Geodesic spaces : momentum :: Groups : symmetry

> Vaughan Pratt Stanford University

> > BLAST 2010 Boulder, CO 06/05/10

# 1. Reprise of the relevant bits of my BLAST '08/9 talks

Goal: express each of the five postulates of Book I of Euclid's *Elements* equationally.

Their bilinear content is confined to the 3rd and 4th postulates, concerning respectively circles and right angles.

Bilinearity is equational.  $\checkmark$ 

But those equations depend on numbers, which Book I outlawed. The obvious trick of identifying the Euclidean line with the underlying field would appear to inevitably lose information in a way that prevents the square of the line from being a Euclidean space.

Absent bilinearity we have only affine spaces.

*Question:* Can each of postulates 1, 2, and 5 be written equationally, observing the proscription on numbers, so that together they define a variety of affine spaces over some field k?

Answer: Yes, for k each of  $\mathbb{Q}$  and  $\mathbb{Q}[\mathbf{i}]$  (complex rationals)

## 2. Approach

1. We defined a variety **Grv** of "groves" with a binary operation *ab* denoting the point to which segment *AB* must be produced to double its length, interpretable in **Ab** as ab = 2b - a. Writing *abc* for (ab)c, we expressed Postulate 2 as aa = abb = a, while Postulate 5 became ab(cd) = ac(bd).

2. We equipped **Grv** with  $\omega$  many commutative but non-associative *n*-ary centroid operations  $a_1 \oplus a_2 \oplus \ldots \oplus a_n$ . We wrote Postulate 1 as two equations

$$egin{aligned} a_1 \oplus \ldots \oplus a_{n-1} \oplus \left( \left( a_1 \oplus \ldots \oplus a_{n-1} 
ight) \stackrel{n}{
ightarrow} b 
ight) &= b \ & \left( a_1 \oplus \ldots \oplus a_{n-1} 
ight) \stackrel{n}{
ightarrow} \left( a_1 \oplus \ldots \oplus a_n 
ight) &= a_n, \end{aligned}$$

for each centroid operation in terms of ab ( $a \xrightarrow{4} b = abab$  etc.) We showed that the resulting variety is equivalent to **Aff**<sub>0</sub>.

3. We extended  $\mathbb{Q}$  to  $\mathbb{Q}[\mathbf{i}]$  with a binary operation  $a \cdot b$  denoting b rotated 90 degrees about a.

End of reprise.

### 3. This talk; Geodesic spaces

At FMCS (Vancouver May 2009) Pieter Hofstra asked:

Can non-Euclidean geometry be treated analogously?

My answer (weeks later): weaken Postulate 5 to right distributivity,

$$abc = ac(bc).$$

Thinking of *ba*, *a*, *b*, *ab*, etc. as points evenly spaced along a geodesic  $\gamma$ , right distributivity expresses a symmetry of  $\gamma$  about an arbitrary point *c*, namely that the inversion  $\gamma c$  in  $c = \dots, bac, ac, bc, abc, \dots$  is itself a geodesic, namely  $\dots, bc(ac), ac, bc, ac(bc), \dots$ .

These algebras have sometimes been identified with quandles as used to algebraicize knot theory. This is wrong because the quandle operations interpreted in **Grp** are  $b^{-1}ab$  and  $bab^{-1}$ , which collapse in **Ab** to ab = a, whereas the above is  $ba^{-1}b$  which is very useful in **Ab**.

## 4. Geodesic theory

A geodesic space or **geode** is an algebraic structure with a binary operation  $x \rightarrow y$ , or xy, of **extension** (with xyz for (xy)z) satisfying

 $\mathbf{G0} \quad xx = x \qquad \mathbf{G1} \quad xyy = x \qquad \mathbf{G2} \quad xyz = xz(yz)$ 

Geometrically, segment  $A_0A_1$  is extended to  $A_2 = A_0 \rightarrow A_1$  by producing  $A_0A_1$  to twice its length:  $|A_0A_2| = 2|A_0A_1|$ .



## Examples

Symmetric spaces: Affine, hyperbolic, elliptic, etc.

