [38] theory for the thermal boundary resistance works well for

the interface between two solids. This theory is based on a microscopic harmonic

model of atom vibrations at an interface. Their model included the coupling

between all the phonon modes in the two crystals, on each side of the interface.

However, this model assumed perfect lattice matching of the two solids at the

interface. Pettersson and Mahan [39] extended the Young-Maris theory to apply

to all commensurate interfaces. We call this combined theory YMPM, which works
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quite well for clean interfaces. Our discussion in the last chapter about phonon

scattering at the interface between two FCC lattices, follows the outline described

in the Young-Maris theory.

However, the theory for the thermal boundary resistance between solid-fluid

interfaces has not progressed as much [96]. The only available theory is the acoustic

mismatch theory, which works poorly for solid-fluid interfaces. One reason is that

this theory only includes the long wavelength acoustic phonons. AMT theory

ignores the transverse excitations in the fluid. Transverse sound waves are shown

to exist in fluids at larger values of wave vector ([82], [97], [98]). The transverse

sound waves in a fluid are highly damped and totally diffusive at long wavelength.

However, these damped waves can diffuse through interfaces ([99], [100]), and they

can carry heat away from the interface. Hence the transverse sound waves can still

play a role in the thermal boundary resistance. This chapter presents a method of

extending the YMPM theory to the solid-liquid interface. We obtain the phonon

reflection and transmission coefficients at the solid-fluid interface, by coupling all

the phonon modes in the solid with all the sound wave modes in the fluid. We only

consider heat flow by sound waves or diffusion and ignore the case of convection.

We provide an application of the method to obtain the thermal boundary resistance

at the interface between solid Argon and liquid Neon.

5.2 Theory

In a solid, the heat flow along a unit normal vector n̂, can be expressed as:

JQ =
∑

λ

∫
d3q

(2π)3
!ωλ(q)n̂ · vλnB[ωλ(q)], (5.1)

where q is the wave vector of the phonon, λ represents the polarization of the

phonon, !ωλ(q) is the energy of the phonon, n̂ ·vλ is the component of the phonon

velocity along the direction n̂ and nB[ωλ(q)] is the Bose-Einstein occupation factor

for phonons at a temperature T . At high temperatures, the Bose-Einstein occu-

pation factor can be approximated as nB[ωλ(q)] ≈ kBT/!ωλ(q). The amount of
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heat transmitted across the interface, can then be written as,

JQT = kBTR

∑

λ

∫
d3q

(2π)3
n̂ · vλT , (5.2)

where T is the phonon transmission coefficient.

In thermal equilibrium, there can be no net heat flow across the interface if

the temperatures of the two sides are equal. According to the principle of detailed

balance, the number of phonons leaving one side, is the same as the number of

phonons returning from the other side with the same wavevector and polarization.

This principle enables us to calculate the net heat transfer across the interface from

the knowledge of the gross heat transfer from one side of the interface. The net

heat transfer would be simply the difference between the gross heat transfers at

the two incident phonon temperatures. The difference between the temperatures is

∆T . Hence, the Kapitza conductance can be found from the following expression

at high temperatures,

JQ = σ∆T

σ = kB

∑

λ

∫
d3q

(2π)3
n̂ · vλT (5.3)

The integral is evaluated only for the phonons with n̂ · vλ(q) ≥ 0. In a solid, the

number of phonons going toward the interface on an average would be the same

as the phonons going away from it. Hence, we can write

σ =
kB

2

∑

λ

∫
d3q

(2π)3
|n̂ · vλ| T . (5.4)

5.2.1 Phonons in solid

A cartoon of our system is shown in Fig. 5.1. The interface is marked by the

plane perpendicular to the z axis. The solid atoms are on the left of the interface

and are marked with circles. The fluid atoms are to the right of the interface and

are marked with squares. The atoms in the solid are assumed to be arranged in a

regular array. The distances to the neighboring atoms in the solid are represented

with the vector δs and that in the fluid are represented with δf . The distance
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Figure 5.1. Cartoon of solid-fluid interface. Solid atoms are on the left and fluids are
to the right. The interface is perpendicular to the z axis. Arrows denote the vectors
used in the following equations.

between a solid and a neighboring fluid atom near the interface is represented with

δ. We assume that the atoms in the solid undergo small displacements (Qsj) from

their equilibrium positions. The potential energy between the atoms in the solid

is

Vss =
1

2

∑

j,δs

K(δs)[δ̂s · (Qsj − Qs,j+δs)]
2, (5.5)

δs = R
(0)
sj − R

(0)
s,j+δs

(5.6)

where the spring constant K is bond directed. R
(0)
sj represents the equilibrium

positions of the atoms and δs are the distances to the neighboring atoms in various

directions. The equation of motion of an atom in the bulk of the solid, far from

the interface is given by

Msω
2Qj =

∑

δs

K(δs)δ̂sδ̂s · (Qsj − Qs,j+δs), (5.7)

where Ms is the mass of the solid atom and ω is the frequency of the phonon in

the lattice.
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5.2.2 Pair Distribution Function

In order to correctly evaluate solid-fluid and fluid-fluid interaction terms, we need

to take account of the fact that the positions of the fluid atoms change as they

move around. The information about the short-range correlations between the fluid

atoms are contained in the pair distribution function g(r). We consider uniform

systems, which implies that the pair distribution function in the bulk of the fluid, is

a function of the distance between the atoms only. Throughout the discussion, we

assume small displacements for both the solid and fluid atoms, so that Rs ≈ R
(0)
s

and Rf ≈ R
(0)
f . Within the bulk of the fluid, the probability of finding a fluid

atom at R
(0)
fm given that there is a fluid atom at R

(0)
fn , is given by g(|R(0)

fn −R
(0)
fm|).

The pair distribution function depends on the interaction potential between the

atoms and can be evaluated by the method described in Chapter 3.

The one-particle distribution function near the interface can be evaluated in

the following way: according to Percus [74], the one particle probability density

n(r|U) in the presence of an external potential U can be written as

n(r|U)eβU(r) =n(r) +

∫

d3r1F2(r, r1)
(

e−βU(r1) − 1
)

+
1

2

∫

d3r1

∫

d3r2F3(r, r1, r2)
(

e−βU(r1) − 1
) (

e−βU(r2) − 1
)

+ . . .

(5.8)

where F2,3 are the two and three particle Ursell functions, as defined in Eq. (3.6).

