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of the form fU(x, y) ≈ fV (x, y) so that B(f) has no closed, proper,
nonempty lattice filter.

The term p from Example 2.13 is a Hobby–McKenzie term, and
therefore also a Taylor term. To see this, suppose that F is a closed,
proper, nonempty lattice filter of B(p). Then since F is a nonempty
filter it contains the top element N . Since F is closed it must contain
{1} (≡E N) and also {3} (≡E N). Since F is a lattice filter, it contains
{1} ∩ {3} = ∅. But any lattice filter containing ∅ is improper.

2.5. The Term Condition

Let A = 〈A; F 〉 be an algebra. An n-ary relation R ⊆ An is com-

patible if it is a subalgebra of An. If B is a subalgebra of A, then
the restriction of a relation R ⊆ An to B is R|B := R ∩ Bn. If δ is
a congruence on A, then R/δ := {(a1/δ, . . . , an/δ) | (a1, . . . , an) ∈ R}.
Both R|B and R/δ are compatible if R is. If δ is a congruence, then R
is δ-closed if R = δ ◦ R ◦ δ. (I.e., if a δ b R c δ d implies a R d.)

A compatible, reflexive, symmetric binary relation is called a tol-

erance. We will usually denote tolerances by upper case italic letters:
R, S, T, . . .. A compatible equivalence relation (i.e., a transitive toler-
ance) is a congruence, and congruences will usually be denoted by
lower case Greek letters: α, β, γ, . . .. The tolerance or congruence gen-
erated by set X ⊆ A × A is usually denoted by TgA(X) or CgA(X)
respectively, although if X contains only a few pairs then we may write,
for example, CgA(a, b) or CgA((a, b), (c, d)) instead. If T is a tolerance
on A, then a maximal subset B ⊆ A such that B × B ⊆ T is called a
block of T . If T is in fact a congruence, then a block is the same thing
as a congruence class. A tolerance or congruence is trivial if it is the
equality relation and nontrivial otherwise.

The collection of congruences on A, ordered by inclusion, is an al-
gebraic lattice which is denoted Con(A). Its least and largest elements
are denoted 0 and 1. Meet and join are denoted ∧ and ∨ and are com-
puted by α∧β = α∩β and α∨β = tr.cl.(α∪β) where tr.cl. represents
transitive closure.

An m-ary polynomial operation of A is an operation f : Am → A
such that f(x1, . . . , xm) = tA(x1, . . . , xm, a) for some (m + n)-ary term
t and some tuple a ∈ An.

If S and T are tolerances on A, then an S, T -matrix is a 2 × 2
matrix of elements of A of the form

[

p q
r s

]

=

[

f(a,u) f(a,v)
f(b,u) f(b,v)

]
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where f(x,y) is an (m + n)-ary polynomial of A, a S b, and u T v.
The set of all S, T -matrices is denoted M(S, T ).

Since tolerances are compatible with all polynomial operations, any
two elements in the same row of an S, T -matrix are T -related and any
two elements in the same column are S-related.

The fact that S and T are symmetric relations implies that M(S, T )
is closed under interchanging rows or columns:
[

p q
r s

]

∈ M(S, T ) ⇔

[

r s
p q

]

∈ M(S, T ) ⇔

[

s r
q p

]

∈ M(S, T ) .

If S = T , then M(S, T ) = M(T, T ) is also closed under transpose, as
one sees by interchanging the roles of x and y in the polynomial f(x,y)
that defines a given matrix.

Definition 2.18. Let S and T be tolerances on an algebra A, and
let δ be a congruence on A. If p ≡δ q implies that r ≡δ s whenever

(2.5)

[

p q
r s

]

∈ M(S, T ),

then we say that C(S, T ; δ) holds, or S centralizes T modulo δ.

By interchanging the rows of matrices one sees that C(S, T ; δ) holds
if and only if

p ≡δ q ⇐⇒ r ≡δ s

for every S, T -matrix in (2.5).
The S, T -term condition is the condition C(S, T ; 0). There are

other similar conditions called term conditions that we will meet later,
but this is the original one.

When establishing that the implication defining C(S, T ; δ) holds, or
when making use of the fact, we may use underlining to highlight places
in equations or expressions where changes are to be made. For example,
we may write the implication defining C(S, T ; δ) in the following form:
If

f(a,u) ≡δ f(a,v),

then

f(b,u) ≡δ f(b,v) .

