
Representing finite groups as Galois groups over Q

Conventions, Terminology, Notation.

• Fields are assumed to have characteristic 0.
• If k is a field, k(x1, . . . , xm) denotes an extension of k by algebraically independent elements
x1, . . . , xm; i.e., k(x1, . . . , xm) is the field of fractions of the polynomial ring k[x1, . . . , xm]. If
m = 1, we write k(x) instead of k(x1).
• For a ring R, a subring S, and a subset A of R, S[A] is the subring of R generated by S ∪A.
• G(L/k) denotes the Galois group of a Galois (i.e., finite, normal, separable) extension L/k. A

group G is said to occur as a Galois group over k if G ∼= G(L/k) for a Galois extension L/k.
• If f(x, y) ∈ k[x, y] is considered as a polynomial in y, we may write fx(y) for f(x, y).

Definition. A field k is hilbertian if for every irreducible polynomial fx(y) ∈ k[x, y], there exist
infinitely many elements b ∈ k such that the specialization fb(y) := f(b, y) is irreducible in k[y].

Main Theorem on Hilbertian Fields. If k is a hilbertian field and a finite group G occurs as a
Galois group over k(x1, . . . , xm) for some m ≥ 1, then G occurs as a Galois group over k.

Hilbert’s Irreducibility Theorem. Q is hilbertian.

Corollary. Sn is a Galois group over Q for every integer n ≥ 1.

Proof of the Main Theorem

Theorem 1. Let L/k(x) be a Galois extension of degree n > 1.

(1) There exist α ∈ L and f(x, y) ∈ k[x, y] such that
(i) k(x)(α) = k(x)[α] = L and f(x, α) = 0,
(ii) fx(y) is monic and irreducible of degree n over k(x) (or equivalently, over k[x]).

(2) If b ∈ k is such that fb(y) := f(b, y) ∈ k[y] is irreducible, then the following hold for the
evaluation homomorphism ω : k[x]→ k, h(x) 7→ h(b):
(i) ω extends to a homomorphism ω̃ of the subring k[x][α] of L onto the field L′ := k[y]/(fb)

in such a way that α′ := ω̃(α) is a root of fb; namely,

ω̃ : k[x][α]→ k[y]/(fb) =: L′,

h(x, α) 7→ h(b, y) + (fb) = h(b, α′).

(ii) If A is a finite subset of L such that α ∈ A and A is invariant under G(L/k(x)), then
(a) there exists a nonzero polynomial u(x) ∈ k[x] such that u(x)a ∈ k[x][α] for all

a ∈ A;
(b) if u(b) 6= 0, then ω̃ extends further to a homomorphism

ω̂ : (k[x][A] ⊆ )k[x][α][1/u(x)]→ L′

in such a way that ω̂(1/u(x)) = 1/ω̃(u(x)) = 1/u(b);
(c) L′/k is a Galois extension of degree |L′ : k| = n = |L : k(x)|, and there exists

an isomorphism G(L/k(x)) → G(L′/k), σ 7→ σ′ such that the following diagram
commutes for each σ ∈ G(L/k(x)):
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Corollary 2. If k is a hilbertian field, then every finite group G that occurs as a Galois group over
k(x), also occurs as a Galois group over k.

Theorem 3. Let L/k(x) be a Galois extension of degree n > 1, and let α and f satisfy conditions
(i)–(ii) from Theorem 1 (1). If l/k is a finite extension with l ⊆ L, and hx(y) ∈ l[x, y] is irreducible
over l(x) but splits over L, then for almost all (i.e., for all but finitely many) b ∈ k,

fb(y) ∈ k[y] is irreducible =⇒ hb(y) ∈ l[y] is irreducible.

Corollary 4. The following conditions on a field k are equivalent:

(a) k is hilbertian.
(b) For every finite extension l/k and for arbitrary polynomials (h1)x(y), . . . , (hm)x(y) ∈ l[x, y]

that are irreducible over l(x), there exist infinitely many b ∈ k such that the specialized poly-
nomials (h1)b(y), . . . , (hm)b(y) are irreducible in l[y].

Corollary 5. Finite extensions of hilbertian fields are hilbertian.

Lemma 6. Let k be a hilbertian field, and let f(x1, . . . , xs) ∈ k[x1, . . . , xs] have degree ≥ 1 in xs
(s ≥ 2). If f(x1, . . . , xs) ∈ k[x1, . . . , xs] is irreducible, then there exist infinitely many b ∈ k such that
f(b, x2, . . . , xs) ∈ k[x2, . . . , ss] is irreducible.

Theorem 7. Finitely generated extensions of hilbertian fields are hilbertian.

Proof of the Main Theorem. We have k(x1, . . . , xm) = k(x1, . . . , xm−1)(xm), and k(x1, . . . , xm−1)
is hilbertian by Theorem 7. Therefore, by Corollary 2, if G is a Galois group over k(x1, . . . , xm), then
it is also a Galois group over k(x1, . . . , xm−1). Hence the claim follows by induction on m.