If we ignore three particle correlations (Fn = 0 for n ≥ 3), and use the relationship

between Ursell function and pair distribution function (following Eq. (3.17)), we

obtain the following expression for one particle distribution function in a uniform

system near an interface

g(r|Vsf )e
βVsf (r) ≈1 + n

∫

d3r1 [g(|r − r1|) − 1]
(

e−βVsf (r1) − 1
)

gsf (R
(0)
sj , R

(0)
fn) = g

((

R
(0)
fn − R

(0)
sj

)

|Vsf

(

|R(0)
fn − R

(0)
sj |

))

. (5.9)

gsf (R
(0)
sj , R

(0)
fn) is the probability that there is a fluid atom at R

(0)
fn provided that

there is a solid atom at R
(0)
sj .

As the fluid atom approaches the interface, the fluid pair distribution function
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changes because of the presence of the interface potential. We need to define the

pair distribution function for the fluid atoms near the interface in a different way

compared to the one for the bulk fluid atoms. We define gff (R
(0)
fn , R

(0)
fm) to be

the pair distribution function between the fluid atoms when both the atoms are

close to the interface. This function would depend on both the fluid-fluid and the

fluid-solid interaction potential. The expression for the two-particle probability

density n2(r1, r2|U) in the presence of an external potential U can be written as

n2(r1, r2|U)eβ[U(r1)+U(r2)] = n2(r1, r2) +

∫

d3r3F3(r1, r2, r3)
(

e−βU(r3) − 1
)

+
1

2

∫

d3r3

∫

d3r4F24(r1, r2, r3, r4)
(

e−βU(r3) − 1
) (

e−βU(r4) − 1
)

+ . . . (5.10)

where n2(r1, r2) = g(r1 − r2)n(r1)n(r2). The form of gff can be approximated as

gff (R
(0)
fn , R

(0)
fm) ≈ g(|R(0)

fn − R
(0)
fm|)e

−βVsf (R
(0)
fn )−βVsf (R

(0)
fm). (5.11)

5.2.3 Sound Wave Excitations in Fluid

The frequency spectrum for the sound waves in classical fluids in equilibrium, is

determined by the general expression ([101], [102]):

ω2
kλ =

kBT

Mf
(1+2ϵ̂kλ · ϵ̂k1)k

2 +
n

Mf

∫

drg(r)(1− exp(k · r))(ϵ̂kλ ·∇)2Vff (r), (5.12)

where Mf is the mass of the fluid atom, n is number density of the fluid and T

is the temperature of the fluid, respectively. Vff (r) is the interaction potential

between the fluid atoms and g(r) is the pair distribution function of the fluid in

bulk. ϵ̂kλ(λ = 1, 2, 3) represent the three orthogonal polarization vectors of the

sound waves in the fluid. The longitudinal one is given by

ϵ̂k1 =
k

|k|
. (5.13)

In general, the wave vectors for the sound wave excitations in fluid are complex.

The imaginary part of the wave vector contributes to damping and diffusion of

the sound waves. We assume that the fluid atoms are spherically symmetric and
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interact with each other via a central potential, Vff (r). For the sound waves

traveling in z-direction, the frequencies for the longitudinal and transverse modes

are given by:

ω2
l (k) = 3ω2

0 +
n

Mf

∫

d3rg(r)[1 − exp(ikz)]
∂2

∂z2
Vff (r) (5.14)

ω2
t (k) = ω2

0 +
n

Mf

∫

d3rg(r)[1 − exp(ikz)]
∂2

∂x2
Vff (r) (5.15)

ω2
0 = k2kBT

Mf
(5.16)

The term ω2
0 corresponds to the long range density fluctuations in the fluid. Assum-

ing that the fluid atoms undergo small displacements (qf ) from their equilibrium

positions (Rf ) during the propagation of the sound waves, we can expand the

interaction potential in a Taylor series

Vff (|Rfn − Rfm|) = V (|R(0)
fn − R

(0)
fm|) + (qfn − qfm) · Fff (|R(0)

fn − R
(0)
fm|) (5.17)

+
1

2
{Aff (R)(qfn − qfm)2 + Bff (R)[(qfn − qfm) · δ̂f ]

2},

where Aff (R) =
1

R

dVff

dR
, Fff (R) = δ̂fAff (5.18)

and Bff (R) =
d2Vff

dR2
− Aff (R), (5.19)

with δf = R
(0)
fn − R

(0)
fm, δ̂f =

δf

δf
. (5.20)

Here, Rfn and Rfm denote the equilibrium positions and qfn and qfm denote

the displacements of the nth and mth fluid atoms, respectively. The first-order

force term vanishes when we take the average over all the fluid atoms. Inserting

the approximate potential form (Eq. (5.17)) into the frequency expressions (Eqs.

(5.21), (5.15)) and evaluating the integrals in spherical polar coordinates we obtain

ω2
l (k) = 3ω2

0 +
4πn

Mf

∫

r2drg(r)

[

Aff (r)

(

1 −
sin(kr)

kr

)

(5.21)

+ Bff (r)

(
1

3
−

sin(kr)

kr
−

2 sin(kr)

(kr)2 +
sin(kr)

(kr)3

)]

,

ω2
t (k) = ω2

0 +
4πn

Mf

∫

r2drg(r)

[

Aff (r)

(

1 −
sin(kr)

kr

)

(5.22)
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+ Bff (r)

(
1

6
−

sin(kr)

2kr
−

sin(kr)

(kr)2 +
sin(kr)

(kr)3

)]

.

The equation of motion for an atom in the bulk of the fluid can then be written as

Mfω
2qfn =

∑

m

[Aff (δf )(qfn − qfm) + Bff (δf )δ̂f δ̂f · (qfn − qfm)]. (5.23)

5.2.4 Solid-Fluid Interaction Potential

The solid and the fluid subsystem is divided by an interface as shown in Fig.

5.1. The solid atoms are assumed to be arranged in locations Rsj = (ρj, zj). The

vectors ρj are parallel to the interface, and ẑ is perpendicular to the interface.

We consider the interface between a neutral solid and a neutral fluid subsystem.

