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Abstract

This paper uses spatial empirical methods to detect and analyze trade patterns in a historical

data set on Chinese rice prices. Our results suggest that spatial features were important for the

expansion of interregional trade. Geography dictates, first, over what distances trade was possible

in different regions, because the costs of ship transport were considerably below those for land

transport. Spatial features also influence the direction in which a trading network is expanding.

Moreover, our analysis captures the impact of new trade routes both within and outside the

trading areas.
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1 Introduction

Geography exerts a major influence in many economic areas. Trade declines with geographic distance,

and per-capita incomes vary with climatic conditions, for instance, see Anderson and van Wincoop

2004, and Sachs 2003, respectively. But does geography–mineral deposits, soil quality, or rivers,

say–immediately determine how rich people are, or is the impact of geography on the choice sets

of economic agents more indirect?1 Does geography influence also long-run outcomes, as some have

claimed (Diamond 1997)? And will the influence of geography be lower in the future than it has

been in the past?

In an attempt to shed new light on these questions, we study how geography guides the

evolution of interregional trade patterns in 18th century China. Recent research has highlighted the

general importance of interregional trade during this period. Geographic factors, in particular local

climate and access to relatively low-cost ship transport, were important determinants of interregional

trade (Perkins 1969, Chuan and Kraus 1975, Wang 1989, and Shiue 2002). Analyzing the evolu-

tion of this trade empirically, we contend, can provide valuable insights on comparative economic

development in China and elsewhere.

This paper studies interregional trade by examining the spatial pattern of rice price differ-

ences in 121 Chinese prefectural markets between the years 1742 to 1795. It puts the paper into the

well-established literature that uses price data to look at trade (Engel and Rogers 1996, O’ Rourke

and Williamson 2000, and Slaughter 2001). At the same time, we emphasize the geographic features

underlying these price differences by using information on the actual geography of China (climate,

topography) and Geographic Information System-based spatial empirical methods (Cliff and Ord

1981, Anselin 2002, 1988).2

1Cronon (1991) has called this first-nature and second-nature geography, respectively.
2See e.g., Case (1991), Kelejian and Robinson (1992), and Anselin, Varga, and Acs (1997) for other recent work
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Our results suggest that spatial features have shaped the expansion of interregional trade.

First, geography dictates the distance over which trade was possible in different regions. Second,

because in addition to distance our methods track the spatial position of one region relative to all

others, we can also capture the direction a trading network is most likely to expand.3 Overall, we

think that using spatial methods gives a much clearer picture of the evolution of interregional trade.

Geography not only affects the costs of interregional trade, but also the autarky prices in

different regions. Specifically, the relative price of rice under autarky is determined by the relative

abundance of arable land (Heckscher 1919 and Ohlin 1924), and trade will tend to equalize prices

and factor returns across regions (e.g., O’Rourke, Taylor, and Williamson 1996). We suspect that

this effect was present in 18th century China too, although there is little systematic data that we can

use to confirm this point. The main focus of this paper is to consider the role of spatial dependence

when drawing inferences about price formation and trade in geographic space.

The question is fundamental to related work on the extent to which geography affected trade costs,

and thus trading possibilities, and whether these differences could trigger different development paths

across regions. For example, trade might facilitate technological innovations through learning, which

could give some regions earlier access to new transport technologies than other regions.4 In addition,

trade may be associated with institutional innovations and information sharing within a network of

traders.5

The remainder of the paper is as follows. Section 2 describes the characteristics and sources of

that has used spatial empirical methods.
3Quah (2002) and Quah and Simpson (2003) emphasize the importance of capturing relative spatial position as

well. These authors, as well as Hanson (2001), also suggest that the recent literature on agglomeration driven by scale
economies might benefit from incorporating more spatial elements.

4Along these lines, Mokyr (1990, 134) emphasizes the importance of trade primarily insofar as it contributes to the
diffusion of technological knowledge; Keller (2004) discusses some of the more recent evidence.

5North and Thomas (1973, 12) note that trade goes hand-in-hand with institutional innovation, while Williamson
(2000, 599-600) emphasizes that ex-ante mutually beneficial trade often shapes ex-post institutional outcomes. Infor-
mation sharing among traders may also act as a monitoring device in the absence of legally enforceable contracts (Greif
1989).
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the data and gives summary statistics. Section 3 examines the spatial autocorrelation of prices both

globally as well as locally. The spatial econometric results are presented in section 4, and section 5

provides the concluding discussion. Additional background on the data is given in the appendices.

2 Data

2.1 Characteristics and sources

The geographic area studied in this paper consists of 10 out of a total of 18 core provinces of China;

these provinces are Anhwei, Fujian, Guangdong, Guangxi, Guizhou, Hubei, Hunan, Jiangsu, Jiangxi,

and Zhejiang. The area is situated in the center and south-east of the country, and includes some of

the most agriculturally fertile areas, some of the most developed areas, as well as some poorer areas.

The ten provinces were selected on the basis that they all produced rice as a major grain crop in the

period under analysis. Figure 1 shows the sample area within the borders of contemporary China.

The provinces have retained a basic correspondence to their historical geographic positions.

The 10 provinces in the sample are made up of 121 largely contiguous prefectures that we can

identify on historical maps. There are between ten to fourteen prefectures in each province, and

on the next-lower administrative level, about eighty counties; a limited number of independent

administrative units are not included in the sample. In comparison with the contemporaneous

United States of America, the province is most closely analogous to the state (the average U.S. state

has about sixty-five counties). Figure 2 gives a map of the prefectures and the boundaries of the ten

provinces that are the focus of the analysis.

This paper uses weather and price data for 1742-1795 from the 121 prefectures. Systematic rainfall

recording began as early as the Tang Dynasty (618-907 A.D.), and from at least the 17th century,

during the reign of the Qing Dynasty (1644 to 1911), the collection of rainfall and weather reports
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at the county level had become standard government practice (Wilkinson 1969). The reporting of

prices of the major grains and different grades of rice was also required at a minimal frequency of

once a month. The prices recorded were selling prices of grains in each of the city markets, given in

the standard accounting unit of taels (silver currency) per bushel. It is generally believed that the

grain prices closely correspond to market prices (Chuan and Kraus 1975).

The county level price reports were sent to the prefectural level, where the highest and the lowest

price observed in a particular lunar month were recorded and compared with the highest and lowest

observed in the previous month. These reports are provided in the Gongzhong liangjiadan [Grain

Price Lists in the Palace Archives of the Number One Historical Archives in Beijing]. The series we

use consists of the 2nd and 8th months from 1742-1795.6 The recorded price is for mid-quality rice

in all prefectures; there is no indication that there are in fact substantial quality differences across

prefectures.

Historical weather data is from the State Meteorological Society (1981), which gives information

on weather for each year for locations throughout China. The sample we construct is created by

pinpointing the location of prefectures on the weather maps in this source. The variable denoted

dryness is a discrete indicator of the degree of “wetness and aridity”, from floods, droughts, mon-

soons, or rainfall. Bad weather ranks are 1 and 5 (exceptional drought and flood), fair weather

ranks are 2 and 4 (limited drought and flood), and good weather is rank 3 (favorable conditions).

From the data on dryness, we have also constructed two additional weather variables, wdev, which

measures the deviation from good weather (wdev = |dryness− 3|), and bad weather (dryness = 1

or 5). Appendix B provides additional details on the weather data.

6Because of missing values, we estimate parts of the data; see Appendix A.
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2.2 Summary statistics

The location of the prefectures can be described using Geographic Information System (GIS) data,

which we employ below. Table 1 reports the prefectures’ longitude and latitude, by province. The

North-South axis is spanned by Jiangsu and Guangdong provinces (latitudes of about 32 and 23,

respectively), whereas the West-East range is given by Guizhou and Zhejiang (longitudes of about

107 and 120, respectively). The area of analysis is approximately 1600 kilometers by 1100 kilometers

(km). In our analysis, the longitude and latitude of the capital city of each prefecture is used to

measure Euclidean distance between prefectures. This distance ranges from about 10 to 1730 km in

our sample.

Table 2 presents summary statistics on the mid-, lowest and highest prefectural price by province.7

There are a total of 13,068 observations, corresponding to two monthly (2nd and 8th month) ob-

servations for 54 years and 121 prefectures. There is a substantial amount of variation, with the

mid-price ranging on average from a minimum of 0.722 to a maximum of 2.306 taels across the 54

years, and a standard deviation of 0.310.8 Across provinces, the mean ranges from a low of 0.972

in Guizhou to a high of 1.794 in Jiangsu. In general prices in inland regions are lower than on the

coast.

