A SIMPLE SOLUTION TO BURSIDE'S PROBLEM

These are my (= KK's) notes on a solution to Burnside's Problem discovered by Jan-Christoph Schlage-Puchta.

Here $\langle R \rangle_F$ denotes the normal subgroup of F generated by R.

Theorem 1. (Nielson-Schreier) If F is free and $H \leq F$, then H is free. Moreover,

 $\operatorname{rank}(H) - 1 = (\operatorname{rank}(F) - 1)[F : H].$

Choose and fix a prime p.

Lemma 2. If $N \triangleleft G$, [G:N] = p, and $a \in G$, then either

(1) $a^G = a^N$, which holds iff $C_G(a)N = G$, or (2) $a^G = a^N \cup a_2^N \cup \cdots \cup a_p^N$, which holds iff $C_G(a) \leq N$.

Proof. The fact that $N \triangleleft G$ implies that G has a well defined action by conjugation on N-conjugacy classes. The G-orbit of a^N has $[G: \operatorname{Stab}(a^N)] = [G: C_G(a)N]$ Nconjugacy classes. Since N is maximal, either $C_G(a)N = G$, in which case $a^G = a^N$, or else $C_G(a) \leq N$, in which case a^G splits into p N-conjugacy classes.

Definition 3. Let $F = F_X$ be the free group over the finite set X.

The *p*-value of an element $w \in F$ is $||w|| = \max\{k \mid \exists v \in F(v^{p^k} = w)\}$. The *p*-deficiency of a presentation $\langle X|R\rangle$, with X finite, is

$$\operatorname{def}_p\langle X|R\rangle = |X| - 1 - \sum_{r \in R} p^{-\|r\|}$$

The *p*-deficiency of G is the supremum def_pG of the *p*-deficiencies of the presentations of G.

Lemma 4. If G is a f.g. group with positive p-deficiency, then G has a normal subgroup N of index p.

Proof. If G has positive p-deficiency, then it has a presentation $\langle X|R\rangle$ with positive pdeficiency. Let A_X be the elementary abelian group generated by X and let $\varphi \colon F_X \to$ A_X be the homomorphism that is the identity on generators.

Claim 5. $\varphi(\langle R \rangle_F) \neq A_X$.

If $r \in R$ and $\varphi(r) \neq 0$, then $\varphi(r)$ has no p-th root in A_X , so r has no p-th root in F_X . Hence ||r|| = 0. There must be fewer than X - 1 such r, since $0 < \text{def}_p \langle X | R \rangle =$ $|X| - 1 - \sum_{r \in R} p^{-||r||}$ forces $\sum_{r \in R} p^{-||r||} < |X| - 1$. This shows that ||r|| = 0 can hold for fewer than |X| - 1 elements $r \in R$. $\varphi(\langle R \rangle_F)$ is a subgroup of A generated by fewer elements than the rank of A_X , so $\varphi(\langle R \rangle_F) \neq A_X$.

Choose a maximal subgroup $M \leq A$ containing $\varphi(\langle R \rangle_F)$. $M \triangleleft A$ and [A:M] = p, so if $H = \varphi^{-1}(M)$ then $R \subseteq H \triangleleft F$ and [F:H] = p. Taking $N = H/\langle R \rangle_F$ we get $N \triangleleft G$ and [G:N] = p.

Lemma 6. If $N \triangleleft G$, [G:N] = p, then $\operatorname{def}_p N \geq p \cdot \operatorname{def}_p G$.

Proof. It suffices to show that if $\langle X|R \rangle$ is a presentation for G, then there is a presentation $\langle Y|S \rangle$ for N such that $\operatorname{def}_p\langle Y|S \rangle \ge p \cdot \operatorname{def}_p\langle X|R \rangle$.

Given $\langle X|R\rangle$, let $F = F_X$ and let $\varphi \colon F \to G$ be a surjective homomorphism whose kernel is $\langle R\rangle_F$. Let $H = \varphi^{-1}(N)$, so that $\langle R\rangle_F \leq H \triangleleft F$, [F : H] = p and $H \cong F_Y$ for some Y satisfying $|Y| - 1 = (|X| - 1) \cdot p$. The restriction of φ to H is a map from $H \cong F_Y$ onto N with kernel $\langle R\rangle_F$, so it may be used to describe a presentation of N in term of the generating set Y. We need to find the relators.

Choose $r \in R$. Let's compute $||r||_F$ versus $||r||_H$.

Case 1.
$$r^{F} = r^{H}$$
.

If $v \in F$ and $v^{p^n} = r$, then $v^p \in H$ and $(v^p)^{p^{n-1}} = v^{p^n} = r$. Thus $||r||_H \ge ||r||_F - 1$. Hence $p^{-||r||_H} \le p \cdot p^{-||r||_F}$.

Case 2. $r^F \neq r^H$.

In this case we have $r^F = r_1^H \cup r_2^H \cup \cdots \cup r_p^H$ with $r_1 = r$. If $v \in F$ is such that $v^{p^n} = r$, then $v \in C_F(r) \leq H$, so $||r||_F = ||r||_H$ $(= ||r_1||_H = ||r_2||_H = \cdots = ||r_p||_H)$. Thus, $\sum_{i=1}^p p^{-||r_i||_H} = p \cdot p^{-||r||_F}$

Let $S \subseteq H$ be the set of all elements $r \in R$ for which $r^F = r^H$ holds (Case 1) together with all the elements $r_1 (= r), r_2, \ldots, r_p$ when $r^F \neq r^H$ holds (Case 2). The normal subgroup of H generated by S is the subgroup generated by the H-conjugacy classes of elements of S. This is the same as the subgroup generated by the F-conjugacy classes of elements of R, namely $\langle R \rangle_F$. Thus, $\langle Y | S \rangle$ is a presentation of N. It's p-deficiency is

$$\operatorname{def}_p\langle Y|S\rangle = |Y| - 1 - \sum_{s \in S} p^{-\|s\|_H} \ge p(|X| - 1) - \sum_{r \in R} p \cdot p^{-\|r\|_F} = p \cdot \operatorname{def}_p\langle X|R\rangle.$$

Lemma 7. There is a 2-generated torsion group with positive p-deficiency.

Proof. $G = \langle X | R \rangle$ where $X = \{x_1, x_2\}$ and $R = \{w^{p^{n(w)}} \mid w \in F_X\}$, where the numbers n(w) are chosen to make the *p*-deficiency positive.