*Groups*: Interpret  $x \rightarrow y$  as  $yx^{-1}y$  (abelian groups: 2y - x)

*Number systems*: Integers, rationals, reals, complex numbers, etc. *Combinatorial structures*: sets, dice, etc.

## 5. Geodesics

A discrete geodesic  $\gamma(A_0, A_1)$  is a subspace generated by  $A_0, A_1$ .

A **geodesic** in S is a directed union of discrete geodesics in S.

*Examples:*  $\mathbb{Z}$ ,  $\mathbb{Z}_n$ ,  $\mathbb{Q}$ ,  $\mathbb{Q}/\mathbb{Z}$ ,  $\mathbb{E}$  (§11). Not  $\mathbb{R}$  (not fully represented). Geodesics properly generalize cyclic groups.

Example: 
$$\mathbb{E} = \mathbb{Z}_4 / \{0 = 2\}$$
.  $\frac{1}{\bullet}$   $2 = 0$   $3$ 

S is torsion-free when every finite geodesic in S is a point.

The **connected components** of  $\gamma(A_0, A_1)$  are ...,  $A_{-2}, A_0, A_2, ...$ and ...,  $A_{-1}, A_1, A_3, ...$  These become one component just when  $A_0 = A_{2n+1}$  for some *n*, as with  $\mathbb{Z}_3$ ,  $\mathbb{Z}_5$ , etc.

## The category Gsp

**Geode homomorphism**: a map  $h: S \to T$  s.t. h(xy) = h(x)h(y).

Denote by **Gsp** the category of geodes and their homomorphisms.

### 6. Sets

**Theorem 1.** For any space *S*, the following are equivalent.

(i) γ(A, B) = {A, B} for all A, B ∈ S (cf. γ(N, S), N&S poles).
(ii) The connected components of S are its points.
(iii) xy = x for all x, y ∈ S.

A set is a geode S with any (hence all) of those properties.

Define  $U_{\text{SetGsp}}$ : Set  $\rightarrow$  Gsp as  $U_{\text{SetGsp}}(X) = (X, \pi_1^2)$ , i.e.  $xy \stackrel{\text{def}}{=} x$ . Left adjoint  $F_{\text{GspSet}}(S)$  = the set of connected components of S.

Cf.  $\mathcal{D}$ : **Set**  $\rightarrow$  **Top** where  $\mathcal{D}(X) = (X, 2^X)$ , a discrete space.

These embed **Set** fully in **Top** (**Pos**, **Grph**, **Cat**, etc.) and **Gsp**. In **Top** etc. the embedding  $\mathcal{D}$  preserves colimits. In **Gsp** the (reflective) embedding  $U_{\text{SetGsp}}$  preserves limits!

In Set, 1 + 1 = 2 and  $2^{\aleph_0} = \beth_1$  (discrete continuum). In Top, 1 + 1 = 2 but  $2^{\aleph_0} =$  Cantor space, not discrete. In Gsp,  $2^{\aleph_0} = \beth_1$ , discrete (!), but  $1 + 1 = \mathbb{Z}$ , a homogeneous (no origin) geodesic with two connected components.

## 7. Normal form terms and free spaces

A **normal form** geodesic algebra term over a set X of variables is one with no parentheses or stuttering, namely a finite nonempty word  $x_1x_2...x_n$  over alphabet X with no consecutive repetitions.

**Theorem 2.** All terms are reducible to normal form using G0-G2. (G2 removes parentheses while G1 and G0 remove repetitions.)

**Theorem 3.** The normal form terms over X form a geode.

Denote this space by F(X), the **free space** on X consisting of the "X-ary" operations.  $F({}) = \mathbf{0}$  (initial),  $F({}0{}) = \mathbf{1}$  (final).