Hence, the potential Vsf (r) acting between a solid and a fluid atom can be assumed

to be of short-range. The potential is assumed to be a central potential. We make

an assumption similar to the fluid system. The phonons in the solid and the

sound waves in the fluid, cause only small displacements of the interface solid and

fluid atoms. Hence, we can Taylor expand the interface potential around small

displacements,

Vsf (|Rsj − Rfm|) = V (|R(0)
sj − R

(0)
fm|) + (Qsj − qfm) · Fsf (|Q(0)

sj − R
(0)
fm|) (5.24)

+
1

2
{Asf (R)(Qsj − qfm)2 + Bsf (R)[(Qsj − qfm) · δ̂]2},

where Asf (R) =
1

R

dVsf

dR
, Fsf (R) = δ̂Asf (5.25)

and Bsf (R) =
d2Vsf

dR2
− Asf (R), (5.26)

with δ = R
(0)
sj − R

(0)
fm, δ̂ =

δ

δ
. (5.27)

The average force Fsf is not zero, since the fluid exerts some average pressure on

the surface of the fluid.
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5.2.5 Coupling Between Solid and Fluid

5.2.5.1 Excitations

The solid lattice is assumed to have only one atom in its unit cell. It has three

phonon branches: one longitudinal (l) and two transverse (t1, t2). When one of

these phonons is incident on the interface, either it is reflected or transmitted to

the fluid with some amplitude. We consider the phonons in the solid to approach

the interface from the side of negative z-axis. The incident phonon is labeled with

a subscript i. The frequency, polarization and wavevector of the incident phonon is

written as ω, êi and (k, ki), respectively. k = (kx, ky , 0) represents the component

of the wave vector parallel to the interface and ki is the component perpendicular to

the interface. The reflected waves would have same values of frequency ω, and the

parallel component of the wave vector k, but different perpendicular component

ksn and polarization êsn. n (= 1, 2, 3) denotes one longitudinal and two transverse

polarizations. The solid atoms are displaced by both the incident and reflected

waves. The displacement of a solid atom can be written as the linear combination:

Qsj = ei(k·ρj−ωt)

[

êie
ikizjIi +

n
∑

i=1

Rnêsne
−iksnzj

]

. (5.28)

Here, Ii is the amplitude of the incident wave and Rn is the amplitude of the

reflected wave. In general, the polarization vectors for the three reflected waves,

êsn are not mutually orthogonal.

The transmitted waves in the fluid have the same frequency ω and the same

parallel component of the wavevector k as the incident wave. However, the per-

pendicular component of the wavevector kfn and the polarization vectors êfn are

different. Here also, n = 1, 2, 3 represents the three polarization directions. The

displacement of a fluid atom can be written as

qfm = ei(k·ρfm−ωt)
n

∑

i=1

Tnêfne
ikfnzfm . (5.29)

Here, Tn is the amplitude of the transmitted wave.
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5.2.5.2 Boundary Matching

The boundary is marked by the plane z = 0. The solid atoms are assumed to lie at

the interface, where zj = 0. The equations of motion of these atoms contain force-

terms due to solid-fluid interaction along with the force-terms due to solid-solid

interaction:

Msω
2Qsj

︸ ︷︷ ︸

solid atom at z = 0

=
∑

δs

K(δs)δ̂sδ̂s · (Qsj − Qs,j+δs)
︸ ︷︷ ︸

solid atoms with z < 0

+
∑

m

[Asf (δ)(Qsj − qfm) + Bsf (δ)δ̂δ̂ · (Qsj − qfm)]
︸ ︷︷ ︸

fluid atoms with z > 0

(5.30)

with δs = R
(0)
sj − R

(0)
s,j+δs

and δ = R
(0)
sj − R

(0)
fm.

The summation over δs includes the neighboring atoms in the solid near the inter-

face while the summation over δ represents the atoms in the fluid that are near

the interface. We would refer to this equation as the solid interface-equation of

motion. Similarly, the equation of motion of the fluid atom near the interface has

force-terms due to both fluid-fluid and fluid-solid interaction,

Mfω
2qfn

︸ ︷︷ ︸

fluid atom with z≈0

=
∑

j

[Asf (δ)(qfn − Qsj) + Bsf (δ)δ̂δ̂ · (qfn − Qsj)]
︸ ︷︷ ︸

solid atoms with z<0

+
∑

m

[Aff (δf )(qfn − qfm) + Bff (δf )δ̂f δ̂f · (qfn − qfm)]
︸ ︷︷ ︸

fluid atoms with z>0

(5.31)

with δ = R
(0)
sj − R

(0)
fn and δf = R

(0)
fm − R

(0)
fn .

The summation over j is due to the atoms of the solid close to the fluid atom,

near the interface. The summation over m represents the interaction of the fluid

atom with other fluid atoms close by. We would refer to this equation as the fluid

interface-equation of motion.

5.2.5.3 Coupling Matrix: M

Due to the short-range of the solid-fluid interaction potential, we need to include

only the fluid atoms near the interface in Eq. (5.30). The one particle distribution
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r*(= r/σsf)
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One particle distribution 
function near surface, gsf
exp(-βUsf) -1
gsf*(exp(-βUsf)-1)

Figure 5.2. Determination of the position of fluid atom near the interface. Usf is the
interaction potential between two Lennard-Jones systems, solid Argon and fluid Neon.
The density and temperature of the fluid is given by n = 0.0239Å−3 and T = 54.345 K,
respectively.

function, gsf (r) provides the information about the position of the fluid atom in

the presence of an external potential. The solid-fluid interaction potential pro-

vides the range of interaction between the solid and the fluid atoms. Hence, gsf

combined with Vsf determines the cutoff for the position of the fluid atom near

the interface. The solid line in Fig. 5.2 represents the product between the one

particle distribution function and the function (e−βUsf − 1) for solid Argon-fluid

Neon interface and yields the cutoff for the position of the fluid atom near the

interface. We include only the fluid atoms with position within the region, where

this product function is non-zero, in our analysis.

Using the solid-fluid distribution function and the cutoff function, we replace

the force terms in Eqs. (5.30) and integrate over all possible positions of the fluid

atoms. We obtain for the solid interface-equation of motion

Msω
2Qsj

︸ ︷︷ ︸

solid atom at z = 0

=
∑

δs

K(δs)δ̂sδ̂s · (Qsj − Qs,j+δs)
︸ ︷︷ ︸

solid atoms with z < 0
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+n

∫

d3Rgsf (R
(0)
s ,R)(e−βUsf (|R

(0)
s −R|) − 1)[Asf (δ)I + Bsf (δ)δ̂δ̂] · (Qsj − q(R))

︸ ︷︷ ︸

fluid atoms with z>0

(5.32)

(with δ = R(0)
s − R).

We can reformulate this equation using the bulk-equation motion of the solid atom,

Eq. (5.7). The dispersion relation term in the LHS of the interface-equation can be

replaced by the RHS of the bulk-equation, Eq. (5.7), representing the summation

over all the atoms. The first term in the RHS of the interface-equation represents

the summation over the neighboring atoms in the solid, only on the left side of the

interface (z < 0). After subtracting, we get

∑

δs

K(δs)δ̂sδ̂s · (Qsj − Qs,j+δs)
︸ ︷︷ ︸

solid atoms with z > 0

= n

∫

d3Rgsf (R
(0)
s ,R)(e−βUsf (|R

(0)
s −R|) − 1)[Asf (δ)I + Bsf (δ)δ̂δ̂] · (Qsj − q(R))

︸ ︷︷ ︸

fluid atoms with z>0

(5.33)

Here the summation δs is over all the solid atoms, for which z > 0. This summation

is over the missing neighbors of the solid atom at the interface. It is useful to write

this way because we only need to consider the atoms with positive z-coordinates.