Table 3 shows how the weather, a key determinant of the quality of the harvest and hence

agricultural output, varies across regions. On average, prices are lowest at dryness = 3 (i.e., normal

conditions). The variable bad weather indicates that the prefectures of Fujian province experience

exceptional floods or droughts (mostly floods, related to monsoons) in about 17% of the years, for

instance, whereas among the prefectures in Guangxi this occurs in only about 4% of the years. Inland

7The souce contains high and low prices. The mid-price is constructed. We also report results based on the low and
high prices instead of mid-prices below. See Appendix A for additional details.

8This, as well as the other statistics presented in Tables 2 to 6, is based on the assumption of independence. Note, for
example, that this will underestimate the true variability in the presence of positive spatial or temporal autocorrelation.
We estimate the extent of spatial as well as temporal autocorrelation in section 4.
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areas tend towards relatively low weather variability. The table also indicates that for the sample as

a whole exceptional drought and flood occurs in about 10% of all years (last row).

Tables 4 and 5 provide the major temporal trends by reporting averages of the annual price and

weather statistics over three 18-year periods, namely, 1742/59, 1760/77, and 1778/95. Over the

entire period, Table 4 shows that prices in the entire sample rose from about 1.33 to 1.48, or an

average of 0.2% per year, and the rate of price increase is somewhat higher in the later years. With

the exception of Guizhou province, all provinces experienced a slight price increase over time. The

table also suggests that the 2nd and 8th month prices behave not too differently, which allows us to

focus largely on the 8th month prices without loss of generality.

As a measure of price dispersion, Table 4 reports the coefficient of variation across all prefectures,

as well as across prefectures within a given province. Over time, the change in price dispersion within

a given province is mixed, and for the sample area as a whole, the price dispersion increases over

the sample period (from 0.198 to 0.238 for the 8th month prices; last row). This suggests that for

the sample as a whole, there is price divergence, whereas within individual regions prices may be

converging.9 To the extent that these price trends are due to interregional grain trade, its geographic

scope seems to be limited: integration increases within certain provinces, but the force of arbitrage

does not appear to be sufficiently strong to bring about one and the same price at a national level.

Lastly, Table 5 shows how the weather changed over the sample period. In general, weather is an

exogenous variable that is also expected to be random, even though a certain region may be more

(or less) susceptible to a harsh climate. In the weather data for this sample, the percentage of years

9Another test for convergence is the following simple regression: ∆pi = β0 + β1p
0
i + εi, where ∆pi is the growth

of the price in prefecture i between 1742 and 1795, and p0i the log initial price, that is, in year 1742. A negative
estimate of β1 means that prices tend to grow slower in prefectures where they are relatively high to begin with. This
is consistent with convergence. Here, we estimate β1 at 0.114, insignificantly different from zero at standard levels,
which also suggests that there is no general tendency of price convergence. The Huber (1967)-White (1980) robust
standard error of β1 is equal to 0.117. If the growth rate of the weather variable wdev is added to the regression, the
coefficient on weather is 0.066 (s.e. 0.024), while the parameter on initial price (β1) remains insignificant; these results
use the 8th month price, with N = 121 prefectures.
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of bad weather, e.g., does not vary much overall (from 10.1 over 9.2 to 11.1 percent; at the bottom).

3 Patterns of spatial autocorrelation

In this section, we examine the spatial dimension with a number of spatial autocorrelation measures.

Among the most widely used measures are Moran’s I and Geary’s c statistics (Moran 1950, and

Geary 1954, respectively). These statistics provide evidence on the sample as a whole. We will also

employ local measures of spatial autocorrelation, which give a spatial association coefficient for a

particular locality i, i = 1, ..., N . The local measures have been introduced by Anselin (1995).

Let {wij} be a connection matrix in which wij = 1 if the ith and jth prefecture are spatially

connected, and wij = 0 otherwise. Spatial connectedness is defined in terms of the prefectures sharing

a boundary, for example, or by some threshold bilateral geographic distance. Different degrees of

connectedness are modeled by allowing for multiple connection matrices, one for each spatial lag,

k = 1, ...,K, where {w(k)ij } are the corresponding connection matrices.

For a given year, t = 1742, ..., 1795, Moran’s I statistic for spatial lag k is defined as

Ik =
N

2Jk

SN
i=1

SN
j=1w

(k)
ij zizjSN

i=1 z
2
i

, i 9= j, (1)

where pi is the log price in prefecture i, zi = pi − p, p is the average price, p = N−1
SN
i=1 pi, and

Jk is the number of nonzero values of w
(k)
ij . Correspondingly, Geary’s c statistic for spatial lag k is

defined as

ck =
(N − 1)SN

i=1

SN
j=1w

(k)
ij (zi − zj)2

4Jk
SN
i=1 z

2
i

, i 9= j. (2)

Both the Moran and the Geary statistic measure the covariance of prices in connecting prefectures
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relative to the variance of the price across prefectures.10 Under the null hypothesis that the zi are

identically and independently distributed normal variates, the expected value of the Moran statistic is

E [Ik] = −(N−1)−1. For Geary’s ck statistic, the expected value under these assumptions is E [ck] =

1. It is apparent from the definitions of the statistics that if prices in connected prefectures tend to

be relatively similar (dissimilar)–i.e., positive (negative) spatial autocorrelation–then Moran’s Ik

will tend to be greater (smaller) than zero, and Geary’s ck will tend to be below (above) one. One

advantage of the Geary’s statistic is that the expected value of Geary’s ck under the null hypothesis

is independent of the sample size N , while the expected value of Moran’s Ik is not. The variances of

Ik and ck are shown in Appendix C. Inference is based on the result that under the null hypothesis,

the Ik and ck statistics are distributed asymptotically normal.

The corresponding local measures compute spatial autocorrelation for each location i. In partic-

ular, the local Geary statistic is given by

cki =
N
SN
j=1w

(k)
ij (zi − zj)2SN
q=1 z

2
q

, i 9= j. (3)

Compared to the global Geary statistic, the major difference is that the local measure is based on

a single summation, whereas Geary’s global coefficient sums over both i and j (compare equation 3

with equation 2).

These spatial autocorrelation statistics require normally distributed variates with constant vari-

ance. To assess whether our data satisfies this, we have, first, employed the Shapiro and Wilk (1965)

test for normality. At a 5% significance level, one cannot reject the null hypothesis that the mid-

10 It is useful to think of the counterparts of both statistics in terms of temporal autocorrelation. Moran’s I test
was originally developed as a two-dimensional analog of the test of significance of the serial correlation coefficient in
univariate time series; in the case of one dimension, it reduces to the familiar serial correlation coefficient. Geary’s c
is related to Durbin and Watson’s d statistic (Durbin and Watson 1950, 1951); see Anselin and Bera (1998, 265-268),
and Cliff and Ord (1981, 13-14), for more discussion.
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price variable is normally distributed.11 Regarding the assumption of constant variance, a major

concern is that different prefecture sizes lead to heteroskedasticity. Although there are a number of

spatial autocorrelation measures that adjust for such differences, for instance Oden’s (1995) Moran I

adjusted for population density, they tend to require data that we do not have in this case (including

prefecture-level population data, as well as an equivalent to disease rates). To see how far off the

assumption of constant variance might be in our data, we have compared the standard deviation

of the price for several groups of relatively small versus relatively large prefectures. At a 5% level,

statistical tests typically reject that the variances are the same, while at a 1% level, the assumption

of constant variance in the relatively small and relatively large prefectures is not rejected.12 This

suggests that while prefectural size may be a source of heteroskedasticity, its influence should be

limited.13

3.1 Local Spatial Autocorrelation

As a first cut at assessing spatial autocorrelation in our sample, we compute the local Geary statistic

for the mid-price for two separate connection matrices {w(k)ij }. In the first matrix, for any prefecture i,

w
(1)
ij = 1 if the Euclidian distance between prefectures i and j is less than or equal to 300 kilometers,

and zero otherwise. Analogously, for the second matrix, w(2)ij = 1 if and only if the distance is

greater than 300 but no more than 600 kilometers, and the two cases are denoted by (0,3] and (3,6],

respectively. The Geary’s ci coefficients were then separately ranked and the prefectures falling in the

lowest 25% of all prefectures (i.e., the 30 prefectures with the highest local spatial autocorrelation)

were plotted on a map of China; see Figure 3. The locations of the waterways were in no way

incorporated in the calculation of Geary’s ci.

