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1. Reprise of the relevant bits of my BLAST ’08/9 talks

Goal: express each of the five postulates of Book I of Euclid’s
Elements equationally.

Their bilinear content is confined to the 3rd and 4th postulates,
concerning respectively circles and right angles.

Bilinearity is equational. X

But those equations depend on numbers, which Book I outlawed.
The obvious trick of identifying the Euclidean line with the underlying
field would appear to inevitably lose information in a way that
prevents the square of the line from being a Euclidean space.

Absent bilinearity we have only affine spaces.

Question: Can each of postulates 1, 2, and 5 be written equationally,
observing the proscription on numbers, so that together they define a
variety of affine spaces over some field k?

Answer: Yes, for k each of Q and Q[i] (complex rationals)



2. Approach

1. We defined a variety Grv of ”groves” with a binary operation ab
denoting the point to which segment AB must be produced to double
its length, interpretable in Ab as ab = 2b − a. Writing abc for (ab)c ,
we expressed Postulate 2 as aa = abb = a,
while Postulate 5 became ab(cd) = ac(bd).

2. We equipped Grv with ω many commutative but non-associative
n-ary centroid operations a1 ⊕ a2 ⊕ . . .⊕ an.
We wrote Postulate 1 as two equations

a1 ⊕ . . .⊕ an−1 ⊕ ((a1 ⊕ . . .⊕ an−1)
n→ b) = b

(a1 ⊕ . . .⊕ an−1)
n→ (a1 ⊕ . . .⊕ an) = an,

for each centroid operation in terms of ab (a
4→ b = abab etc.)

We showed that the resulting variety is equivalent to AffQ.

3. We extended Q to Q[i] with a binary operation a · b denoting b
rotated 90 degrees about a.

End of reprise.



3. This talk; Geodesic spaces

At FMCS (Vancouver May 2009) Pieter Hofstra asked:

Can non-Euclidean geometry be treated analogously?

My answer (weeks later): weaken Postulate 5 to right distributivity,

abc = ac(bc).

Thinking of ba, a, b, ab, etc. as points evenly spaced along a
geodesic γ, right distributivity expresses a symmetry of γ about an
arbitrary point c , namely that the inversion γc in c =
. . . , bac , ac, bc , abc , . . . is itself a geodesic, namely
. . . , bc(ac), ac, bc , ac(bc), . . . .

These algebras have sometimes been identified with quandles as used
to algebraicize knot theory. This is wrong because the quandle
operations interpreted in Grp are b−1ab and bab−1, which collapse in
Ab to ab = a, whereas the above is ba−1b which is very useful in Ab.



4. Geodesic theory

A geodesic space or geode is an algebraic structure with a binary
operation x → y , or xy , of extension (with xyz for (xy)z) satisfying

G0 xx = x G1 xyy = x G2 xyz = xz(yz)

Geometrically, segment A0A1 is extended to A2 = A0 → A1 by
producing A0A1 to twice its length: |A0A2| = 2|A0A1|.
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Examples

Symmetric spaces: Affine, hyperbolic, elliptic, etc.

Groups: Interpret x → y as yx−1y (abelian groups: 2y − x)

Number systems: Integers, rationals, reals, complex numbers, etc.

Combinatorial structures: sets, dice, etc.



5. Geodesics

A discrete geodesic γ(A0,A1) is a subspace generated by A0,A1.

A geodesic in S is a directed union of discrete geodesics in S .

Examples: Z, Zn, Q, Q/Z, E (§11). Not R (not fully represented).

Geodesics properly generalize cyclic groups.

Example: E = Z4/{0 = 2}. •1 •2=0 •3

S is torsion-free when every finite geodesic in S is a point.

The connected components of γ(A0,A1) are . . . , A−2,A0,A2, . . .
and . . .A−1,A1,A3, . . .. These become one component just when
A0 = A2n+1 for some n, as with Z3, Z5, etc.

The category Gsp

Geode homomorphism: a map h : S → T s.t. h(xy) = h(x)h(y).

Denote by Gsp the category of geodes and their homomorphisms.



6. Sets

Theorem 1. For any space S, the following are equivalent.

(i) γ(A,B) = {A,B} for all A,B ∈ S (cf. γ(N,S), N&S poles).
(ii) The connected components of S are its points.
(iii) xy = x for all x , y ∈ S.

A set is a geode S with any (hence all) of those properties.

Define USetGsp : Set → Gsp as USetGsp(X ) = (X , π2
1), i.e. xy

def
= x .

Left adjoint FGspSet(S) = the set of connected components of S .