The relation C( , ; ) is called the centralizer relation. The
reason that this terminology is used is that when A is a group and
S, T and δ are congruences on A, then C(S, T ; δ) holds if and only if
[S, T ] ≤ δ (see Chapter 1 of [19]).

The basic properties of the centralizer relation are enumerated in
the following theorem.
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Theorem 2.19. Let A be an algebra with tolerances S, S ′, T, T ′ and
congruences α, αi, β, δ, δ′, δj. The following are true.

(1) (Monotonicity in the first two variables) If C(S, T ; δ) holds
and S ′ ⊆ S, T ′ ⊆ T , then C(S ′, T ′; δ) holds.

(2) C(S, T ; δ) holds if and only if C(CgA(S), T ; δ) holds.
(3) C(S, T ; δ) holds if and only if C(S, δ ◦ T ◦ δ; δ) holds.
(4) If T ∩δ = T ∩δ′, then C(S, T ; δ) holds if and only if C(S, T ; δ′)

holds.
(5) (Semidistributivity in the first variable) If C(αi, T ; δ) holds for

all i ∈ I, then C(
∨

i∈I αi, T ; δ) holds.
(6) If C(S, T ; δj) holds for all j ∈ J , then C(S, T ;

∧

j∈J δj) holds.

(7) If T ∩ (S ◦ (T ∩ δ) ◦ S) ⊆ δ, then C(S, T ; δ) holds.
(8) If β ∧ (α ∨ (β ∧ δ)) ≤ δ, then C(α, β; δ) holds.
(9) Let B be a subalgebra of A. If C(S, T ; δ) holds in A, then

C(S|B, T |B; δ|B) holds in B.
(10) If δ′ ≤ δ, then the relation C(S, T ; δ) holds in A if and only if

C(S/δ′, T/δ′; δ/δ′) holds in A/δ′.

Proof. Item (1) follows from the fact that M(S ′, T ′) ⊆ M(S, T ).
For (2), C(CgA(S), T ; δ) =⇒C(S, T ; δ) follows from (1), since S ⊆

CgA(S). For the reverse implication (and also for the proof of item (5)),
we will argue that if Si, is a tolerance, C(Si, T ; δ) holds for all i ∈ I,
and α := tr.cl.

(
⋃

i∈I Si

)

, then C(α, T ; δ). (To complete the proof of
(2) we need this only when |I| = 1, while in (5) we need it only when
the Si are congruences.)

Choose any matrix in M(α, T ). If it is

[

p q
r s

]

=

[

f(a,u) f(a,v)
f(b,u) f(b,v)

]

,

then a is related to b by tr.cl.
(
⋃

i∈I Si

)

, so there exist tuples a =
a0 Si1 a1 Si2 · · · Sin an = b. These tuples determine matrices

[

pk qk

pk+1 qk+1

]

:=

[

f(ak,u) f(ak,v)
f(ak+1,u) f(ak+1,v)

]

∈ M(Sik+1
, T ).

We must show that p ≡δ q implies r ≡δ s, so assume that p ≡δ q. This is
the same as p0 ≡δ q0, and so by induction (using that C(Sik , T ; δ) holds
for all k) we get that pk ≡δ qk for all k. Therefore r = pn ≡δ qn = s.
This completes the proofs of (2) and (5).

For (3), the implication C(S, δ ◦T ◦δ; δ) =⇒C(S, T ; δ) follows from
(1), since T ⊆ δ ◦ T ◦ δ. For the reverse implication, assume that
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C(S, T ; δ) holds, that
[

p q
r s

]

=

[

f(a,u) f(a,v)
f(b,u) f(b,v)

]

∈ M(S, δ ◦ T ◦ δ),

and that p ≡δ q. There exist tuples u′ and v′ such that u δ u′ T v′ δ v.
The matrix

[

p′ q′

r′ s′

]

=

[

f(a,u′) f(a,v′)
f(b,u′) f(b,v′)

]

is an S, T -matrix. Moreover,

p′ = f(a,u′) δ f(a,u) = p δ q = f(a,v) δ f(a,v′) = q′.

