The Logic of Stone Spaces

John Harding and Guram Bezhanishvili

New Mexico State University
www.math.nmsu.edu/JohnHarding.html
jharding@nmsu.edu

BLAST, Boulder June 2010
Basics

\(\text{CL} = \text{the variety of all closure algebras} \ (B, \ C) \)

\(X^* = (\mathcal{P}X, C) \) where \(X \) is a topological space

View subvarieties of \(\text{CL} \) as extensions of Lewis’ \(\text{S4} \)

- \(\text{S4} \leftrightarrow \text{CL} \)
- \(\text{S4.1} \leftrightarrow \text{CL} + \text{IC}_x \leq \text{Cl}_x \)
- \(\text{S4.2} \leftrightarrow \text{CL} + \text{Cl}_x \leq \text{IC}_x \)
- etc.

Theorem (McKinsey-Tarski) If \(X \) is metrizable and has no isolated points, then \(X^* \) generates \(\text{CL} \).
Aim

For a Boolean algebra B with Stone space X, to determine the subvariety of CL generated by X^*, i.e. the modal logic of X. We can do this if B is complete or if B is countable.

Note For B countable and free, X is the Cantor space, so by the McKinsey-Tarski theorem its logic is S4.
Tools

Each quasiorder Q is a topological space where opens \equiv upsets.

Many subvarieties of \textbf{CL} are generated by classes of quasiorders.

- **S4** by finite quasitrees.
- **S4.1** by finite quasitrees with top level simple nodes.
- **S4.2** by the $Q \oplus C$ with Q finite quasitree and C cluster.

\[X \xrightarrow{f} Y \quad \text{cont + open + onto} \quad \Rightarrow \quad Y^* \xleftarrow{f^{-1}} X^* \quad \text{CL-embedding.} \]
Tools

Each quasiorder Q is a topological space where opens $:\equiv$ upsets.

Many subvarieties of CL are generated by classes of quasiorders.

- S4 by finite quasitrees.
- S4.1 by finite quasitrees with top level simple nodes.
- S4.2 by the $Q \oplus C$ with Q finite quasitree and C cluster.

$$X \xrightarrow{f} Y \text{ cont + open + onto } \implies Y^* \xleftarrow{f^{-1}} X^* \text{ CL-embedding.}$$

Example To show the logic of X is S4

Enough to find an onto interior $X \xrightarrow{f} Q$ for each finite quasitree Q as X^* will contain a generating set for S4.
Our job amounts to finding interior onto maps $X \xrightarrow{f} Q$.

Let's look at some easy examples ...
Easiest example

For X the Stone space of B, when is there an interior onto map

When X has a proper dense open set $U = f^{-1}[\text{top}]$.
When B has a proper ideal whose join is 1.
When B is infinite.
Easiest example

For X the Stone space of B, when is there an interior onto map f?

When X has a proper dense open set U ($= f^{-1}[\text{top}]$).
When B has a proper ideal whose join is 1.
When B is infinite.
Next easiest example

For X the Stone space of B, when is there an interior onto map
Next easiest example

For X the Stone space of B, when is there an interior onto map f?

When X has disjoint regular open U, V with $U \cup V$ proper dense.
When B has a non-principal normal ideal.
When B is incomplete.
The logic of ω^*

$\beta\omega = \text{the Stone Cech compactification of } \omega$

$\omega^* = \text{the remainder } \beta\omega - \omega$

$\omega^* = \text{the Stone space of } \mathcal{P}\omega / \text{Fin}$.

Theorem The logic of ω^* is $\textbf{S4}$.

Proof. We need an interior onto map $\omega^* \xrightarrow{f} Q$ for each finite quasitree Q. For this we need a technical result to recursively build a tree of ideals in our Boolean algebra.
Lemma \((a = 2^\omega)\). For \(P\) a partition of \(b \in \mathcal{P}_\omega/\text{Fin}\) and \(m \geq 1\), there are sets \(P_1, \ldots, P_m\) and maps \(f_1, \ldots, f_m\) with

1. \(P_1 \cup \cdots \cup P_m = P\) and \(P_i \cap P_j = \emptyset\) for each \(i \neq j\).
2. \(f_i : \text{Infinite}(P) \to P_i\) is 1-1 for each \(i \leq m\).
3. \(f_i(c) \in \text{Support}_P(c)\) for each \(c \in \text{Infinite}(P)\) and each \(i \leq m\).

Note \((a = 2^\omega)\) is an additional assumption of set theory.

Note We use this to recursively build a tree of ideals.
Corollaries

Theorem The logic of $\beta\omega$ is $\textbf{S4.1.2}$.

Proof. Any interior $\omega^* \to Q$ lifts to an interior $\beta\omega \to Q \oplus 1$ and this is exactly what we need.

Theorem For B a complete Boolean algebra with Stone space X.

1. If B is finite, the logic of X is classical.
2. If B is infinite and atomic, the logic of X is $\textbf{S4.1.2}$.
3. Otherwise the logic of X is $\textbf{S4.2}$.

Proof. Such X has a closed subspace homeomorphic to $\beta\omega$. We use this to build our map $X \to Q \oplus C$ for the difficult case 3.
Countable Boolean algebras

For B Boolean with Stone space X the following are equivalent

- B is countable
- B is generated by a countable chain C
- X is metrizable

The atomless case gives $S4$ by McKinsey-Tarski.

The scattered case gives Grz_n for some $n \leq \omega$ by old results.

So we may assume B is generated by a chain C where each interval contains a cover, and the condensation D of C is \mathbb{Q}. We will show $S4.1$ is the logic in this case.
Our setup ...

\[D = \text{condensation of } C \]
\[Y = \text{Stone space of free Boolean ext of } D \text{ (so } Y \cong \text{Cantor)} \]
\[Y \leq X \]

Let's sketch the idea ...

We get this as \(Y \cong \text{Cantor} \)
The hard part is to use the way \(Y \) sits in \(X \) to extend to ...

\[
\begin{array}{ccc}
X & \xrightarrow{g} & \text{Diagram 1} \\
\end{array}
\]

As squishing the top parts is interior we get

\[
\begin{array}{ccc}
X & \xrightarrow{h} & \text{Diagram 2} \\
\end{array}
\]

The \(Q \) we can get on the right are the ones we need to show S4.1.
Questions

Is the assumption \((a = 2^{\omega})\) necessary for the \(\omega^*\) result?

Extend countable results to any \(B\) generated by a chain, or tree.

Conjecture

The varieties generated by \(X^*\) for a Stone space \(X\) are exactly the finite joins of the ones above.

Little question

Does every atomless \(B\) have a dense ideal \(I\) with \(B/I\) atomless?