We set the origin of our coordinate system at the jth atom at the interface, R
(0)
s =

0 ⇒ R
(0)
s −R ≈ R and δ ≈ R. With this assumption, Eq. (5.33) can be modified

to

∑

δs

K(δs)δ̂sδ̂s · (Qsj − Qs,j+δs)
︸ ︷︷ ︸

solid atoms with z > 0

= n

∫

z>0

d3Rgsf (R)(e−βUsf (R) − 1)[Asf (R)I + Bsf (R)R̂R̂] · (Qsj − q(R)). (5.34)

Rearranging the above equation, and using the expression for the displacement of
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fluid atoms Eq. (5.29), we get

∑

δs

K(δs)δ̂sδ̂s · (Qsj − Qs,j+δs)
︸ ︷︷ ︸

solid atoms with z > 0

= M(0, 0) · Qsj −M(k, kz) · q(0), (5.35)

with M(0, 0) = n

∫

z>0

d3Rgsf (R)(e−βUsf (R) − 1)[Asf (R)I + Bsf (R)R̂R̂] (5.36)

and M(k, kz) · q(0) =
3

∑

n=1

M(k, kfn) · êfnTn

with M(k, kfn) = n

∫

z>0

d3Rgsf (R)(e−βUsf (R) − 1)

×[Asf (R)I + Bsf (R)R̂R̂]eik·ρ+ikfnz (5.37)

where I is the unit tensor and kfn are the wave vectors of the three transmitted

waves in fluid. We introduce the solid-fluid coupling matrix M; both M(0, 0)

and M(k, kz) are second rank tensors, we can write them in component form as

follows:

M(0, 0) = AI + B⊥(x̂x̂ + ŷŷ) + Bz ẑẑ, (5.38)

M(k, kfn) = MA(k, kfn)I + x̂x̂Mxx(k, kfn) + ŷŷMyy(k, kfn)

+ ẑẑMzz(k, kfn) + (x̂ŷ + ŷx̂)Mxy(k, kfn) (5.39)

+ (x̂ẑ + ẑx̂)MxzMyz(k, kfn) + (ẑŷ + ŷẑ)Myz(k, kfn),

where the different components of the M(0, 0) are given by:

A = 2πn

∫ ∞

0

dz

∫ ∞

0

ρdρgUsf(R)Asf (R),

B⊥ = πn

∫ ∞

0

dz

∫ ∞

0

ρdρgUsf (R)Bsf (R)
ρ2

ρ2 + z2
, (5.40)

Bz = 2πn

∫ ∞

0

dz

∫ ∞

0

ρdρgUsf (R)Bsf (R)
z2

ρ2 + z2
,

with gUsf (R) = gsf (R)(e−βUsf (R) − 1). (5.41)

The set of tensor elements (Mxx, Myy, Mzz, Mxy, Myz, Mxz) each has one term
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with Asf in the integrand and another term with Bsf in the integrand. Grouping

together similar terms, we can write

M(k, kfn) = MA(k, kfn)I + (x̂x̂ + ŷŷ)M0⊥(k, kfn) + ẑẑM0z(k, kfn)

− [(x̂x̂ − ŷŷ) cos(2φk) + (x̂ŷ + ŷx̂) sin(2φk)]M2⊥(k, kfn) (5.42)

+ i[(x̂ẑ + ẑx̂) cos(φk) + (ẑŷ + ŷẑ)i sin(φk)]M1(k, kfn)

where φk is the angle between the component of the wavevector parallel to the

interface and the x-axis, k = k[cos(φk), sin(φk)]. The different elements of the

tensor are given by

MA(k, kfn) = 2πn

∫ ∞

0

dz exp[ikfnz]

∫ ∞

0

ρdρgUsf (R)Asf (R)J0(kρ),

Ml⊥(k, kfn) = πn

∫ ∞

0

dz exp[ikfnz]

∫ ∞

0

ρ3dρgUsf (R)
Bsf (R)

R2
Jl(kρ), (5.43)

M0z(k, kfn) = 2πn

∫ ∞

0

z2dz exp[ikfnz]

∫ ∞

0

ρdρgUsf (R)
Bsf (R)

R2
J0(kρ),

M1(k, kfn) = 2πn

∫ ∞

0

zdz exp[ikfnz]

∫ ∞

0

ρ2dρgUsf (R)
Bsf (R)

R2
J1(kρ),

where J(kρ) are the Bessel functions of the first kind. The tensor M represents the

coupling of the phonons in the solid to the sound modes of the fluid. It has nonzero

tensor components that couple to longitudinal as well as transverse excitations in

the fluid and solid. M has the units of a spring constant.

5.2.5.4 Coupling Matrix: U , V

We can reformulate the interface-equation of motion of the fluid atom in a similar

way. Introducing the pair distribution functions, we obtain

Mfω
2qfn

︸ ︷︷ ︸

fluid atom with z≈0

=
∑

j

[Asf (δ)(qfn − Qsj) + Bsf (δ)δ̂δ̂ · (qfn − Qsj)]
︸ ︷︷ ︸

solid atoms with z<0

+n

∫

d3Rgff (R
(0)
fn ,R)[Aff (δf )(qfn − q(R)) + Bff (δf )δ̂f δ̂f · (qfn − q(R))]

︸ ︷︷ ︸

fluid atoms with z>0

(5.44)
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with δ = R
(0)
sj − R

(0)
fn and δf = R − R

(0)
fn .

Using the bulk-equation for dispersion of sound waves in fluid Eq. (5.23), we can

replace the LHS and obtain

n

∫

d3Rg(|R(0)
fn − R|)[Aff (δf )I + Bff (δf )δ̂f δ̂f ] · (qfn − q(R))

︸ ︷︷ ︸

fluid atoms with z<0

+n

∫

d3R(g(|R(0)
fn − R|) − gff (R

(0)
fn ,R))[Aff (δf )I + Bff (δf )δ̂f δ̂f ] · (qfn − q(R))

︸ ︷︷ ︸

fluid atoms with z>0

=
∑

j

[Asf (δ) + Bsf (δ)δ̂δ̂] · (qfn − Qsj)
︸ ︷︷ ︸

solid atoms with z<0

, (5.45)

where gff (R
(0)
fn ,R) is the pair distribution function of the fluid near the interface.