11Similar results are obtained for the the highest and lowest price.
12This result holds for the (log) mid-price for the five smallest versus largest prefectures, as well as for the ten smallest

versus largest prefectures. Similar results are obtained for the lowest and highest price in a prefecture.
13We will return to the issue of heterogeneity across prefectures in section 4.2.
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The results of the ranking of the prefectures with greatest local autocorrelation in price (shaded

squares) suggest that spatial patterns are determined by the location of transport routes. The

strongest clusters are along the Yangzi River and its main tributaries: the Yuan River, Gan River,

and Huai River. In addition, there are also indications of local clustering in the southern provinces.14

The association between the waterways and price clusters is visible in Figure 3.15

These results on the prevalence of spatial price clusters are consistent with historical accounts

that place much emphasis on the importance of waterway transport for grain trade (Evans 1984).

Transport costs are related to the prevalence of trade because the lower these costs are, the more likely

it is that the pre-trade price gap is small enough such that traders can arbitrage across locations,

pulling prices together. It therefore appears that an analysis of spatial autocorrelation patterns can

provide information on trade patterns.

Figure 4 shows the ranking at a further distance band, (3,6], for each individual locality. Com-

pared to distance band (0,3], the local clustering found in the southern provinces is relatively weaker,

and they no longer rank among the 25% most spatially autocorrelated markets at that distance.

Twelve prefectures appear in both maps; these prefectures are for the most part located along the

Yangzi River, but there are also a number of prefectures directly on the Yangzi River at distance

(0,3] that are not strongly autocorrelated for the (3,6] band. These are likely to be prefectures that

had relatively strong local connections with nearby markets, but not with far away ones. In the

(3,6] band, we also observe strong autocorrelations among prefectures that are located somewhat

further from the Yangzi River, for instance, at markets more distant from the main artery, yet still

on a tributary. It is likely that these are the prefectures most closely linked to the Yangzi River and

coastal trade at a longer distance.

14These are prefectures 29, 56, and 57, respectively, in Figure 2.
15The location of rivers and coastal boundaries shown in this map comes from China Historical GIS (2002).
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This local analysis suggests that spatial autocorrelation patterns vary systematically with access

to water transport as well as other geographic characteristics. The results are consistent with differ-

ences in terms of interregional trade–its prevalence, and how far trading networks reached–across

different regions in China. This will be taken into account when forming subgroups of prefectures in

the next section.

3.2 Global Spatial Autocorrelation

Table 6 shows Geary’s c statistic, given in equation (2), for different groups of prefectures and

subperiods for differnet spatial lags, k, ranging from distances of 0 to 200 km (denoted by (0,2]) to

distances of 1400 to 1600 km (denoted by (14,16]). For the full sample of 121 prefectures, the first

column shows that Geary’s c rises monotonically from a value of 0.289 for the (0,2] band to 2.47 for

the (14,16] band.16 There is evidence for positive autocorrelation for distances up to 800 km and

evidence for negative autocorrelation for distances above 1,000 km.17

Positive autocorrelation for shorter distances is a plausible finding, because given that transport

costs were increasing in distance, trade will tend to connect markets for relatively short distances

before it does so over longer distances. But are there differences across different regions of 18th

century China? First, we divide the sample into those prefectures that lie directly on or near to the

coast–regions with better access to low-cost ship transport–and those that are located more inland.

The Coastal sample is defined as the prefectures in the provinces of Anhwei, Fuijan, Guangdong,

Jiangsu, and Zhejiang (59 prefectures), whereas the Inland prefectures are those in Guizhou, Guangxi,

Hubei, Hunan, and Jiangxi (62 prefectures).

16 In addition to the average of Geary statistics for each of 54 years, the table also shows the standard error of these
means in parentheses.
17We have obtained similar results using Moran’s I statistic. For instance, the correlation between Geary’s ck and

Moran’s Ik for all 121 prefectures across all distance bands and the three subperiods given in Table 6 is with −0.98
close to −1. Given that, in addition, Geary’s c statistic has the advantage relative to Moran’s I that the expected value
of the former does not depend on N, we present only Geary results in this paper.
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Second, the local Geary analysis above suggests that the Yangzi River, China’s longest navigable

waterway, matters for interregional transport in China. We therefore define a set of prefectures

located near the Yangzi River. In the 18th century, the Yangzi was navigable by sizable watercraft

for at least 1,000 kilometers upriver from its mouth near the city of Shanghai (Worcester 1971). The

Yangzi’s path is outlined in Figure 2. This sample consists of 21 prefectures.18

Geary’s c statistics for these Inland, Coastal, and Yangzi River samples are shown in Table 6,

column (i). For each of these groups, the Geary statistic increases with distance. The level of spatial

autocorrelation also differs markedly across regional samples. The relatively low Geary for the Yangzi

River prefectures at short distances (for (0,2], it is 0.349) confirms what we found in Figure 3 above.

The Coastal sample displays less short-distance clustering, but as distance increases, the covariation

of prices across markets does not decline quite as rapidly, suggesting a degree of homogeneity in

the spatial pattern of markets in this sample that differs from the Yangzi River sample. Spatial

clustering also occur in the Inland sample, especially at short distances, but compared to the Yangzi

River sample the Inland area displays relatively small changes in the strength of clustering as distance

increases.

Table 6 also reports the average Geary statistics for the four groups of prefectures–All, Inland,

Coastal, and Yangzi–separately for three 18-year subperiods: the years 1742 to 1759, 1760 to 1777,

and finally the years 1778 to 1795 (columns ii-iv). Differences in spatial patterns across regions persist

across the duration of the entire sample period. However, there are also some temporal changes, and

these occur at different rates for different distances in some of the regions. It is possible that the

rate of change of integration at different distances are interelated, as might happen, for example, if

increasing long distance trade diverts trade that had been present at short or medium distances.

18Yangzi River prefectures are 1, 4, 5, 6, 12, 64, 65, 66, 69, 78, 79, 87, 88, 89, 90, 91, 93, 94, 96, 106, and 107; see
Figure 2.
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However, positive spatial autocorrelation can result not only from trade. Weather shocks, for

instance, tend to vary less for shorter than they vary for larger distances. Weather, as well as

possible spatial trends in prices (leading to spatial non-stationarity), may also explain some of the

findings of negative autocorrelation for larger distances in Table 6. We will address these issues in

the following section.

4 Regression results

We start out with the linear regression model

y = Xβ + ε, (4)

where y, the dependent variable, is N × 1, X is a N ×K matrix of exogenous variables, and ε is a

N × 1 error term distributed as ε ∼ NID �0,σ2� . Here y is the (log) mid price and X consists of a

constant and the weather variable wdev. Under the stated conditions, ordinary least squares is the

best linear unbiased estimator, and we report it as a baseline.19 Given the size differences of the

prefectures, we also present Huber (1967) and White (1980) heteroskedasticity-consistent standard

errors.

The previous section strongly suggest that the residuals of (4) are spatially dependent. One

approach that we take is to test this assumption by applying a formal test for spatial dependence.20

A second approach is to adjust the estimated covariance of regression (4) for spatial dependence.

Conley’s (1999) nonparametric approach can be viewed as the spatial counterpart of the Newey

19Reported results are averages from cross-sectional regressions across all years, or within the relevant sub-period,
but for convenience we generally suppress t, the subscript for time.
20 In addition to a Moran or Geary test on the residuals of (4), a number of other tests have been proposed, see

Kelejian and Robinson (1992), Anselin, Bera, Florax, and Yoon (1996), Anselin and Bera (1998), and Baltagi and Li
(2001). See also Kelejian and Prucha (2001) on the relationship of different tests and further results.
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and West (1987) heteroskedasticity and autocorrelation consistent time series covariance estimation.

His covariance estimator uses weighted averages of sample autocovariances that are computed from

subsets of observation pairs falling within a given distance band. We compute these standard errors

for a number of different distance bands. Relative to OLS, this method affect only the computation

of the standard errors.

The two most influential models that incorporate spatial autocorrelation into the regressive struc-

ture are the spatial error dependence and the spatial lag dependence model. The former is given

by

y = Xβ + ε (5)

with

ε = λWε+ u (6)

where λ is the spatial autoregressive coefficient, u ∼ NID(0,σ2), and W is N ×N matrix of known

spatial weights w̃ij . These weights correspond to the connection matrix {wij}, defined above, in that

they capture the spatial structure of the sample. If λ 9= 0, ignoring the spatial dependence means

OLS is inefficient but remains unbiased. The spatial lag dependence model is given by

y = ρWy +Xβ + ε (7)

where ρ is the spatially autoregressive parameter and ε ∼ NID �0,σ2� . If ρ 9= 0, leaving out the

term ρWy from equation (7) and running least squares gives biased and inconsistent results. We will

present results from maximum likelihood estimation (MLE) of both models below.
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These regression techniques require a number of key assumptions to be valid. In particular, the

properties of the MLE estimation of the two spatial regression models rely on normally distributed

variates with constant variance. In addition, the asymptotics of Conley’s (1999) covariance estimator

relies on the data generation process being spatially stationary. In the absence of these conditions,

in general not very much is known on the properties of these estimators. We will therefore examine

whether the assumptions underlying the estimators are satisfied in our case, and how sensitive the

results appear to be to departures from those assumptions.