Since C(S, T ; δ) holds, it follows that r′ ≡δ s′. Hence

r = f(b,u) δ f(b,u′) = r′ δ s′ = f(b,v′) δ f(b,v) = s,

or r ≡δ s. This establishes C(S, δ ◦ T ◦ δ; δ).
For (4), recall that elements in the same row of an M(S, T ) are

T -related. Therefore, if

[

p q
r s

]

∈ M(S, T ), then since T ∩ δ = T ∩ δ′

we get that

p ≡δ q ⇐⇒ p ≡T∩δ q ⇐⇒ p ≡T∩δ′ q ⇐⇒ p ≡δ′ q,

and
r ≡δ s ⇐⇒ r ≡T∩δ s ⇐⇒ r ≡T∩δ′ s ⇐⇒ r ≡δ′ s.

Therefore the implication p ≡δ q =⇒ r ≡δ s is equivalent to p ≡δ′

q =⇒ r ≡δ′ s.

For (6), assume that

[

p q
r s

]

∈ M(S, T ). If p ≡ q (mod
∧

δj),

then p ≡ q (mod δj) for all j. Since C(S, T ; δj) holds for all j we get
that r ≡ s (mod δj) for all j, or equivalently that r ≡ s (mod

∧

δj).
This shows that C(S, T ;

∧

j∈J δj) holds.

For (7), choose an S, T -matrix M =

[

p q
r s

]

. Assume that p ≡δ q.

Since the elements in the same row of M are T -related and the elements
in the same column are S-related, we have r S p T ∩δ q S s. Moreover,
r T s since these elements belong to the same row. Together this yields
that r T ∩ (S ◦ (T ∩ δ) ◦ S) s. By the assumption in (7), this implies
that r ≡δ s. This proves (7).

For item (8), if β ∧ (α∨ (β ∧ δ)) ≤ δ, then β ∩ (α ◦ (β ∩ δ) ◦α) ≤ δ,
so C(α, β; δ) holds by (7).

Item (9) holds because any instance of the implication in Defini-
tion 2.18 defining C(S|B, T |B; δ|B) in B is an instance of the implica-
tion defining C(S, T ; δ) in A.
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For item (10), it suffices to observe that, when δ′ ≤ δ,
[

p′/δ′ q′/δ′

r′/δ′ s′/δ′

]

∈ M(S/δ′, T/δ′)

if and only if there exist p ≡δ′ p′, q ≡δ′ q′, r ≡δ′ r′, and s ≡δ′ s′ with
[

p q
r s

]

∈ M(S, T ),

and that p ≡δ q ⇔ p′/δ′ ≡δ/δ′ q′/δ′ and r ≡δ s ⇔ r′/δ′ ≡δ/δ′ s′/δ′. �

Definition 2.20. The commutator of S and T , denoted by [S, T ],
is the least congruence δ such that C(S, T ; δ) holds. T is abelian if
[T, T ] = 0. An algebra A is abelian if its largest congruence is.

By Theorem 2.19 (6), the class of all δ such that C(S, T ; δ) holds
is closed under complete meet, so there is a least such δ. This implies
that [S, T ] exists for any two tolerances S and T .

It is a well known fact, easily derivable from the definitions, that A

is abelian if and only if the diagonal of A×A is a class of a congruence
of A× A.

Definition 2.21. The centralizer of T modulo δ, denoted by
(δ : T ), is the largest congruence α on A such that C(α, T ; δ) holds.

By Theorem 2.19 (5), the class of all α such that C(α, T ; δ) holds
is closed under complete join, so there is a largest such α. This implies
that (δ : T ) exists for every δ and T . By Theorem 2.19 (2), the cen-
tralizer (δ : T ) contains every tolerance S such that C(S, T ; δ) holds.

2.6. Congruence Identities

If V is a variety of algebras, then any lattice identity that holds
in the class {Con(A) | A ∈ V} of congruence lattices of algebras
in V is called a congruence identity of V. The congruence va-

riety of V, denoted CON(V), is the subvariety of L generated by
{Con(A) | A ∈ V}, or alternatively is the variety lattices axioma-
tized by the congruence identities that hold in V. Similarly, a lattice
quasi-identity that holds in congruence lattices of members of V is a
congruence quasi-identity of V.

The following theorem will be used in several places in this mono-
graph.

Theorem 2.22. (Cf. [6]) Let Q be a quasi-identity satisfying (W).
The class of varieties satisfying Q as a congruence quasi-identity is
definable by a set of idempotent Maltsev conditions.