For simplicity, we assume that the pair distribution function of the fluid near

the interface do not differ much from the bulk pair distribution function, so that

g(|R(0)
fn −R|) ≈ gff (R

(0)
fn ,R) in the first approximation and the second term in the

LHS vanishes in the above equation. Hence, we have

n

∫

d3Rg(|R(0)
fn − R|)[Aff (δf )I + Bff (δf )δ̂f δ̂f ] · (qfn − q(R))

︸ ︷︷ ︸

fluid atoms with z<0

=
∑

j

[Asf (δ) + Bsf (δ)δ̂δ̂] · (qfn − Qsj)
︸ ︷︷ ︸

solid atoms with z<0

. (5.46)

In order to incorporate the effect of the changing position of the fluid atom, we

average over all the possible positions by multiplying both sides of the equation

with ngUsf (Rfn) and integrating with respect to Rfn. The modified equation

becomes

n2

∫

z>0

d3RfngUsf (Rfn)

∫

z<0

d3Rg(|Rfn − R|)

×[Aff (|Rfn − R|)I + Bff (|Rfn − R|)
(R − Rfn)2

|R − Rfn|2
] · (qfn − q(R))
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=
∑

j,z<0

n

∫

z>0

d3RfngUsf (Rfn) (5.47)

×[Asf (|Rfn − Rsj|) + Bsf (|Rfn − Rsj|)
(Rfn − Rsj)2

|Rfn − Rsj|2
] · (qfn − Qsj).

Renaming Rfn = R′and changing the variables from (R′, R) to (R′, R′ − R = r)

in the LHS of the above equation and from R′ to (R′ − Rsj = r) in the RHS, we

obtain

∑

Tnêfn ·
(

n2

∫

z>0

d3R′gUsf (R
′)

∫

all space

d3rg(r)

[Aff (r)I + Bff (r)r̂r̂] · (eikT .R′ − eikT .(R′−r))
)

(with kT = (k, kfn))

=
∑

j,z<0

n

∫

z>0

d3rgUsf (|r + Rsj|)[Asf (r)I + Bsf (r)r̂r̂] ·

(

∑

Tnêfne
ikT .(r+Rsj) − eik.ρsj

[

êie
ikizsjIi +

n
∑

i=1

Rnêsne−iksnzsj

])

. (5.48)

We assume that Rsj ≈ (0, 0, 0), the fluid atoms considered is closest to the solid

atom at the origin and obtain

∑

Tnêfn ·
(

n2

∫

z>0

d3R′gUsf (R
′)

∫

all space

d3rg(r)

[Aff (r)I + Bff (r)r̂r̂] · (eikT .R′ − eikT .(R′−r))
)

= n

∫

z>0

d3rgUsf (r)[Asf (r)I + Bsf (r)r̂r̂] ·
(

∑

Tnêfne
ikT .r −

[

êiIi +
n

∑

i=1

Rnêsn

])

. (5.49)

We can write the interface equation as

[U(k, kz) − V(k, kz)] · q(0) = M(k, kz) · q(0) −M(0, 0) · Qsj (5.50)

where, U and V are the fluid-solid coupling matrices

U(k, kfn) = n2

∫

z>0

d3R′gsf (R
′)(e−βUsf (R′) − 1)eikT .R′

∫

all space

d3rg(r)



103

×[Aff (r) + Bff (r)r̂r̂], (5.51)

V(k, kfn) = n2

∫

z>0

d3R′gsf (R
′)(e−βUsf (R′) − 1)eikT .R′

∫

all space

d3rg(r)

×e−ikT .r[Aff (r) + Bff (r)r̂r̂], (5.52)

and M’s are as defined before in Eq. (5.37). Both U and V are second-rank tensors

and as before, we can write them in component form as follows:

U(k, kz) = UA(k, kfn)I + U⊥(k, kfn)(x̂x̂ + ŷŷ) + ẑẑUz(k, kfn), (5.53)

V(k, kz) = VA(k, kfn)I + x̂x̂Vxx(k, kfn) + ŷŷVyy(k, kfn)

+ ẑẑVzz(k, kfn) + (x̂ŷ + ŷx̂)Vxy(k, kfn)

+ (x̂ẑ + ẑx̂)Vxz(k, kfn) + (ẑŷ + ŷẑ)Vzy(k, kfn), (5.54)

where the different components of the U(k, kfn) are given by:

UA = Isurface ×
(

2πn

∫ ∞

−∞

dz

∫ ∞

0

ρdρg(R)Aff(R)

)

,

U⊥ = Isurface ×
(

πn

∫ ∞

−∞

dz

∫ ∞

0

ρdρg(R)Bff(R)
ρ2

ρ2 + z2

)

, (5.55)

Uz = Isurface ×
(

2πn

∫ ∞

−∞

dz

∫ ∞

0

ρdρg(R)Bff(R)
z2

ρ2 + z2

)

,

with Isurface = 2πn

∫ ∞

0

dz′ exp[ikfnz
′]

∫ ∞

0

ρ′dρ′gsf (R
′)(e−βUsf (R′) − 1)J0(kρ′),

(5.56)

where J0(kρ) is the Bessel functions of the first kind. The set of tensor elements

(Vxx, Vyy, Vzz, Vxy, Vyz, Vxz) each has one term with Aff in the integrand and

another term with Bsff in the integrand. Grouping together similar terms, we can

write

V(k, kfn) = VA(k, kfn)I + (x̂x̂ + ŷŷ)V0⊥(k, kfn) + ẑẑV0z(k, kfn)

− [(x̂x̂ − ŷŷ) cos(2φk) + (x̂ŷ + ŷx̂) sin(2φk)]V2⊥(k, kfn) (5.57)

+ i[(x̂ẑ + ẑx̂) cos(φk) + (ẑŷ + ŷẑ)i sin(φk)]V1(k, kfn).
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where φk is the angle between the component of the wavevector parallel to the

interface and the x-axis, k = k[cos(φk), sin(φk)]. The different elements of the

tensor are given by

VA(k, kfn) = Isurface ×
(

2πn

∫ ∞

−∞

dz exp[−ikfnz]

∫ ∞

0

ρdρg(R)Aff(R)J0(kρ)

)

,

Vl⊥(k, kfn) = Isurface ×
(

πn

∫ ∞

−∞

dz exp[−ikfnz]

∫ ∞

0

ρ3dρg(R)
Bff(R)

R2
Jl(kρ)

)

,

(5.58)

V0z(k, kfn) = Isurface ×
(

2πn

∫ ∞

−∞

z2dz exp[−ikfnz]

∫ ∞

0

ρdρg(R)
Bff (R)

R2
J0(kρ)

)

,

V1(k, kfn) = Isurface ×
(

−2πn

∫ ∞

−∞

zdz exp[−ikfnz]

∫ ∞

0

ρ2dρg(R)
Bff (R)

R2
J1(kρ)

)

.

The tensor U and V determine the coupling of the sound modes in the fluid. Both

of them have the units of a spring constant.