Our spatial weights w̃ij are based on distance (denoted Dij). We considered a variety of specifica-

tions, including one- and two-window distance bands and exponential specifications. For one-window

distance bands, w̃ij = 1 if Dij is less than some maximum Dmax, and w̃ij = 0 otherwise, and different

spatial structures are captured by varying Dmax.21 An example of a two-window weighting matrix,

W (0, 3, 6), might specify a weight of one for distances between (0, 3], a weight of one-half between

(3, 6], and zero for distances above six. Exponential weights are of the form w̃ij = exp(−θDij), where

a higher value of θ leads to a more rapid decline in the size of the weights as distance increases.

In a limited grid search in terms of likelihood for a good weighting matrix, the exponential spec-

ification with parameter θ = 1.4 tended to perform best.22 Among the distance band specifications,

the one-window specification with Dmax = 3 and Dmax = 6 (corresponding to distances of 300 and

600 kilometers, respectively) performed best. The results for these three matrices are shown in Table

7.

21The own weight, w̃ii, is set to zero ∀i in all weighting matrices.
22With distance measured in units of hundreds of kilometers, this leads to weights from 0 to 0.85, with a mean of

0.017. Also note that all estimations use row-standardized weights that sum to one.
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4.1 Spatial regression with all prefectures, 1742-1795

Table 7 shows the mean of the estimates for the models above across the 54 sample years, 1742 to

1795.23 First, the OLS results might suggest that a prefecture’s weather has a significant positive

effect on the local price.24 The point estimate of 0.08 (s.e. of 0.03) suggests that moderately bad

weather (wdev = 1) raises the price by about eight percent, whereas exceptional floods and droughts

(wdev = 2) are associated with a 16% higher price. In terms of fit, the OLS regression has an R2

of about 0.10, and the log likelihood is given by 19.463 (last row). The second column shows Huber

(1967)-White (1980) heteroskedasticity-consistent standard errors. They are similar to the usual

standard errors.

Conley’s (1999) nonparametric spatial standard errors are presented in Table 7 for distance bands

(0, 3] and (0, 6], respectively (denoted ”Spatial corr. adjusted s.e.’s”). They are about 60% larger

than the non-spatial standard errors. That spatial standard errors are larger than conventional ones

is plausible, because if there is spatial dependence, the effective size of the sample is reduced relative

to one with independent observations (see Cressie 1993, 14-15, as well as Anselin and Bera 1998,

247-248). Now one cannot reject the null that local weather is not correlated with price at the 5%

significance level. A reduction in the effect of local weather on price once spatial dependence in

prices is incorporated is consistent with trade being the cause of spatial dependence.

The results for the spatial error and spatial lag dependence models are in the lower part of Table

7. They are for the three different weighting matrices discussed above: distance bands (0,3] and

(0,6], and w̃ij = exp(−θDij), with θ = 1.4. First, the spatial models fit much better than the models

that omit the spatial structure, with a log-likelihood ranging from about 60 to 85, versus about 20

23We have omitted the standard errors of these means in the table in the interest of space.
24Among the three weather variables, we focus on weather deviation (wdev), the extent to which the weather differed

from medium dryness, generally most favorable to harvests. The other two weather variables, dryness and bad weather,
give similar results.
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before. Second, this improvement is clearly due to the spatial structure. The coefficient of the spatial

error model, λ, lies between 0.9 and 0.95, with a standard error of about 0.05. The test statistic of

the LM test is χ2 distributed with one degree of freedom, lies between 239 and 495, with a p-value

of zero. The results for the spatial lag model are similarly strong.

Table 7 also reports results based on the adjusted LM tests developed by Anselin, Bera, Florax,

and Yoon (1996). These authors develop tests of the H0 : λ = 0 in the presence of the nuisance

parameter ρ, and conversely, of H0 : ρ = 0 without restrictions on λ. Clearly, in our case there

appears to be evidence for both λ and ρ to be different from zero, so a test that does not rely on

one parameter to equal zero when testing the H0 that the other is zero is preferred. Moreover,

these results may also help to establish which is the better model. These adjusted LM test statistics

in Table 7 range from 3.12 to 19.66 for the spatial error model, and from 13.85 to 33.66 for the

spatial lag model. These values are substantially below those of the corresponding standard LM test

discussed above. The adjusted LM statistic is also χ2 distributed with one degree of freedom, with

a 1% (10%) critical value of 6.64 (2.71). This means that in five out of six specifications shown in

Table 7, one can reject the null of no spatial dependence at a 1% level, and for the sixth specification,

the null can be rejected at a 10% level.

How does the presence of spatial dependence change our inferences on the influence of weather

on the local price? Table 7 indicates that the evidence for a strong effect of weather shocks on

local prices is now further weakened. The point estimate for the weather variable lies between 0.02

and 0.04, compared to 0.08 before, and it is generally not significant at standard levels. This is an

example where accounting for spatial structure qualitatively changes the inferences.

Comparing the results for the six specifications in terms of likelihood, one sees that the exponential

weighting matrix performs better than the other two. This is a robust finding, and we will in the

following show only results for the model with exponential spatial weights (w̃ij = exp(−θDij), with
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θ = 1.4). In addition, the spatial lag model has always a somewhat better fit than the corresponding

error model. Consistent with that, the evidence for spatial dependence as measured by the adjusted

LM test statistic is stronger for the spatial lag than for the spatial error model.

The error model is sometimes seen as appropriate when the spatial autocorrelation in the data

is the outcome of numerous factors. This is in contrast to the spatial lag model, which isolates

one factor (Haining 1990). For the preferred weighting matrix (w̃ij = exp(−θDij), with θ = 1.4),

there is evidence for dependence at the 5% significance level using the spatial lag model, but not

when using the spatial error model. This suggests that controlling for local weather, the price in one

locality is predominantly related to prices in other regions, but not much else. This is consistent with

interregional trade leading to price linkages and there being no other major reason that underlies

the spatial autocorrelation in the data.

4.2 Specification and Robustness

Table 8 presents additional results that allow us to discuss a number of issues. First of all, there is the

question of omitted variables. By focusing on contemporaneous spatial dependence, our analysis thus

far has ignored the effects that might arise due to temporal dependence, and specifically, the previous

periods’ prices. For instance, in the presence of interregional trade, it may matter substantially for

the current price in location i whether the prices in the markets that neighbor location i have been

relatively high or low in the previous period. Moreover, location i’s own price in the previous period

may also have an influence if there is serial correlation. If that were the case, the omission of these

variables from our specification might lead to an overestimate of the degree of spatial dependence as

measured by estimates of λ and ρ. Therefore, we extend our analysis to include the spatially lagged

previous-period prices, denoted by Wy(−1), as well as the prefectures’ own previous period prices,
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denoted by y(−1).25

The results are shown in Table 8. Specification (1) repeats the preferred specification of Table

7 for convenience (note that 53 years of data, rather than 54, are used in this specification). In the

second column, the spatial lag of the previous period prices has been added to the specification. This

variable enters with a coefficient of 0.547, significant at standard levels, and its inclusion raises the

log-likelihood from about 86 to 94. If instead the lagged own price, y(−1), is included, this also comes

in with a positive coefficient, but the improvement in fit is larger (see (3)). The inclusion of either

variable leads to a reduction in the estimated value of ρ, from about 0.90 to about 0.40, suggesting

there is less evidence for spatial dependence. At the same time, as measured by the adjusted LM

test statistic, there remains evidence for spatial dependence (p-value < 0.02), and the effect from

weather is still insignificant.

When bothWy(−1) and y(−1) are included jointly, the coefficient on the spatially-lagged previous

year price turns negative. In contrast, the coefficient on the temporally lagged own price remains

positive, in fact it goes up somewhat, which may be a sign of collinearity between Wy(−1) and

y(−1). Thus, there is evidence for serial correlation of prices, whereas the relation of price with

spatially-lagged previous prices appears to be mixed.26 Overall, the inclusion of temporally lagged

price variables leaves the qualitiative finding unchanged: ρ is estimated to be about 0.64, with an

adjusted LM test statistic of about 6.2 (p-value around 0.025). However, it is clear that without the

Wy(−1) and y(−1) variables, the evidence for spatial dependence would have been overestimated.

