
Topological algebra based on sorts and properties
as free and cofree universes

Vaughan Pratt

Stanford University

BLAST 2010
CU Boulder

June 2



MOTIVATION

A well-structured category C should satisfy WS1-5.

WS1. The objects U,V , . . . of C are organized as universes equipped
with algebraic or spatial structure and topological or localic structure
listing possible paintings or (abstract) worlds.

WS2. Algebra is organized in terms of elements or points of universes
classified by sort s, t, . . .. Topology is organized in terms of states or
opens in universes each interpreting some property p of the elements.
We generalize topology to permit more than one property.

WS3. Universal algebra is furnished with operations f : s → t
between sorts as functions acting on elements. Universal topology
is furnished with dependencies d : p → q between properties as
functions on states, as yet another generalization.

WS4. Operations and dependencies are governed by equations.

WS5. ∃ enough free and cofree universes to contain all terms.



EXAMPLES

Grph 2 sorts: vertex, edge. s, t : E → V . Discrete (no properties).

Grp ω sorts: G i , i < ω. e : G 0 → G 1, m : G 2 → G 1. Discrete.

Set 1 sort: element. Discrete.

Top s = {1}, p = Sierpinski sp., 3 dependencies.

Vctk ω sorts and properties sn = pn = kn. Ops & deps l.t.’s

Chu(Set,K ) As for Top s = {1}, p = K , both rigid.

AbLC (locally compact abelian groups) As for Top. K = R/Z.

κ-Locales κ-Frmop: No sorts (pointless), κ properties Kα α < κ.∨
α : Lα → L for α < κ, ∧n : Ln → L1 for n < ω.

Stone spaces Locales with κ and Frm replaced by ω and Bool.

Simple ontology of domestic pets: 3 sorts: cat, dog, mammal
2 operations: iscm : cat → mammal , isdm : dog → mammal
3 properties: weight, color, hue
1 dependency: hue-of: color → hue.



OUTLINE

1. PROGRAM: topoalgebra = Yoneda + duality. Simple, general.

2. PRETAC: Pretopoalgebraic category C = (C ,S ,P)
Algebra S ⊆ ob(C ) consists of sorts s, t, . . .
Topology P ⊆ ob(C ) consists of properties (attributes) p, q, . . .

3. DEFINITIONS:
element (point) a : s → U, forming carrier Us = Hom(s,U), s ∈ S
state (open) x : U → p forming cocarrier Up = Hom(U, p), p ∈ P
map h : U → V , acts on left on elements and on right on states
operation f ∗ : t → s, dependency d : p → q
qualia k : s → p form a field Kp

s . Inner product Us × Up → Kp
s

universe U, free univ. Fs = s, cofree univ. Kp = p. F p
s = Kp

s

4. THEOREM: Every map is homomorphic and continuous

5. TAC = complete dense extension of a pretac.

6. ARITY = functorial sorts (s2) & properties (algebra, coalgebra,. . .)



1a. PROGRAM: Algebra

Translated into algebraic language, the Yoneda lemma treats multi-
sorted unary algebras.

That is, an algebra (Us ,Ut , . . . , f , g , . . .) consists of a family 〈Us〉s∈S

of sets indexed by sorts s ∈ S and a list of unary operations f : Us →
Ut between those sets.

Up to isomorphism there is one free algebra generated by a variable
xs for each sort s; let Fs denote a specific such.

Yoneda: ∃ bijections αs : Us → Hom(Fs ,U) and βst : Clost(U) →
Hom(Ft ,Fs) s.t. for all sorts s ∈ S , for all a ∈ Us and all fU : Us →
Ut in the clone Clost(U), αt(fU(a)) = αs(a)βst(fU).

That is, the applicative structure internal to U is dually imitated by
the homomorphic structure between U and the free algebras on one
generator.

In this view n-ary operations Un → U are mimicked as homorphisms
from Fs to Fsn where sn is a product sort, treated later.



1b. PROGRAM: Topology

Ordinary topology can be understood as dual to algebra, with a
single dual sort or property in giving rise to a cofree algebra K in,
namely the Sierpinski space. The two points of K in, as the two
continuous functions from 1 to K in, are to be understood as the two
possible values of the in property, making this property a predicate.

An open x of a space S is a morphism from S to K in. A point
a : 1 → S is in open x just when xa : 1 → K in is the point 1 of K in.

