Four Commutators

Let \(A \) be an algebra.

Definition 1. A relation \(R \subseteq A^n \) is compatible if it is a subalgebra of \(A^n \). A tolerance is a compatible, reflexive, symmetric binary relation. A congruence is a compatible equivalence relation (i.e., a transitive tolerance). A quasiorder is a reflexive, transitive relation on \(A \).

If \(\alpha \) and \(\beta \) are tolerances on \(A \), then
\[
M(\alpha, \beta) = \left\{ \left[\begin{array}{cc} t(a,c) & t(a,d) \\ t(b,c) & t(b,d) \end{array} \right] \mid t \text{ a term, } a \alpha b, c \beta d \right\}.
\]

Definition 2. Let \(\alpha, \beta \) be tolerances on \(A \), \(\delta \) be a congruence, and \(\sqsubseteq \) be a compatible quasiorder on \(A \).

1. \(C(\alpha, \beta; \delta) \) holds if \(p \equiv_\delta q \Rightarrow r \equiv_\delta s \) for every \(\left[\begin{array}{cc} p & q \\ r & s \end{array} \right] \in M(\alpha, \beta) \).
2. \(SR(\alpha, \beta; \delta) \) holds if \(p \equiv_\delta q \Rightarrow p \equiv_\delta r \equiv_\delta s \) for every \(\left[\begin{array}{cc} p & q \\ r & s \end{array} \right] \in M(\alpha, \beta) \).
3. \(S(\alpha, \beta; \delta) \) holds if \(C(\alpha, \beta; \delta) \) holds and \(SR(\alpha, \beta; \delta) \) holds.
4. \(R(\alpha, \beta; \sqsubseteq) \) holds if \(p \sqsubseteq u \& s \sqsubseteq u \Rightarrow (r \sqsubseteq u \& q \sqsubseteq u) \) for every \(\left[\begin{array}{cc} p & q \\ r & s \end{array} \right] \in M(\alpha, \beta) \) and every \(u \in A \).

Lemma 3. Suppose that \(\alpha \) and \(\beta \) are tolerances on \(A \) and \(X \in \{ C, S, SR, R \} \). The set of all relations \(\delta \) of the appropriate type (congruences or compatible quasiorders) which satisfy \(X(\alpha, \beta; \delta) \) is closed under arbitrary intersection.

Definition 4. Let \(\alpha, \beta \) be tolerances on \(A \). If \(X \in \{ C, S, SR \} \), then \([\alpha, \beta]_X\) is the least congruence \(\delta \) for which \(X(\alpha, \beta; \delta) \) holds. If \(X = R \), then \([\alpha, \beta]_X = \sqsubseteq \cap \sqsubseteq \) where \(\sqsubseteq \) is the least compatible quasiorder for which \(X(\alpha, \beta; \sqsubseteq) \) holds.

A is abelian if \([1, 1]_C = 0\), strongly abelian if \([1, 1]_S = 0\), rectangular if \([1, 1]_R = 0\), and strongly rectangular if \([1, 1]_{SR} = 0\).

Theorem 5. If \(A \) is a 2-element algebra, then
1. \(A \) is abelian iff \(A \) has a compatible Mal'tsev operation iff \(A \) is essentially unary or polynomially equivalent to the 2-element group.
2. \(A \) is rectangular iff \(A \) has a compatible semilattice operation iff \(A \) is essentially unary or polynomially equivalent to the 2-element semilattice.
3. \(A \) is strongly abelian iff \(A \) is strongly rectangular iff \(A \) is essentially unary.

Theorem 6. If \(A \) is an arbitrary algebra, then
1. \(A \) is rectangular iff \(A \) is a subalgebra of a reduct of an algebra with a compatible semilattice operation.
2. \(A \) is strongly rectangular iff \(A \) is a discretely ordered subalgebra of a reduct of an algebra with a compatible semilattice operation. (A discrete order is one in which no two distinct elements are comparable.)

Theorem 7. If \(A \) generates a variety in which no algebra has a strongly abelian congruence, then \(A \) is abelian iff \(A \) is a subalgebra of a reduct of an algebra with a compatible Mal'tsev operation.
At the level of varieties, the following results are known. We say that “\(\mathcal{V} \) omits \(\mathbf{X} \)” to mean that no algebra in \(\mathcal{V} \) has a nonzero congruence \(\theta \) satisfying \([\theta, \theta]_x = 0 \).

Theorem 8. Let \(\mathcal{V} \) be a variety.

(A) (1) \(\mathcal{V} \) omits \(\mathbf{S} \).
(2) \(\mathcal{V} \) omits \(\mathbf{SR} \).
(3) \(\mathcal{V} \) satisfies a nontrivial idempotent Maltsev condition.
(4) There is a nontrivial identity in the language \(\{\circ, \lor, \land\} \) satisfied by all congruence lattices of algebras in \(\mathcal{V} \).
(5) \(D_1 \) is not embeddable in the congruence lattice of any algebra in \(\mathcal{V} \).
(6) (If \(\mathcal{V} \) is locally finite): \(\mathcal{V} \) omits type 1.

(B) (1) \(\mathcal{V} \) omits \(\mathbf{R} \) (hence also \(\mathbf{SR} \), hence also \(\mathbf{S} \)).
(2) \(\mathcal{V} \) satisfies an idempotent Maltsev condition that fails in the variety of semilattices.
(3) There is a nontrivial identity in the language \(\{\lor, \land\} \) satisfied by all congruence lattices of algebras in \(\mathcal{V} \).
(4) \(D_2 \) is not embeddable in the congruence lattice of any algebra in \(\mathcal{V} \).
(5) (If \(\mathcal{V} \) is locally finite): \(\mathcal{V} \) omits types 1 and 5.

(C) (1) \(\mathcal{V} \) omits \(\mathbf{C} \) (hence also \(\mathbf{S} \), hence also \(\mathbf{SR} \)).
(2) \(\mathcal{V} \) satisfies an idempotent Maltsev condition that fails in every nontrivial variety of modules.
(3) The congruence lattices of algebras in \(\mathcal{V} \) satisfy
\[
(x \land y = x \land z) \rightarrow (x \land y = x \land (y \lor z)).
\]
(4) \(M_3 \) is not embeddable in the congruence lattice of any algebra in \(\mathcal{V} \).
(5) (If \(\mathcal{V} \) is locally finite): \(\mathcal{V} \) omits types 1 and 2.

(D) (1) \(\mathcal{V} \) omits \(\mathbf{R} \) and \(\mathbf{C} \) (hence also \(\mathbf{S} \) and \(\mathbf{SR} \)).
(2) The congruence lattices of algebras in \(\mathcal{V} \) satisfy
\[
(x \lor y = x \lor z) \rightarrow (x \lor y = x \lor (y \land z)).
\]