A second issue is the assumption of normality. In particular, this assumption could be violated

because the weather variable wdev is discrete and takes on only three values (0, 1, and 2). In

specifications (5) to (7) we experiment with the variable dryness and dryness squared (denoted

25The spatial weights matrix W is the same that is applied to the contemporaneous prices (exponential in distance
with θ = 1.4).
26 In the corresponding spatial error model, the coefficient on Wy(−1) tends to be positive but insignificant when

y(−1) is included.
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dryness2 ) instead of the variable wdev, finding that the results are similar.27 Omitting the weather

variable from the specification gives also similar results (compare specifications (6) and (3)). That

non-normality due to the discreteness of the weather variable does not critically the results may be

due to the fact that weather has only a very weak effect once spatial dependence is accounted for. In

addition, a number of further specification checks, not reported here due to space reasons, suggest

that the possible violation of the normality assumption does not critically affect our results on spatial

dependence.

The remaining specifications (8) to (12) highlight a number of other issues. As noted in Appendix

A, we use time-series techniques proposed by Gomez and Maravall (1997) to estimate the missing

price data for this analysis. A simple alternative to that is to estimate any missing observation for

location i by its mean across all years for which data is not missing. This is the data underlying

specification (8). One notes that the fit is, as expected, worse than in the comparable specification

(5), but the inferences regarding spatial dependence are largely the same.

Another concern is that heterogeneity (for instance in terms of size) across prefectures might in-

duce heteroskedasticity and other problems in the estimation. In this respect, we note that reported

in Table 8 to Table 10 are Huber-White heteroskedasticity-consistent standard errors. Moreover, we

have also experimented with non-parametric techniques by computing bootstrap standard errors for

a number of specifications. The bootstrapped standard errors are typically larger, and at times sub-

stantially larger than the Huber-White robust standard errors. At the same time, the bootstrapped

standard errors are not so large as to affect our inferences.

The difference in the size of the prefectures may mean that relying on the computed mid-price

in a prefecture is problematic. Specifications (9) and (10) of Table 8 show the results obtained with

using the lowest and highest price in a prefecture, instead of the mid-price. The fit is somewhat

27We found more evidence for normality of dryness than wdev based on the test by Shapiro and Wilk (1965).
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worse compared to specification (5), and the estimate of ρ drops to around 0.54 from 0.62, but the

evidence for spatial dependence remains quite strong (the adjusted LM test p-values are less than

0.04).

The last two specifications in Table 8 provide some information on the possible effects of spatial

non-stationarity on the results. In section 2 above it was noted that prices in our sample tend to

be higher on the coast than in the interior regions of China, which is at least in part related to the

relatively high land-to-labor ratio in the interior of China. This spatial price gradient–increasing

from West to East, and from North to South–could mask some of our findings in terms of spatial

dependence. In order to see to what degree this seems to be the case, we use two alternative price

variables from which the basic price gradient has been purged in a first step. The price variable in

specification (11) is the residual of a regression of the log mid-price on three regional fixed effects–

one group of prefectures in the Northeast, another group on the coast near the Yangzi delta, and

a third consisting of all other prefectures–while the price variable in (12) is the regression residual

based on four groups in the first step.28 Comparing the regression results in specifications (11) and

(12) with the baseline specification (5), the differences seem to be quite small. This suggests that

at least for the spatial regression results where we condition on weather as well as other variables,

spatial non-stationarity, if present, does not appear to have a strong effect on our results.

We now turn to spatial regression results for some of the groups of prefectures discussed in section

3 above.

28 In specification (11), the groups include (1) prefectures in Guangxi and Guizhou, (2) prefectures in Anhwei, Jiangsu,
and Zhejiang, and (3) prefectures in Guangdong, Fujian, Jiangxi, Hubei, and Hunan. For specification (12), the previous
group (3) is subdivided into (3’) Guangdong, Fujian, and Jiangxi, and group (4) Hubei and Hunan prefectures. Our
approach here is a very simple version of the widely-used trend-surface analysis; see, e.g., Cliff and Ord (1981, 222-228).
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4.3 Spatial dependence in different regions and over time

Different regions Table 9 compares results for the spatial lag model with preferred specifications

for two pairs of prefectures that were identified in section 3 above: first, the Inland versus the

Coastal prefectures, and second, the Yangzi River versus the Non-Yangzi River prefectures. For each

sample, two specifications are shown, one with and another without including the previous period

price variables (Wy(−1) and y(−1)).

There are several results that are common across all regions in China. First of all, weather shocks

do not have a significant influence on the local price. Thus, controlling for spatial dependence makes

a qualitative difference for inferences about the role of weather for variation in local prices. Second,

the correlation of current to own previous period price (y(−1)) is positive, whereas the correlation

of current to spatially lagged previous period prices is non-positive.29

The evidence for spatial dependence varies, however. For one, it is weaker once the temporally

lagged price variables are included; for the Inland prefectures, for instance, the estimate of ρ falls

from about 0.8 to 0.45. A special case seems to be the Yangzi River group of prefectures, where

the estimate of ρ falls from about 0.73 to essentially zero. That we can reject the null hypothesis of

spatial dependence for the Yangzi River prefectures is confirmed by both of the LM test statistics.

Note, however, that the adjusted LM test statistic is considerably less affected than the standard

LM test by whetherWy(−1) and y(−1) are included; both for the Coastal as well as the Non-Yangzi

sample, the adjusted LM test statistic is quite similar for the case with and without the spatially

lagged previous period prices in the regression. This underscores the importance of addressing the

29Note that the influence of last period’s (own) price is stronger in Inland and Non-Yangzi prefectures than in Coastal
and Yangzi River prefectures: the estimates on y(−1) in the former are about 0.79, while for Coastal it is 0.73, and
for Yangzi prefectures it is 0.63. The relatively strong intertemporal effect for Inland and Non-Yangzi River prefectures
is consistent with grain storage being a more important mechanism of consumption smoothing in these prefectures,
compared to the Coastal and Yangzi prefectures; this is in line with the findings in Shiue (2002). See also the analysis
of grain storage in Shiue (2004).
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nuisance parameter problem that apparently plagues the standard LM test statistic.

Overall, if we measure the evidence for spatial dependence by the adjusted LM statistic in the

specification with the spatially lagged previous prices, the results are roughly in line with our analysis

of spatial autocorrelation above, as well as with direct historic evidence. The adjusted LM statistic

ranking is Inland ≈ Non-Yangzi River > Coastal > Yangzi River. The spatial weights matrix that we

use (exponential in distance with θ = 1.4) emphasizes relatively short distances. This ranking thus

reflects the fact that the evidence for short-distance price clusters is strongest for Inland prefectures.

These prefectures are less likely to have access to waterway transport, and due to the higher transport

costs of land trade, rice trade can be expected to take place only for relatively short distances.

In contrast, the Coastal prefectures have some access to waterway transport, and the Yangzi River

prefectures probably enjoyed the lowest transportation costs. Our failure to find evidence for spatial

dependence in the Yangzi River sample does not mean there was an absence of trade pulling prices

in different markets together. Rather, it suggests that trade also occurred among these prefectures

at distances beyond the short-distance radius.

Spatial dependence over time Table 10 presents results for four samples separately for three

subperiods (1743/59, 1760/77, and 1778/95). As shown in the top left, in the All Prefectures

sample, the influence of weather shocks on local prices is never significant. There is evidence for

spatial dependence in all three subperiods, even though it becomes slightly weaker over time (as

measured by the adjusted LM test statistic). This result seems to be primarily driven by the Coastal

prefectures, where the adjusted LM statistic falls from about 5.8 to 4.3. The estimate of ρ rises for

the Yangzi River prefectures over time, although all values are not significantly different from zero

at standard levels.

Overall, these results largely confirm earlier results that emphasize the heterogeneity of different
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regions in China, and in particular with respect to their access to waterway transport.

5 Conclusion

This paper has shown how estimators of spatial dependence may be employed with price data to

provide evidence on interregional trade patterns. The geographic locations of the most locally inte-

grated markets in our sample are found to lie along the Yangzi River and its tributaries, a result that

is consistent with historical accounts that have emphasized the importance of physical geography to

trade. The spatial patterns in the data indicate that markets which are most likely to be integrated

over longer distances are not necessarily also the same locations which are most integrated with

nearby markets. The difference appears to depend on the location of a market with respect to its

most efficient trade route.

The results also suggest that accounting for spatial structure in contexts where spatial effects play

a major role alters the inferences on economic outcomes. For our sample, we were able to obtain

information on local weather shocks, a variable that could lead to spurious price correlation because

weather, like trade, is a geographically localized variable. We find that the spatial models effectively

remove the significance of weather in the estimation results.