 $F(\{0,1\}) = 1 + 1$  has two connected components  $0\alpha$  and  $1\alpha$ . It is an infinite discrete geodesic  $\gamma(0,1) = \{0 \xrightarrow{n} 1\} =$ 

 $\mathbb{Z} = \dots, 1010, 010, 10, 0, 1, 01, 101, 0101, \dots$ 

Call this *geodesimal notation*, tally notation with sign and parity bits. Geodesimal operations:  $x \xrightarrow{3} y = yxy$ ,  $x \xrightarrow{-3} y = yxyx$ , etc. **8.** The free space 1+1+1. 3 connected components  $0\alpha$ ,  $1\alpha$ ,  $2\alpha$ 



All points out to  $\infty$  shown. Curvature  $\kappa$  undefined  $(-\infty)$ . Triangles congruent by defn. but  $\angle$ ,  $\angle$ , and  $\angle$  incomparable.  $\exists$  disjoint inclined geodesics:  $\gamma(101, 201) \cap \gamma(102, 202) = \emptyset$  (barely!)

### 9. The curvature hierarchy



All spaces (including 1 + 1 + 1 itself) homogeneous. Not shown: Sets (xy = x, §3), Dice (xyxy = x, §11).

#### 10. Dice and subdirect irreducibles of Grv

The edge  $\mathbb{E} = \mathbb{E}_3 = \{1, 0 = 2, 3\}$  is the unique geodesic with an odd number of points and two connected components.

• 
$$\mathbb{E}_3=\mathbb{Z}_4/\{0=2\}$$

• 
$$\mathbb{E}_6 = \mathbb{Z}_8 / \{0 = 4, 2 = 6\}$$

•  $\mathbb{E}_{12} = \mathbb{Z}_{16} / \{0=8, 2=10, 4=12, 6=14\},$  etc.

Ab and **Grv** have the same SI's (subdirect irreducibles), namely  $\mathbb{Z}_{p^n}$ ,  $n \leq \infty$ , as groves, except for p = 2 when  $\mathbb{Z}_{4,2^n}$  is replaced by  $\mathbb{E}_{3,2^n}$  in **Grv**. ( $\mathbb{Z}_{p^{\infty}}$  is the Prüfer *p*-group = the direct limit of the inclusion  $\mathbb{Z}_{p^0} \subseteq \mathbb{Z}_{p^1} \subseteq \mathbb{Z}_{p^2} \subseteq \ldots$ ) Key fact:  $\mathbb{Z}_4$  is a subdirect product of  $\mathbb{E}$ 's.  $\mathbb{E} \in \mathcal{V}$  iff  $\mathbb{Z}_4 \in \mathcal{V}$  for all varieties  $\mathcal{V} \subseteq \mathbf{Gsp}$ .

A die is a subspace of  $\mathbb{E}^n$ ,  $n \le \infty$ . Equivalently, a model of xx = xyy = x, xyxy = x.

 $\mathsf{Dice} = \mathsf{HSP}(\mathbb{Z}_4) = \mathsf{SP}(\mathbb{E}) \subset \mathsf{Grv}.$ 

### 11. The geodesic neighborhood



Every path in this commutative diagram denotes a forgetful functor, hence one with a left adjoint. Vertical arrows *forget* the indicated *equation*, horizontal arrows *interpret* the blue *operation* above as the arrow's label. E.g. the left adjoint of the functor  $U_{AbGrp} : Ab \rightarrow Grp$  is abelianization, the arrow to Schar from Ab interprets Schar's [yxz] as y - x + z in Ab, the left adjoint of the functor  $U_{SetGsp} : Set \rightarrow Gsp$  gives the set  $F_{GspSet}(S)$  of connected components of S, and so on.

12. Groves: Grv = Gsp + G3. Euclid's 5th postulate



Euclid's fifth or parallel postulate: *EX* and *HY*, when inclined inwards, meet when *produced*. Euclid: "inclined" =  $\alpha + \beta < 180^{\circ}$ .

Our inclination condition: a *witness triangle*  $\triangle AEH$  with parallelogram *BCGF* (centroid *D*) s.t *B*, *C* at midpoints of *AE*, *AH*.

Our 5th postulate: *EF* and *HG*, when obtained by extending the four sides of the skew quadrilateral *ABDC*, meet when *extended*.

$$\begin{array}{ccc} A \rightarrow B \rightarrow (C \rightarrow D) = A \rightarrow C \rightarrow (B \rightarrow D) \\ E \rightarrow & F &= & H \rightarrow & G \end{array}$$
 (G3)

**G3**  $xy(zw) = xz(yw) \mid xywz = xzwy \mid xywzywz = x \mid x102102 = x$