Eq. (5.35) and Eq. (5.50) are the two key equations of this chapter. Each

of these two equations is a vector equation with three components, and the six

equations form a 6× 6 set of linear equations. The six equations can be expressed

in matrix form as

3
∑

n=1

CpnRn +
6

∑

n=4

CpnTn = Cp0Ii, p = 1, . . . 6. (5.59)

The coefficients Cpn are given in Appendix B. There are six unknown amplitudes

(Rn, Tn) as introduced in Eq. (5.28) and Eq. (5.29), respectively. These are the two

key equations that help us determine the solution for these unknown amplitudes.

The values for the transmission amplitudes yield the transmission coefficient T ,

given by

T =

∣
∣
∣
∣

Tn

Ii

∣
∣
∣
∣

2

, (5.60)

where n is the index of polarization. We insert the values of the transmission

coefficients into the equation for Kapitza conductance Eq. (5.4), to calculate the

thermal boundary conductance at the solid-fluid interface.
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5.3 Method and Results

5.3.1 Solid Phonon Modes

We consider a FCC lattice of solid Argon, the interface is marked by the (001) plane

of atoms. The lattice constants for Argon is given by 5.31Å. The lattice has one

atom in the unit cell. The atoms of mass Ms in the lattice, are connected to their

12 nearest neighbors by springs of stiffness K1 and to their 6 next-nearest neighbors

by springs of stiffness K2. The spacing between nearest neighbors is a/
√

2. The

directional vectors connecting these neighbors are given by δ1 = {a
2(±1,±1, 0),

a
2(±1, 0,±1),a

2(0,±1,±1)} and δ2 = {a(±1, 0, 0),a(0,±1, 0),a(0, 0,±1)}, respec-

tively. The solution for the equation of motion for the solid atom in the bulk Eq.

(5.7) is assumed of the form

Qsj = ê exp i (k.r − ωt) , (5.61)

where ê is the polarization vector, k is the wave vector and ω is the frequency of

the phonon. Substitution of the solution Eq. (5.61) into the equation of motion

Eq. (5.7) yields,

Dê = ω2ê (5.62)

where the dynamical matrix D is given by

D =
K1

Ms
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2X + 4 − 2X cos(2θx)

−2 cos(θx) cos(θy)

−2 cos(θx) cos(θz)

2 sin(θx) sin(θy) 2 sin(θx) sin(θz)

2 sin(θx) sin(θy)

2X + 4 − 2X cos(2θy)

−2 cos(θx) cos(θy)

−2 cos(θy) cos(θz)

2 sin(θy) sin(θz)

2 sin(θx) sin(θz) 2 sin(θy) sin(θz)

2X + 4 − 2X cos(2θz)

−2 cos(θx) cos(θz)

−2 cos(θy) cos(θz)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(5.63)
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Figure 5.3. Phonon modes in solid Argon along the different symmetry lines of the
FCC lattice. Experimental data taken from Fujii et al [8].

Here θi ≡ kia, X ≡ K2
K1

. The eigenvalue equation Eq. (5.62) has a solution if the

secular determinant of the dynamical matrix vanishes,

∣
∣D − ω2I

∣
∣ = 0. (5.64)

For given values of the wave vector k, the above equation Eq. (5.64) is solved for

the roots of ω2. We equate the calculated values of ω at the different symmetry

points to the experimentally measured values, to solve for the spring constants K1

and K2. The value of K2 is found to be almost negligible. Hence, it is sufficient

to consider the nearest neighbor interactions only for this lattice. The value for

!
√

K1/Ms is found to be 3.00 meV. The details of the evaluation are given in

Appendix-A. In Fig. 5.3, the theoretically obtained values are shown with exper-

imentally measured values for the phonon frequencies along the symmetry lines.

The agreement between the two sets of values show that, it is sufficient to consider

the nearest-neighbor interaction to obtain the phonon dispersion in inert gas solids

.
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σ(Å) ϵ(K)

Ne-Ne [103] 2.740 36.23
Ne-Ar [104] 3.083 64.50

Table 5.1. Lennard-Jones parameters for Ne-Ne and Ne-Ar interaction potential ener-
gies.

5.3.2 Fluid Distribution Functions

We consider the interaction potential between the fluid atoms and also between a

solid and a fluid atom to have the Lennard-Jones form (Eq. (3.36)),

V (r) = 4ϵ

(
σ12

r12
−

σ6

r6

)

.

We chose liquid Neon as the fluid sharing boundary with solid Argon. The pa-

rameters for Lennard-Jones potential of these systems are shown in Tab. 5.1. The

dimensionless variables the solid-fluid systems are scaled with respect to the these

parameters in the following way:

r∗ =
r

σsf
, k∗ = kσsf ; σsf ⇒ σNe-Ar

n∗ = nσ3
sf , T ∗ = kBT

ϵsf
. (5.65)

Under normal pressure, Neon remains liquid only for a very narrow temperature

range, 24.56K - 27.07K. This puts some constraint over the choice of the temper-

ature for the solid-fluid system. It turns out that the choice of the density and

temperature for the liquid Neon, which would enable us to evaluate the pair dis-

tribution function described in Chapter 3, is given by n = 0.0239 Å
−3

and T =

54.345 K. Argon remains solid at this temperature. For this choice of parameters,

the pair distribution function obtained using the method described in Chapter 3

is shown in Fig. 5.4.

5.3.3 Interface

When a phonon is incident on the interface, it generates three reflected and three

transmitted waves, in general. The values of the wavevectors for the incident

phonons are generated at random. If the randomly generated point is close to one



108

0 1 2 3 4 5 6

r* = r/σNeAr

0

0.5

1

1.5

2

Pa
rti

cl
e 

D
ist

rib
ut

io
n 

Fu
nc

tio
n

g(r*|U)
g(r*)

σNe = 2.74 Å, εNe = 36.23 K

σsf  = 3.09 Å, εsf = 64.5 K

n = 0.0239 Å-3, T = 54.345 K

Figure 5.4. Particle distribution functions for the solid Argon- fluid Neon system. The
dashed curve represents the pair distribution function for fluid Ne atoms in the bulk,
evaluated using the method described in Chapter 3. The solid curve represents the one
particle distribution function for Ne atoms near the solid Argon interface, evaluated
using Eq. (5.9). The length variable is scaled with respect to σNe-Ar.

Figure 5.5. The distribution of incident wavevectors in the first Brillouin zone. Here
θi = kia.
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of the symmetry points of FCC lattice, we disregard that point. Figure 5.5 shows

the distribution of the selected 1000 points in the first Brillouin zone.

The incident phonon, the reflected phonons and the transmitted sound waves

share the same frequency and the same values for the parallel component of the

wave vector. This fact is used to obtain the wave vector for the reflected waves

using the values of the phonon frequencies shown in Fig. 5.3.