Patterns of spatial dependence may change over time, and when data for long periods are avail-

able, there are clear benefits to allowing for temporal as well as spatial changes in the model. In this

paper, we have taken into account the lagged variables of the cross-sectional markets, but this could

be taken further. In particular, the panel structure of the data, where there are repeated temporal

observations on the same locations, can be used to help control for the presence of cross-sectional

heterogeneity among the spatial units of observation. Another important direction for future work

would be to estimate longer-horizon dynamics involving lags of more than one year.
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This analysis can also be combined with direct evidence on how trade routes evolved in China

over time to the present day to examine the long-run consequences of market access and interregional

trade in China. From what we know about regional differences in income per-capita in China in the

18th century, income appears to be correlated with market access and trade (Keller and Shiue 2004).

Notably, the Chinese regions that are rich today (the Yangzi Delta including Shanghai, the area

around Guangdong and Hong Kong, as well as the coastal areas of Fujian) include many that were

relatively rich already a couple of centuries ago. The impact of geography would seem to have lasting

effects.
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A Price data

During the era of the Qing emperors (years 1644 to 1911), we have relatively good price records for

the 18th century. In these years, prices were reported approximately monthly from all parts of the

empire as part of an early warning system of food shortages. The fact that these data were put

to practical uses suggests accuracy would have been important. To the extent that is was possible,

accuracy was enforced through a system of unannounced checks and audits. The quality of the data

is generally considered good compared to other historical price records.

Our focus is on rice, a predominate type of grain for the central and southern parts of China. This

leads to the exclusion of parts of China to the North and West where other types of grain, for instance

barley and wheat, were more common. The sample covers about 60% of the Chinese economy–a

sizeable area with a population of about 120 million people, or about 20% of the world population at

the time. For our sample period from 1742 to 1795, about 24% of the data is missing in the original

source. The percentage of missing data is similar across prefectures, and there is no evidence to

suggest that the missing data is systematically related to known prefectural characteristics. We have

estimated the missing data using several different approaches. For the most part, the results shown

above are based on the time-series methods developed by Gomez and Maravall (1997). In addition,

Table 8 shows results based on a simple cross-sectional data interpolation, which leads to similar

results. We also find qualitatively the same results if we focus on years that are not missing in the

original source.

For each prefecture, we have information on the highest and lowest price in a given month. These

two prices yield the mid-price, which is the focus of our analysis; it is computed as the average be-

tween the highest and lowest price in a given prefecture. This raises a number of issues. First of all,

the prefectures differ substantially in size (see Figure 2), which may give rise to heteroskedasticity.
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Specifically, a given prefecture’s lowest and highest price, respectively, might for different months be

from different (county-level) markets. If these differences depend on prefectural size, the assump-

tion of constant variance of prices across prefectures would be violated. Our preferred techniques

are therefore those that are heteroskedasticity-consistent, and more generally, we discuss what the

influence of heteroskedasticity might be on our results (see section 4.2 above).

The original source of the price data is Gongzhong liangjiadan [Grain Price Lists in the Palace

Archives]. Today it is located in the Number One Historical Archives in Beijing. The data were

collected by C. H. Shiue, see Shiue (2002) for additional details.

B Weather data

The historical weather data comes from the State Meteorological Society (1981). The weather scale is

defined as follows by the compilers of these maps: ”Level 1 represents years in which there have been

exceptional rainfall, leading to major floods, typhoons, water related disasters, and the destruction

of all crops. Level 2 rain encompasses cases where there is heavy rainfall, but limited in scope

and/or resulting in only minor flooding. Level 3 weather is the most favorable weather. Level

4 indicates minor droughts of limited consequence, while level 5 denotes the years of exceptional

drought, lasting two or more seasons of the year, and leading to major harvest failures.” For this

paper, the above rankings are used to compute three weather variables: (1) dryness: This variable

is equal to the weather levels given in the source. The variable dryness takes values of 1, 2, 3, 4, and

5 (1 being least and 5 being most dry). (2) The variable weather deviation: This variable is defined

as wdev = |Dryness− 3| , taking values of 0, 1, and 2. (3) The variable bad weather variable is as
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follows:

bad weather =


1 if dryness = 1 or 5

0 otherwise.

Summary statistics for these variables by province are given in Table 3.

C Variances of Geary’s c and Moran’s I statistics

Under the null hypothesis that z is an identically and independently distributed normal variate, the

variance of Geary’s c is given by

var(c) =
(2S1 + S2) (N − 1)− 4S20

2 (N + 1)S20
, (8)

where

S0 =
SN
i=1

SN
j=1wij , S1 =

1
2

SN
i=1

SN
j=1 (wij + wji)

2 , (9)

and

S2 =
SN
i=1 (wi· + w·i)

2 , with wi· =
SN
j=1wij and w·i =

SN
j=1wji.

(10)

29



The variance of Moran’s I is, under the null hypothesis that z is an identically and independently

distributed normal variate, given by

var(I) =
N2S1 −NS2 + 3S20

S20 (N
2 − 1) . (11)

See Cliff and Ord (1981, 20).
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Table 1

Geographic Location: Longitudes and Latitudes

province number of coordinate mean standard
prefectures devation

Anhwei 13 longitude 117.9 1.0
latitude 31.6 1.0

Fujian 12 longitude 118.4 1.3
latitude 25.8 1.1

Guangdong 13 longitude 112.4 2.4
latitude 23.0 1.6

Guangxi 12 longitude 108.7 1.6
latitude 23.5 1.0

Guizhou 13 longitude 107.5 1.2
latitude 26.8 0.8

Hubei 10 longitude 112.6 1.8
latitude 31.2 0.9

Hunan 13 longitude 111.4 1.3
latitude 27.6 1.4

Jiangsu 10 longitude 120.0 0.9
latitude 32.2 1.0

Jiangxi 14 longitude 115.9 1.2
latitude 27.9 1.2

Zhejiang 11 longitude 120.3 0.7
latitude 29.4 1.0



Table 2: Price by province
Averages from 54 annual cross-sectional statistics (includes both months 2 and 8)

province price mean standard min max obs.
variable deviation

Anhwei Mid-price 1.553 0.189 1.245 1.991 1404
Lowest 1.408 0.168 1.121 1.765 1404
Highest 1.698 0.252 1.331 2.289 1404

Fujian Mid-price 1.667 0.200 1.340 2.079 1296
Lowest 1.507 0.228 1.132 1.958 1296
Highest 1.827 0.215 1.464 2.296 1296

Guangdong Mid-price 1.498 0.233 1.103 1.985 1404
Lowest 1.315 0.232 0.898 1.798 1404
Highest 1.681 0.274 1.214 2.218 1404

Guangxi Mid-price 1.117 0.109 0.930 1.336 1296
Lowest 0.999 0.109 0.826 1.230 1296
Highest 1.234 0.136 0.997 1.506 1296

Guizhou Mid-price 0.972 0.149 0.727 1.310 1404
Lowest 0.835 0.150 0.597 1.127 1404
Highest 1.109 0.192 0.815 1.548 1404

Hubei Mid-price 1.330 0.148 1.044 1.601 1080
Lowest 1.156 0.144 0.884 1.402 1080
Highest 1.504 0.186 1.177 1.853 1080

Hunan Mid-price 1.190 0.114 1.011 1.440 1404
Lowest 1.090 0.116 0.886 1.341 1404
Highest 1.290 0.139 1.071 1.600 1404

Jiangsu Mid-price 1.794 0.208 1.474 2.206 1080
Lowest 1.639 0.209 1.299 2.042 1080
Highest 1.950 0.238 1.599 2.426 1080

Jiangxi Mid-price 1.413 0.099 1.233 1.620 1512
Lowest 1.294 0.113 1.077 1.524 1512
Highest 1.533 0.120 1.310 1.792 1512

Zhejiang Mid-price 1.564 0.162 1.254 1.824 1188
Lowest 1.414 0.167 1.095 1.690 1188
Highest 1.713 0.180 1.364 2.011 1188

Total Mid-price 1.400 0.310 0.722 2.306 13068
Lowest 1.257 0.300 0.591 2.121 13068
Highest 1.543 0.345 0.807 2.589 13068



Table 3: Weather by province
Averages from 54 annual cross-sectional statistics

province weather mean standard obs.
variable* deviation

Anhwei dryness 2.677 0.621 702
wdev 0.739 0.512 702
bad weather 0.124 0.174 702

Fujian dryness 2.748 0.686 648
wdev 0.906 0.493 648
bad weather 0.171 0.251 648

Guangdong dryness 2.946 0.668 702
wdev 0.906 0.361 702
bad weather 0.104 0.146 702