Our more general notion of topology provides for a set P of prop-
erties, as well as for dependencies between properties dual to the
operations between sorts.



2. PRETAC

A pretopoalgebraic category C = (C ,S ,P), or pretac for short, is a
bipointed category, meaning an (abstract) category C with distin-
guished objects of two kinds forming respective sets S and P.

Every category becomes a pretac by specifying S and P.

This selection imbues all objects of the category with concrete topoal-
gebraic structure, including the selected objects, and makes all mor-
phisms concrete maps acting on that structure.

Different selections turn the same object into different universes and
the same morphism into different maps.

We will show that every map is homomorphic and continuous with
respect to the imputed topoalgebraic structure.

The ”pre” indicates that not all possible universes need exist in a
pretac, even up to isomorphism. It furthermore indicates that the
continuous homomorphisms between two universes that are present
need not appear exactly once: they may be absent, or be duplicated.



3a. DEFINITIONS: Universes and maps

A choice of sorts and properties elevates each object to the status
of universe.

A universe is an object of C in the context of a choice of sorts and
properties.

A universe is free (cofree) when it is isomorphic in C to a sort
(property).

Accordingly we denote sort s by Fs and dually property p by Kp

when treating them as universes.

Universes isomorphic to a sort or property are themselves free or
cofree, but will not in general be the canonical such.

A map is a morphism of C in the context of a choice of sorts and
properties.



3b. DEFINITIONS: Elements and terms

An element of a universe U of sort s is a map a : Fs → U. We
denote the set of elements of U of sort s by Us = Hom(s,U).

A term of sort s → t is an element of Fs of sort t, that is, a
map f ∗ : Ft → Fs . Each universe U interprets each such term f ∗

contravariantly as the function fU : Us → Ut mapping each element
a ∈ Us (that is, a : Fs → U) to af : Ft → U, i.e. af ∗ ∈ Ut .

The notation f ∗ indicates that the term is to be interpreted con-
travariantly, namely by right action on elements a. The right action
can be understood as substitution of the term f in a.



3c. DEFINITIONS: States, dependencies, qualia

A state of a universe U expressing property p is a map x : U → Kp.
We denote the set of states of U expressing property p by Up =
Hom(U, p).

A dependency of property q on property p is a state of p expressing
q, that is, a morphism d : Kp → Kq. Each universe U interprets
each such d as the function dU : Up → Uq mapping each state
x ∈ Up, as x : U → Kp, to dx : U → Kq, i.e. dx ∈ Uq.

Example: The Sierpinski space K in has three dependencies on itself,
namely its three opens.

Qualia are schizophrenically states of free universes and elements of
cofree universes. In particular the sets F p

s and Kp
s are equal. K in

has two elements, of sort point.



3d. DEFINITIONS: Maps

For each morphism h : U → V ,

1 the left action of h on Us is the function
hs = Hom(s, h) : Us → Vs defined by hs(a) = ha for all
a ∈ Us .

2 the right action of h on V p is the function
hp = Hom(h, p) : V p → Up defined by hp(x) = xh for all
x ∈ V p.

3 the action of h is the pair (hS , hP) consisting of the family hS

of left actions hs : Us → Vs and the family hP of right actions
hp : V p → Up.

A map is a morphism interpreted by S and P as an action.

Different choices of S and P interpret the same morphism as differ-
ent maps.



4. Continuous and homomorphic

A map h : U → V is is homomorphic when its left action on elements
of U commutes with all operations fU of U.

It is continuous when its inverse maps states of V to states of U and
commutes with all dependencies dU of U. Here the inverse image
under h : U → V of a state x of V is the state xh of U.

Theorem Every map is homomorphic and continuous.

Proof The left action of h : U → V on fU(a) realized as af is
h(af ). By associativity this is (ha)f or fU(h(a)). States are trivially
preserved by inverse image, and maps commute with dependencies
by associativity, dual to the argument for operations. �



5a. Equivalence

The equational theory of a pretac consists of the commutative dia-
grams formed exclusively from operations, dependencies, and qualia.

It is immediate that for every universe U, the operations and depen-
dencies as interpreted in U satisfy the equations of the theory.

Maps h, k : U → V are called equivalent when they have the same
action.

Proposition Equivalence is identity for elements and states.

Proof Let a, b be equivalent elements of Us . Then a = a1s =
b1s = b. For equivalent states x , y of Up, x = 1px = 1py = y . �

This applies a fortiori to operations and dependencies, being respec-
tively elements and states.