In order to obtain the perpendicular component of the wave vectors ksn for

the reflected phonons, we solve Eq. (5.64) for given values of the frequency ω and

the parallel components of the wavevectors, kx and ky. Numerical solution of Eq.

(5.64) is difficult in a significant fraction of cases and usually requires large amount

of computation time. We transform Eq. (5.64) into an algebraic equation that can

be solved easily. To carry out the transformation we define

X = 2 cos(θx), Y = 2 cos(θy), Z = exp(iθz), (5.66)

and Ω =
2Msω2

K
− 8. (5.67)

After some algebra, Eq. (5.64) can be written in the form

C3Z
6 + C2Z

5 + C1Z
4 + C0Z

3 + C1Z
2 + C2Z + C3 = 0, (5.68)

where,

C3 = 4(X + Y ),

C2 = (8 + 3XY )Ω + 8XY + 32 − 8(X2 + Y 2) + 4X2Y 2,

C1 = 2(X + Y )Ω2 + 3XY (X + Y )Ω + 8XY (X + Y )

− 20(X + Y ) + 4(X3 + Y 3),

C0 = Ω3 + 2XY Ω2 + 8(X2 + Y 2 − 4)Ω + 6XY Ω

+ 4(X2 + Y 2)XY − 16XY + 16(X2 + Y 2) − 64.

For each root Zl (l = 1, . . . 6), there is a corresponding root 1/Zl. We found

that most of the roots are real, but some of them have a non-zero imaginary

part. We choose the roots with positive imaginary part. The waves with real ksn

reflects of the interface and can carry the heat away from the interface. The waves

with complex ksn do not carry heat away from the interface, but we still include
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them to satisfy the boundary conditions. Using the roots for ksn, we solve for the

eigenvectors in Eq. (5.62), which are the polarization vectors for these reflected

waves.

The wave vectors for the transmitted sound waves in the fluid are found out

using the dispersion relations for sound waves in fluid, Eq.s (5.14) and (5.15) in the

following way. The dispersion relations are given by integral equations and it is

very computationally expensive to solve these integral equations for wave vectors

for given values of ω. We take the following approach to work around the problem.

For small values of k, we used the approximation (1− exp(ikz)) ≈ k2z2

2 and solved

the integrals

ω2
l (k) = 3ω2

0 +
nk2

2Mf

∫

d3rg(r)z2 ∂2

∂z2
Vff (r) (5.69)

ω2
t (k) = ω2

0 +
nk2

2Mf

∫

d3rg(r)z2 ∂2

∂x2
Vff (r) (5.70)

ω2
0 = k2kBT

Mf
.

For intermediate values of k, the frequency values for the sound modes are obtained

for a range of k values using the dispersion relations (Eq.s (5.14) and (5.15)),

as shown in Fig. 5.6. The functions ωl(k) and ωt(k) are then approximated as

polynomials in k:

ω(k) =
m

∑

p=1

αpk
p,

and αp’s are obtained by fitting the curves shown in Fig. 5.6. We kept the terms

till p = 6, to obtain a satisfactory fit, and the two functions are joined smoothly

to obtain functional forms for ω for all ranges of k. These functional forms are

used to evaluate the wavevectors for given values of ω. Note that k here represents

the norm of the full wavevector, k =
√

k2
x + k2

y + k2
z . The z-component of the

wavevector for the transmitted waves are then calculated using given values of

kx and ky, kz(l or t) =
√

k2
(l or t) − k2

x − k2
y. The polarization vectors for the sound

modes are constructed in the following way:

êl =
(kx, ky, kzl)

√

k2
x + k2

y + k2
zl

, , êt1 =
(−ky, kx, 0)
√

k2
x + k2

y

, êt2 =
(−kxkzt,−kykzt, k2

x + k2
y)

√

k2
x + k2

y + k2
zt

√

k2
x + k2

y

. (5.71)
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and T = 54.345K.

Using the form of the Lennard-Jones potential Eq. (3.36), parts of the integrals

in the different elements of the tensors M, U and V can be evaluated analytically.

The rest of the integration is performed numerically using MATLAB. The matrix

equations Eq. (5.35) and Eq. (5.50) are solved to obtain the phonon reflection

and transmission coefficients at the solid-fluid interface. The phonon transmission

coefficients for different polarizations are shown in Fig. 5.7. The distribution for

the group velocities are shown in Fig. 5.8. Using these values in Eq. (5.4), we

obtain the value for Kapitza conductance for solid Argon-fluid Neon interface to

be σ = 0.0374GW/K m2.

5.4 Summary

We develop a method to estimate the thermal boundary resistance at a neutral

solid-fluid interface. The resistance is obtained by calculating the phonon trans-

mission coefficients at the solid-fluid interface. We consider the coupling between

the phonons in the solid and sound wave excitations in the fluid to obtain the trans-

mission coefficients. We consider both longitudinal and transverse sound modes

in fluid. The sound wave dispersion in classical fluids can be evaluated from the

knowledge of the pair distribution function in the bulk. We used the approximate
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integral theories to obtain the bulk pair distribution function of the fluid. As we

discussed in Chapter 3, these methods can yield accurate results only when the

thermodynamic parameters of the system is within a specific region. We have

chosen the density and temperature of the fluid such that these method can give

stable results. We have chosen the fluid-fluid and solid-fluid interactions to be of

the form of the Lennard-Jones interaction potential.

When a phonon of arbitrary polarization is incident on the interface from the

solid side, it generates three reflected and three transmitted waves. The boundary

condition imposes the constraint that the frequency (ω) and the component of

the wavevector parallel to the interface (k∥), is conserved for all the waves. The

only parameter that changes is the component of the wavevector perpendicular

the interface, k⊥. The k⊥values for the reflected waves are obtained by solving

the dynamical matrix for given values of ω and k∥. Some of the roots were imagi-

nary, which means that the waves are damped. We chose the roots with positive

imaginary part. The polarization vectors for these damped waves are also imagi-

nary. The k⊥ values for the transmitted waves are calculated from the dispersion

relations for sound waves in fluids.

The k⊥roots and the polarization vectors are used to obtain the equations of

motion for the solid and the fluid atoms near the interface. The two coupled equa-

tions of motion for the interface atoms, Eq. (5.35) and Eq. (5.50), can be solved

to evaluate the reflection and transmission amplitudes for the different modes at

the interface. The values for these amplitudes give the transmission coefficients

T . When we insert the values of these transmission coefficients into the equation

for Kapitza conductance, Eq. (5.4), we obtain an estimate for the thermal bound-

ary conductance. The Kapitza conductance for solid Argon-fluid Neon interface is

found to be σ = 0.0374GW/K m2 using the method we described here.