Guangxi dryness 2.966 0.468 648
wdev 0.392 0.434 648
bad weather 0.035 0.060 648

Guizhou dryness 3.006 0.235 702
wdev 0.405 0.219 702
bad weather 0.071 0.071 702

Hubei dryness 2.850 0.527 540
wdev 0.557 0.474 540
bad weather 0.126 0.143 540

Hunan dryness 2.839 0.504 702
wdev 0.503 0.417 702
bad weather 0.085 0.127 702

Jiangsu dryness 2.865 0.556 540
wdev 0.639 0.456 540
bad weather 0.098 0.108 540

Jiangxi dryness 2.696 0.461 756
wdev 0.640 0.361 756
bad weather 0.090 0.102 756

Zhejiang dryness 2.842 0.630 594
wdev 0.623 0.483 594
bad weather 0.114 0.156 594

Total dryness 2.841 0.818 6534
wdev 0.633 0.629 6534
bad weather 0.101 0.274 6534

* See Appendix B for the definition of the three weather variables



Table 4: Prices over time
Mid-price

province statistic* month 2 month 8 month 2 month 8 month 2 month 8

Anhwei mean 1.472 1.405 1.500 1.500 1.717 1.724
sd 0.179 0.161 0.188 0.181 0.187 0.196
sd/mean 0.121 0.114 0.125 0.121 0.109 0.114

Fujian mean 1.577 1.564 1.636 1.660 1.764 1.801
sd 0.199 0.168 0.162 0.142 0.259 0.243
sd/mean 0.126 0.107 0.099 0.085 0.147 0.135

Guangdong mean 1.455 1.412 1.490 1.503 1.566 1.564
sd 0.229 0.202 0.252 0.236 0.241 0.229
sd/mean 0.158 0.143 0.169 0.157 0.154 0.146

Guangxi mean 1.134 1.138 1.021 1.039 1.171 1.197
sd 0.155 0.127 0.082 0.077 0.101 0.095
sd/mean 0.136 0.112 0.081 0.074 0.086 0.079

Guizhou mean 0.983 1.016 1.012 1.010 0.908 0.903
sd 0.156 0.163 0.138 0.143 0.146 0.147
sd/mean 0.159 0.160 0.136 0.141 0.161 0.163

Hubei mean 1.210 1.204 1.296 1.296 1.483 1.492
sd 0.133 0.119 0.118 0.112 0.185 0.183
sd/mean 0.110 0.099 0.091 0.086 0.125 0.123

Hunan mean 1.156 1.151 1.139 1.147 1.270 1.276
sd 0.116 0.113 0.094 0.093 0.111 0.109
sd/mean 0.100 0.098 0.082 0.081 0.087 0.086

Jiangsu mean 1.693 1.671 1.778 1.785 1.915 1.924
sd 0.165 0.205 0.141 0.162 0.239 0.248
sd/mean 0.098 0.123 0.079 0.091 0.125 0.129

Jiangxi mean 1.332 1.276 1.421 1.382 1.551 1.517
sd 0.112 0.100 0.077 0.070 0.096 0.089
sd/mean 0.084 0.078 0.054 0.050 0.062 0.059

Zhejiang mean 1.526 1.468 1.600 1.588 1.595 1.607
sd 0.157 0.144 0.152 0.141 0.170 0.175
sd/mean 0.103 0.098 0.095 0.089 0.107 0.109

Total mean 1.346 1.322 1.380 1.381 1.483 1.489
sd 0.287 0.261 0.300 0.297 0.352 0.354
sd/mean 0.214 0.198 0.217 0.215 0.237 0.238

* Mean and standard deviation: averages across 18 annual cross-sectional statistics
Coefficient of variation (= sd/mean): average(sd)/average(mean)

1742/59 1760/77 1778/95



Table 5: Weather over time

province statistic* dryness bad weather dryness bad weather dryness bad weather

Anhwei mean 2.470 0.162 2.739 0.107 2.821 0.103
sd 0.713 0.231 0.591 0.182 0.561 0.110

Fujian mean 3.000 0.218 2.593 0.093 2.653 0.204
sd 0.686 0.306 0.636 0.159 0.737 0.289

Guangdong mean 3.043 0.090 2.829 0.107 2.966 0.115
sd 0.794 0.145 0.676 0.171 0.533 0.123

Guangxi mean 3.111 0.019 2.787 0.065 3.000 0.023
sd 0.484 0.053 0.503 0.100 0.418 0.028

Guizhou mean 3.000 0.047 3.124 0.068 2.893 0.098
sd 0.254 0.079 0.208 0.052 0.243 0.082

Hubei mean 2.761 0.094 2.872 0.089 2.917 0.194
sd 0.562 0.157 0.420 0.108 0.601 0.163

Hunan mean 2.812 0.090 2.825 0.047 2.880 0.120
sd 0.563 0.180 0.396 0.084 0.552 0.117

Jiangsu mean 2.767 0.039 2.944 0.172 2.883 0.083
sd 0.611 0.045 0.568 0.215 0.489 0.063

Jiangxi mean 2.675 0.111 2.615 0.071 2.798 0.087
sd 0.576 0.141 0.406 0.040 0.400 0.126

Zhejiang mean 3.045 0.131 2.657 0.121 2.823 0.091
sd 0.519 0.121 0.697 0.196 0.674 0.149

Total mean 2.866 0.101 2.796 0.092 2.862 0.111
sd 0.865 0.281 0.782 0.255 0.807 0.287

*Averages from 54 annual cross-sectional statistics

1742/59 1760/77 1778/95



Table 6: Geary's c statistic for different prefectures and by subperiod*

distance prefectures

0- 200 km All prefectures 0.289 (0.012) 0.368 (0.022) 0.263 (0.013) 0.237 (0.012)
Yangzi River 0.349 (0.020) 0.311 (0.021) 0.281 (0.026) 0.456 (0.040)
Coastal 0.552 (0.018) 0.585 (0.026) 0.481 (0.028) 0.591 (0.032)
Inland 0.396 (0.022) 0.568 (0.030) 0.370 (0.021) 0.250 (0.010)

200 - 400 km All prefectures 0.463 (0.017) 0.565 (0.031) 0.416 (0.021) 0.408 (0.018)
Yangzi River 0.760 (0.027) 0.756 (0.050) 0.757 (0.041) 0.767 (0.050)
Coastal 0.873 (0.021) 0.917 (0.039) 0.852 (0.042) 0.849 (0.029)
Inland 0.620 (0.026) 0.820 (0.041) 0.526 (0.027) 0.513 (0.020)

400 - 600 km All prefectures 0.641 (0.017) 0.714 (0.030) 0.596 (0.029) 0.613 (0.020)
Yangzi River 1.079 (0.026) 1.056 (0.054) 1.075 (0.033) 1.106 (0.048)
Coastal 0.971 (0.020) 0.956 (0.036) 0.880 (0.030) 1.076 (0.024)
Inland 0.796 (0.015) 0.876 (0.027) 0.724 (0.018) 0.787 (0.018)

600 - 800 km All prefectures 0.864 (0.012) 0.907 (0.022) 0.852 (0.024) 0.835 (0.010)
Yangzi River 1.658 (0.046) 1.722 (0.067) 1.705 (0.078) 1.548 (0.084)
Coastal 1.113 (0.035) 1.090 (0.073) 1.110 (0.060) 1.140 (0.046)
Inland 1.177 (0.016) 1.044 (0.018) 1.228 (0.020) 1.260 (0.013)

800 - 1000 km All prefectures 1.161 (0.012) 1.092 (0.020) 1.201 (0.017) 1.189 (0.013)
Yangzi River 2.679 (0.087) 2.641 (0.120) 2.867 (0.125) 2.529 (0.192)
Coastal 1.120 (0.031) 1.110 (0.051) 1.215 (0.062) 1.036 (0.038)
Inland 1.670 (0.036) 1.414 (0.059) 1.794 (0.042) 1.801 (0.035)

1000 - 1200 km All prefectures 1.602 (0.021) 1.476 (0.035) 1.639 (0.028) 1.692 (0.023)
Yangzi River
Coastal 1.324 (0.054) 1.286 (0.107) 1.448 (0.105) 1.239 (0.063)
Inland 2.041 (0.055) 1.717 (0.102) 2.240 (0.069) 2.166 (0.064)

1200 - 1400 km All prefectures 2.062 (0.040) 1.890 (0.070) 2.051 (0.073) 2.245 (0.036)
Yangzi River
Coastal 1.557 (0.090) 1.623 (0.167) 1.622 (0.195) 1.427 (0.094)
Inland 2.717 (0.102) 2.338 (0.230) 3.032 (0.130) 2.782 (0.112)

1400 - 1600 km All prefectures 2.472 (0.059) 2.382 (0.117) 2.540 (0.119) 2.494 (0.059)
Yangzi River
Coastal 1.898 (0.107) 1.823 (0.172) 2.102 (0.235) 1.770 (0.136)
Inland