5b. Actions are adjoint

Call an action adjoint when for every left action hs and right action
hp we have xhs(a) = hp(x)a.

Proposition The action of every map is adjoint.

Proof hs(a) is given by ha and hp(x) by xh. Hence adjointness
holds just when x(ha) = (xh)a. But this is just associativity. �

Call a pretac extensional when equivalence is identity for all maps.

Proposition Equivalence is a congruence.

Corollary The quotient of a pretac by equivalence is an extensional
pretac.

We assume henceforth that all pretacs are extensional.



5c. Dense extensions

A pretac (C ′,S ,P) extends (C ,S ,P) when C is a subcategory of
C ′ and all elements and states in C ′ of objects of C are in C . That
is, extension adds no new elements or states to universes of C .

In particular extension adds no new operations, dependencies, or
qualia.

A pretac is dense (in the sense of densely embedding S and P) when
every proper (nonidentity) extension has a new object.



5d. Dense extensions

Proposition Every pretac has a dense extension with no new
objects.

Proof For each non-sort U, non-property V , and adjoint action
U → V not representing a map h : U → V , adjoin h : U → V
with composites with elements of U and states of V defined to
correspond to that action. Adjointness ensures associativity of yha
for all elements a of U and states y of V . Define each remaining
composite hg : T → V for non-elements g : T → U to be the
map represented by the composition of the actions of h and g , and
likewise for composites kh : U → W for non-states k : V → W . �



5e. Complete pretacs

A dense pretac is complete when it is equivalent to its every dense
extension.

A tac (for TopoAlgebraic Category) is a complete dense pretac.

Density of the rationals in any Archimedean field, and the reals as a
complete Archimedean field, are posetal instances of these notions.



6a. ARITY: Secondary sorts and properties

To accommodate algebra and coalgebra with other operations than
those between two sorts, such as f : s2 → s and f : s → s + s, we
introduce the notions of secondary sort and property, for example
s2, s + s, p2, p + q, etc.

A secondary sort may participate in the signature as either the do-
main or codomain of operations, dependencies, and qualia.

Examples. (note contravariance)

1 Group multiplication m∗ : s → s2

2 Projections π∗
1, π

∗
2 : s → s2

3 Coalgebra d∗ : A + A → A



6b. ARITY: Projections and diagonal

The projections π∗
1, . . . , π

∗
n : s → sn interpret morphisms t : sn → U

as n-tuples (tπ1, . . . , tπn) where each tπi ∈ Us .

Inclusions i∗ : s + t → s, j∗ : s + t → t work dually, viz.
∀a ∈ Us .∃!ai∗ ∈ Us+t , and
∀b ∈ Ut .∃!aj∗ ∈ Us+t .



6c. ARITY: Limits on secondary sorts and properties

In a nonextensional pretac each such n-tuple of elements of sort s
in a universe U may appear any number of times in Hom(sn,U).

In a dense pretac we want each such n-tuple to appear exactly once.

This can be accomplished neatly by treating secondary sorts and
properties as ordinary universes inasmuch as they do not participate
in the definitions of element, state, action, extensionality, and exten-
sion, and moreover compose only with their associated projections
or inclusions, at first.

Extensionality then identifies multiple appearances of an n-tuple,
while density creates all n-tuples.

Hom(sn,U) is then in a natural bijection with Un
s .

This approach dualizes to coproducts, and more generally to limits
and colimits.

The remaining composites are then filled in when possible. When
not the offending object is discarded (full subcategory).



6d. Example

Take the two sorts to be V and E as usual for graphs. Take the one
primary property to be Z as the bi-infinite path (a connected acyclic
directed graph, unit in-degree and out-degree for all vertices), Take
1 to be the 0-ary property p0, aka a final object.

G

V
�

�
���v/

-s∗-
t∗

E

6
e/

-/
m

Z

@
@

@@R

!
H

HHHHH
HHj

1� 0

where mt∗ = ms∗ + 1. The map 0! forces a state labeling edge
e ∈ GV with 0, for every v ∈ GV .

Graphs labelable in this way are just the regular graphs, namely those
for which every path from vertex u to vertex v has the same length.

Call a graph discrete when there exist enough states from G to Z
to label any given vertex or edge with all possible integers.

The discrete graphs in this tac form the category of regular graphs.