Appendix A
Determination of the Spring

Constants for FCC Argon

The dynamical matrix D, for an FCC lattice with lattice constant a and nearest

neighbor distance a/
√

2 is given by (Eq.(5.63))

D =
K1

Ms
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2X + 4 − 2X cos(2θx)

−2 cos(θx) cos(θy)

−2 cos(θx) cos(θz)

2 sin(θx) sin(θy) 2 sin(θx) sin(θz)

2 sin(θx) sin(θy)

2X + 4 − 2X cos(2θy)

−2 cos(θx) cos(θy)

−2 cos(θy) cos(θz)

2 sin(θy) sin(θz)

2 sin(θx) sin(θz) 2 sin(θy) sin(θz)

2X + 4 − 2X cos(2θz)

−2 cos(θx) cos(θz)

−2 cos(θy) cos(θz)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(A.1)

Here θi ≡ kia. Below are the dynamical matrices and the roots for the phonon

frequencies at some of the symmetry points of the FCC lattice:

symmetry point X =
π

a
(1, 0, 0) → θ = (π, 0, 0),
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D =

⎡

⎢
⎢
⎣

8 0 0

0 4 0

0 0 4

⎤

⎥
⎥
⎦

⇒ ω =

√

8K1

M
,

√

4K1

M
,

√

4K1

M
(A.2)

symmetry point K =
π

a
(
3

4
,
3

4
, 0) → θ = (

3π

4
,
3π

4
, 0),

D =

⎡

⎢
⎢
⎣

2K2
K1

+ (3 +
√

2) 1 0

1 2K2
K1

+ (3 +
√

2) 0

0 0 4 + 2
√

2

⎤

⎥
⎥
⎦

⇒ ω =

√

(4 +
√

2)K1 + 2K2

M
,

√

(2 +
√

2)K1 + 2K2

M
,

√

2(2 +
√

2)K1

M
(A.3)

symmetry point L =
π

a
(
1

2
,
1

2
,
1

2
) → θ = (

π

2
,
π

2
,
π

2
),

D =

⎡

⎢
⎢
⎣

4K2
K1

+ 4 2 2

2 4K2
K1

+ 4 2

2 2 4K2
K1

+ 4

⎤

⎥
⎥
⎦

⇒ ω =

√

4(2K1 + K2)

M
,

√

2(K1 + 2K2)

M
,

√

2(K1 + 2K2)

M
(A.4)

Comparison with experimentally measured values yield:

X:!
√

8K1
M = 8.320 ⇒ !

√

K1
M = 2.942 ; !

√

4K1
M = 5.880 ⇒ !

√

K1
M = 2.940

L:!
√

4(2K1+K2)
M = 8.350,

√

2(K1+2K2)
M = 3.970, ⇒ !

√

K1
M = 3.090, K2

K1
= −0.0583

The average value of !

√

K1
M = 3.00 meV and the value of the next-nearest

neighbor spring constant is taken to be zero.



Appendix B
Coefficient List for Solid-Fluid

Coupling Matrix Equations

The coefficients Cpnfor the three reflected waves (n = 1, 2, 3) are

C1n = K
[(

1 − (cos(kxa) exp(−ik(n)
z a))

)

e(n)
x − i sin(kxa) exp(−ik(n)

z a)e(n)
z

]

−M(0, 0) [1, 1] e(n)
x ,

C2n = K
[(

1 − (cos(kya) exp(−ik(n)
z a))

)

e(n)
y − i sin(kya) exp(−ik(n)

z a)e(n)
z

]

−M(0, 0) [2, 2] e(n)
y ,

C3n = K
[

−i sin(kxa) exp(−ik(n)
z a)e(n)

x − i sin(kya) exp(−ik(n)
z a)e(n)

y

+
(

2 − ((cos(kxa) + cos(kya)) exp(−ik(n)
z a))

)

e(n)
z

]

−M(0, 0) [3, 3] e(n)
z ,

C4n = M(0, 0) [1, 1] e(n)
x ,

C5n = M(0, 0) [2, 2] e(n)
y ,

C6n = M(0, 0) [3, 3] e(n)
z . (B.1)

The coefficients for the incident wave are (n = 0)

C10 = −K
[(

1 − (cos(kxa) exp(ik(0)
z a))

)

e(0)
x − i sin(kxa) exp(ik(0)

z a)e(0)
z

]

+ M(0, 0) [1, 1] e(0)
x ,

C20 = −K
[(

1 − (cos(kya) exp(ik(0)
z a))

)

e(0)
y − i sin(kya) exp(ik(0)

z a)e(0)
z

]

+ M(0, 0) [2, 2] e(0)
y ,
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C30 = −K
[

−i sin(kxa) exp(ik(0)
z a)e(0)

x − i sin(kya) exp(ik(0)
z a)e(0)

y

+
(

2 − ((cos(kxa) + cos(kya)) exp(ik(0)
z a))

)

e(0)
z

]

+ M(0, 0) [3, 3] e(0)
z ,

C40 = M(0, 0) [1, 1] e(0)
x ,

C50 = M(0, 0) [2, 2] e(0)
y ,

C60 = M(0, 0) [3, 3] e(0)
z . (B.2)

The coefficients Cpnfor the three transmitted waves (n = 4, 5, 6) are

C1n = M(k, kfn) [1, 1] e(n)
x + M(k, kfn) [1, 2] e(n)

y + M(k, kfn) [1, 3] e(n)
z ,

C2n = M(k, kfn) [2, 1] e(n)
x + M(k, kfn) [2, 2] e(n)

y + M(k, kfn) [2, 3] e(n)
z ,

C3n = M(k, kfn) [3, 1] e(n)
x + M(k, kfn) [3, 2] e(n)

y + M(k, kfn) [3, 3] e(n)
z ,

C4n = (U(k, kfn) [1, 1] − V(k, kfn) [1, 1] −M(k, kfn) [1, 1]) e(n)
x

+ (−V(k, kfn) [1, 2] −M(k, kfn) [1, 2]) e(n)
y

+ (−V(k, kfn) [1, 3] −M(k, kfn) [1, 3]) e(n)
z ,

C5n = (−V(k, kfn) [2, 1] −M(k, kfn) [2, 1]) e(n)
x

+ (U(k, kfn) [2, 2] − V(k, kfn) [2, 2] −M(k, kfn) [2, 2]) e(n)
y

+ (−V(k, kfn) [2, 3] −M(k, kfn) [2, 3]) e(n)
z ,

C6n = (−V(k, kfn) [3, 1] −M(k, kfn) [3, 1]) e(n)
x

+ (−V(k, kfn) [3, 2] −M(k, kfn) [3, 2]) e(n)
y

+ (U(k, kfn) [3, 3] − V(k, kfn) [3, 3] −M(k, kfn) [3, 3]) e(n)
z . (B.3)
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