* Averages from 54 (column (i)) or 18 (columns (ii)-(iv)) annual cross-sectional statistics; in parentheses: standard error of mean

N/A N/A N/A

N/A N/A N/A

N/A N/A N/A

N/A N/A N/A

1742-1759 1760-1777 1778-1795

N/A

1742-1795

N/A

N/A

N/A



Table 7: Regression results for All Prefectures, 1742-1795
Dependent variable: log mid price; N = 121; averages from 54 annual cross-sectional regressions

OLS Huber-White Spatial corr. Spatial corr.
standard adjusted adjusted 

errors s.e.'s (0,3] s.e.'s (0,6]

constant 0.264 ** 0.264 ** 0.264 ** 0.264 **
s.e. 0.027 0.028 0.055 0.074

wdev 0.080 ** 0.080 ** 0.080 * 0.080 *
s.e. 0.031 0.030 0.048 0.053

lnL 19.463 19.463 19.463 19.463

Spatial Spatial Spatial Spatial Spatial Spatial
error (0,3] lag (0,3] error (0,6] lag (0,6] error (exp) lag (exp)

constant 0.300 * 0.016 0.385 -0.002 0.318 ** 0.022
s.e.# 0.157 0.022 0.373 0.023 0.121 0.020

wdev 0.020 0.024 0.036 0.043 ** 0.017 0.019
s.e.# 0.022 0.018 0.022 0.021 0.022 0.017

lambda 0.915 ** 0.954 ** 0.906 **
s.e.# 0.049 0.043 0.045

rho 0.900 ** 0.945 ** 0.892 **
s.e.# 0.053 0.048 0.047

LM test ++ 320.192 328.131 495.353 508.979 239.071 249.600

Adjusted LM test ++ 9.146 17.234 19.663 33.657 3.116 13.847

lnL 75.936 76.469 59.425 60.536 85.152 85.630

 * (**) significant at 10 (5)% level
# Huber-White robust standard errors
++ Chi-squared distributed, with 1 degree of freedom; critical values: 2.706, 3.841, and 6.635 at the 10%, 5%, and 1% level, respectively



Table 8: Specification and Robustness
Dependent variable: log price, N = 121; exponential weights (theta = -1.4); averages from 53 cross-sectional regressions

(1) (2) (3) (4) (5) (6) (7) (8)☺ (9) ◊ (10) ○ (11) ☼ (12) ◘

wdev 0.020 0.017 0.013 0.010
s.e.# 0.017 0.017 0.012 0.011

dryness -0.030 -0.033 -0.037 -0.025 -0.039 -0.026 -0.024
s.e.# 0.043 0.045 0.049 0.049 0.053 0.043 0.043

dryness2 0.006 0.007 0.007 0.005 0.007 0.005 0.005
s.e.# 0.008 0.008 0.009 0.009 0.009 0.008 0.008

Wy(-1) 0.547** -0.415** -0.394** -0.296** -0.274* -0.323** -0.426** -0.447**
s.e.# 0.170 0.134 0.137 0.141 0.153 0.146 0.140 0.143

y(-1) 0.683** 0.771** 0.771** 0.677** 0.691** 0.661** 0.731** 0.765** 0.790** 0.789**
s.e.# 0.058 0.062 0.062 0.057 0.057 0.074 0.067 0.066 0.061 0.062

rho 0.893** 0.469** 0.338** 0.636** 0.618** 0.357** 0.332** 0.628** 0.546** 0.543** 0.613** 0.614**
s.e.# 0.047 0.159 0.068 0.111 0.114 0.067 0.068 0.113 0.127 0.125 0.115 0.116

LM test ++ 251.389 15.672 31.619 52.810 45.996 36.521 29.964 50.771 31.755 33.133 49.855 48.109

Adjusted LM test ++ 13.847 6.378 8.444 6.183 7.099 8.152 9.374 6.995 4.624 6.640 6.539 6.373

lnL 85.956 94.032 152.870 159.111 160.434 150.848 154.843 138.254 138.227 142.764 160.920 161.015

# Huber-White robust standard error; *(**): significant at a 10%(5%) level
++ Chi-squared distributed with 1 degree of freedom; critical values: 2.706, 3.841, and 6.635 at the 10%, 5% and 1% level, respectively
☺ Alternative interpolation of missing data; see section 4.2
◊ Log lowest price, instead of log mid-price
○ Log highest price, instead of log mid-price
☼ Residual of log mid-price regression on fixed effects for 3 groups of prefectures; see section 4.2
◘ Residual of log mid-price regression on fixed effects for 4 groups of prefectures; see section 4.2



Table 9: Regression results for different prefectures
Dependent variable: log mid-price; averages from 53 cross-sectional regressions

(1) (2) (3) (4) (5) (6) (7) (8)

dryness -0.024 -0.022 0.005 -0.016 -0.075 -0.029 -0.077 -0.054
s.e.# 0.115 0.073 0.099 0.063 0.084 0.049 0.156 0.112

dryness2 0.005 0.005 0.000 0.003 0.013 0.006 0.015 0.010
s.e.# 0.020 0.012 0.018 0.011 0.015 0.009 0.027 0.020

Wy(-1) -0.239 -0.225 -0.358** 0.337
s.e.# 0.215 0.209 0.148 0.346

y(-1) 0.789** 0.733** 0.791** 0.632**
s.e.# 0.085 0.091 0.065 0.163

rho 0.799** 0.447** 0.711** 0.467** 0.864** 0.561** 0.727** 0.045
s.e.# 0.080 0.173 0.120 0.166 0.053 0.124 0.142 0.288

LM test ++ 72.672 14.195 34.156 14.921 162.589 30.492 14.687 1.912

Adjusted LM test ++ 8.868 5.324 4.461 4.889 5.203 5.250 5.774 2.240

lnL 50.637 92.980 44.709 77.025 66.475 133.809 21.233 32.168

N 62 62 59 59 100 100 21 21

# Huber-White robust standard error; *(**): significant at a 10%(5%) level
++ Chi-squared distributed with 1 degree of freedom; critical values: 2.706, 3.841, and 6.635 at the 10%, 5% and 1% level, respectively

Inland Coastal Non-Yangzi River Yangzi River



Table 10: Spatial dependence over time
Dependent variable: log mid-price; averages from annual cross-sectional regressions

1743/59 1760/77 1778/95 1743/59 1760/77 1778/95 1743/59 1760/77 1778/95 1743/59 1760/77 1778/95

dryness -0.032 -0.039 -0.019 -0.021 -0.044 -0.003 -0.022 -0.014 -0.011 -0.002 -0.091 -0.072
s.e.# 0.046 0.049 0.036 0.071 0.079 0.068 0.072 0.063 0.054 0.105 0.102 0.130

dryness2 0.006 0.008 0.003 0.004 0.008 0.003 0.006 0.003 0.002 0.002 0.017 0.011
s.e.# 0.008 0.009 0.006 0.012 0.015 0.011 0.013 0.012 0.009 0.018 0.018 0.024

Wy(-1) -0.317** -0.438** -0.421** -0.132 -0.318* -0.269 -0.236 -0.235 -0.206 0.507 0.398 0.089
s.e.# 0.143 0.127 0.141 0.249 0.189 0.205 0.212 0.189 0.225 0.347 0.335 0.355

y(-1) 0.689** 0.794** 0.825** 0.722** 0.770** 0.867** 0.656** 0.735** 0.805** 0.560** 0.675** 0.663**
s.e.# 0.072 0.065 0.049 0.096 0.099 0.062 0.104 0.092 0.077 0.171 0.168 0.148

rho 0.626** 0.636** 0.594** 0.419** 0.537** 0.392** 0.499** 0.491** 0.412** -0.011 -0.043 0.200
s.e.# 0.113 0.107 0.122 0.184 0.148 0.186 0.157 0.160 0.179 0.290 0.289 0.285

LM test ++ 55.081 49.577 33.836 14.030 19.028 10.085 21.218 15.071 8.823 2.006 1.517 2.235

Adjusted LM test ++ 7.801 7.425 6.109 4.652 7.117 4.164 5.735 4.673 4.306 1.736 1.702 3.255

lnL 132.407 159.879 187.459 75.277 91.540 110.913 63.126 77.879 89.298 30.820 33.447 32.242

# Huber-White robust standard error; *(**): significant at a 10%(5%) level
++ Chi-squared distributed with 1 degree of freedom; critical values: 2.706, 3.841, and 6.635 at the 10%, 5% and 1% level, respectively

All Prefectures Inland Prefectures Coastal Prefectures Yangzi River Prefectures
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