Four Commutators

Let **A** be an algebra.

Definition 1. A relation $R \subseteq A^n$ is *compatible* if it is a subalgebra of \mathbf{A}^n . A *tolerance* is a compatible, reflexive, symmetric binary relation. A *congruence* is a compatible equivalence relation (i.e., a transitive tolerance). A *quasiorder* is a reflexive, transitive relation on A.

If α and β are tolerances on **A**, then

$$M(\alpha, \beta) = \left\{ \begin{bmatrix} t(\mathbf{a}, \mathbf{c}) & t(\mathbf{a}, \mathbf{d}) \\ t(\mathbf{b}, \mathbf{c}) & t(\mathbf{b}, \mathbf{d}) \end{bmatrix} \mid t \text{ a term, } \mathbf{a} \alpha \mathbf{b}, \mathbf{c} \beta \mathbf{d} \right\}.$$

Definition 2. Let α, β be tolerances on **A**, δ be a congruence, and \sqsubseteq be a compatible quasiorder on A.

- (1) $\mathbf{C}(\alpha, \beta; \delta)$ holds if $p \equiv_{\delta} q \Rightarrow r \equiv_{\delta} s$ for every $\begin{bmatrix} p & q \\ r & s \end{bmatrix} \in M(\alpha, \beta)$.
- (2) $\mathbf{SR}(\alpha, \beta; \delta)$ holds if $p \equiv_{\delta} s \Rightarrow p \equiv_{\delta} q \equiv_{\delta} r \equiv_{\delta} s$ for every $\begin{bmatrix} p & q \\ r & s \end{bmatrix} \in M(\alpha, \beta)$.
- (3) $\mathbf{S}(\alpha, \beta; \delta)$ holds if $\mathbf{C}(\alpha, \beta; \delta)$ holds and $\mathbf{SR}(\alpha, \beta; \delta)$ holds.
- (4) $\mathbf{R}(\alpha, \beta; \sqsubseteq)$ holds if $(p \sqsubseteq u \& s \sqsubseteq u) \Rightarrow (r \sqsubseteq u \& q \sqsubseteq u)$ for every $\begin{bmatrix} p & q \\ r & s \end{bmatrix} \in M(\alpha, \beta)$ and every $u \in A$.

Lemma 3. Suppose that α and β are tolerances on \mathbf{A} and $\mathbf{X} \in \{\mathbf{C}, \mathbf{S}, \mathbf{SR}, \mathbf{R}\}$. The set of all relations δ of the appropriate type (congruences or compatible quasiorders) which satisfy $\mathbf{X}(\alpha, \beta; \delta)$ is closed under arbitrary intersection.

Definition 4. Let α, β be tolerances on **A**. If $\mathbf{X} \in \{\mathbf{C}, \mathbf{S}, \mathbf{SR}\}$, then $[\alpha, \beta]_{\mathbf{X}}$ is the least congruence δ for which $\mathbf{X}(\alpha, \beta; \delta)$ holds. If $\mathbf{X} = \mathbf{R}$, then $[\alpha, \beta]_{\mathbf{X}} = \sqsubseteq \cap \supseteq$ where \sqsubseteq is the least compatible quasiorder for which $\mathbf{X}(\alpha, \beta; \sqsubseteq)$ holds.

A is abelian if $[1,1]_{\mathbf{C}} = 0$, strongly abelian if $[1,1]_{\mathbf{S}} = 0$, rectangular if $[1,1]_{\mathbf{R}} = 0$, and strongly rectangular if $[1,1]_{\mathbf{SR}} = 0$.

Theorem 5. If A is a 2-element algebra, then

- (1) **A** is abelian iff **A** has a compatible Maltsev operation iff **A** is essentially unary or polynomially equivalent to the 2-element group.
- (2) **A** is rectangular iff **A** has a compatible semilattice operation iff **A** is essentially unary or polynomially equivalent to the 2-element semilattice.
- (3) A is strongly abelian iff A is strongly rectangular iff A is essentially unary.

Theorem 6. If A is an arbitrary algebra, then

- (1) **A** is rectangular iff **A** is a subalgebra of a reduct of an algebra with a compatible semilattice operation.
- (2) **A** is strongly rectangular iff **A** is a discretely ordered subalgebra of a reduct of an algebra with a compatible semilattice operation. (A discrete order is one in which no two distinct elements are comparable.)

Theorem 7. If **A** generates a variety in which no algebra has a strongly abelian congruence, then **A** is abelian iff **A** is a subalgebra of a reduct of an algebra with a compatible Maltsev operation.

At the level of varieties, the following results are known. We say that " \mathcal{V} omits \mathbf{X} " to mean that no algebra in \mathcal{V} has a nonzero congruence θ satisfying $[\theta, \theta]_{\mathbf{X}} = 0$.

Theorem 8. Let V be a variety.

- (A) (1) \mathcal{V} omits \mathbf{S} .
 - (2) \mathcal{V} omits \mathbf{SR} .
 - (3) V satisfies a nontrivial idempotent Maltsev condition.
 - (4) There is a nontrivial identity in the language $\{\circ, \lor, \land\}$ satisfied by all congruence lattices of algebras in \mathcal{V} .
 - (5) \mathbf{D}_1 is not embeddable in the congruence lattice of any algebra in \mathcal{V} .
 - (6) (If V is locally finite): V omits type 1.
- (B) (1) V omits R (hence also SR, hence also S).
 - (2) V satisfies an idempotent Maltsev condition that fails in the variety of semilattices.
 - (3) There is a nontrivial identity in the language $\{\vee, \wedge\}$ satisfied by all congruence lattices of algebras in \mathcal{V} .
 - (4) \mathbf{D}_2 is not embeddable in the congruence lattice of any algebra in \mathcal{V} .
 - (5) (If V is locally finite): V omits types 1 and 5.
- (C) (1) \mathcal{V} omits \mathbf{C} (hence also \mathbf{S} , hence also $\mathbf{S}\mathbf{R}$).
 - (2) V satisfies an idempotent Maltsev condition that fails in every nontrivial variety of modules.
 - (3) The congruence lattices of algebras in V satisfy

$$(x \land y = x \land z) \rightarrow (x \land y = x \land (y \lor z)).$$

- (4) \mathbf{M}_3 is not embeddable in the congruence lattice of any algebra in \mathcal{V} .
- (5) (If V is locally finite): V omits types 1 and 2.
- (D) (1) V omits R and C (hence also S and SR).
 - (2) The congruence lattices of algebras in V satisfy

$$(x \lor y = x \lor z) \to (x \lor y = x \lor (y \land z)).$$