Cf. D : Set → Top where D(X ) = (X , 2X ), a discrete space.

These embed Set fully in Top (Pos, Grph, Cat, etc.) and Gsp.
In Top etc. the embedding D preserves colimits.
In Gsp the (reflective) embedding USetGsp preserves limits!

In Set, 1 + 1 = 2 and 2ℵ0 = i1 (discrete continuum).
In Top, 1 + 1 = 2 but 2ℵ0 = Cantor space, not discrete.
In Gsp, 2ℵ0 = i1, discrete (!), but 1 + 1 = Z, a homogeneous (no
origin) geodesic with two connected components.



7. Normal form terms and free spaces

A normal form geodesic algebra term over a set X of variables is one
with no parentheses or stuttering, namely a finite nonempty word
x1x2 . . . xn over alphabet X with no consecutive repetitions.

Theorem 2. All terms are reducible to normal form using G0-G2.
(G2 removes parentheses while G1 and G0 remove repetitions.)

Theorem 3. The normal form terms over X form a geode.

Denote this space by F (X ), the free space on X consisting of the
“X -ary” operations. F ({}) = 0 (initial), F ({0}) = 1 (final).

F ({0, 1}) = 1 + 1 has two connected components 0α and 1α.
It is an infinite discrete geodesic γ(0, 1) = {0 n→ 1} =

Z = . . . , 1010, 010, 10, 0, 1, 01, 101, 0101, . . .

Call this geodesimal notation, tally notation with sign and parity bits.

Geodesimal operations: x
3→ y = yxy , x

−3−→ y = yxyx , etc.



8. The free space 1+1+1. 3 connected components 0α, 1α, 2α

All points out to ∞ shown. Curvature κ undefined (−∞).
Triangles congruent by defn. but ∠, ∠, and ∠ incomparable.
∃ disjoint inclined geodesics: γ(101, 201) ∩ γ(102, 202) = ∅ (barely!)



9. The curvature hierarchy

All spaces (including 1 + 1 + 1 itself) homogeneous.
Not shown: Sets (xy = x , §3), Dice (xyxy = x , §11).



10. Dice and subdirect irreducibles of Grv

The edge E = E3 = {1, 0 = 2, 3} is the unique geodesic with an odd
number of points and two connected components.

• E3 = Z4/{0 = 2}
• E6 = Z8/{0 = 4, 2 = 6}
• E12 = Z16/{0 = 8, 2 = 10, 4 = 12, 6 = 14}, etc.

Ab and Grv have the same SI’s (subdirect irreducibles), namely Zpn ,
n ≤ ∞, as groves, except for p = 2 when Z4.2n is replaced by E3.2n in
Grv. (Zp∞ is the Prüfer p-group = the direct limit of the inclusion
Zp0 ⊆ Zp1 ⊆ Zp2 ⊆ . . ..) Key fact: Z4 is a subdirect product of E’s.

E ∈ V iff Z4 ∈ V for all varieties V ⊆ Gsp.

A die is a subspace of En, n ≤ ∞. Equivalently, a model of
xx = xyy = x , xyxy=x .

Dice = HSP(Z4) = SP(E) ⊂ Grv.



11. The geodesic neighborhood
Operations: xy [yxz ] xy , x−1, e

x (π2
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Gsp
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Set

[yxy ] = x6

x (π3
2)� Cube

x + x = 06

y + x + z� Cube∗
x + y� Bool

x2 = x
6

Every path in this commutative diagram denotes a forgetful functor,
hence one with a left adjoint. Vertical arrows forget the indicated
equation, horizontal arrows interpret the blue operation above as the
arrow’s label. E.g. the left adjoint of the functor UAbGrp : Ab → Grp
is abelianization, the arrow to Schar from Ab interprets Schar’s [yxz]
as y − x + z in Ab, the left adjoint of the functor
USetGsp : Set → Gsp gives the set FGspSet(S) of connected
components of S , and so on.



12. Groves: Grv = Gsp + G3. Euclid’s 5th postulate
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Euclid’s fifth or parallel postulate: EX and HY , when inclined
inwards, meet when produced. Euclid: “inclined” = α + β < 180o .

Our inclination condition: a witness triangle ∆AEH with
parallelogram BCGF (centroid D) s.t B,C at midpoints of AE ,AH.

Our 5th postulate: EF and HG , when obtained by extending the four
sides of the skew quadrilateral ABDC , meet when extended.

A → B → (C → D)= A → C → (B → D) (G3)
E → F = H → G

G3 xy(zw) = xz(yw) | xywz = xzwy | xywzywz = x | x102102 = x


