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This is the first talk in a series. The goal of the series is to address certain

undecidable problems in algebra by associating to each Turing machine an

algebraic structure. This talk will cover the requisite background information on

Turing machines, computability, and the halting problem. No prior knowledge of

computability theory will be assumed.
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The Goal

Associate to each Turing machine, T , an algebraic object, A(T ) such
that...

A(T ) has property P if and only if T halts.

Since determining if T halts is an undecidable problem, we will have
shown that determining if an algebra has property P is undecidable.
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Turing Machines

Definition

A Turing machine consists of

1 an infinite tape divided into cells, each containing either a 0 or a 1;

2 a movable “head” that can read the contents of whatever cell it is
currently placed over and write a 0 or 1 to that cell; and

3 a program, consisting of a (finite) sequence 5-tuples, (s, r ,w ,m, t),
meant to be interpreted as “if in state s and reading r , then write w ,
move m, and enter state t.

... ...0 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0

(s1, r1,w1,m1, t1),
(s2, r2,w2,m2, t2),
...
(sn, rn,wn,mn, tn)

L R
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More definitions...

Definition

The contents of the tape that a Turing machine is given is called the
input. All inputs are assumed to be finite (only finitely many 1’s).

Since the set of all inputs is countable, we fix some enumeration of
them and refer to the input by a natural number, ϕ(n)

If the Turing machine eventually stops computing, it is said to have
halted.

If a Turing machine has halted on some input, the contents of the
tape are called the output. We enumerate the output. (ϕ(n) = m)
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Examples

1 Turing’s first machine: take any tape as input and print the sequence
1, 0, 1, 0, . . ..

(START, 0, 1 R, s1)
(START, 1, 1 R, s1)
(s1, 0, 0 R, START)
(s1, 1, 0 R, START)

2 Addition: take two numbers (in unary) and output their sum.

(START, 1, 0, R, s1)
(s1, 1, 1, R, s1)
(s1, 0, 1, R, HALT)
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More Examples

Multiplication by 2: take a single number (in unary) and output 2
times that number.

(START, 1, 0, R, s1)
(s1, 1, 1, R, s1)
(s1, 0, 0, R, s2)
(s2, 0, 1, R, s3)
(s2, 1, 1, R, s2)
(s3, 0, 1, L, s4)
(s4, 1, 1, L, s4)
(s4, 0, 0, L, s5)
(s5, 1, 1, L, s5)
(s5, 0, 0, R, START)

Church-Turing Thesis

Any effectively calculable function is a computable function.
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The Halting Problem

Since a Turing machine consists of a finite list of instructions, the set of all
Turing machines is countable. We enumerate them as ϕi , i ∈ N.

Let

K = {(i , x) | ϕi (x) halts}.

Question: Given a pair, (i , x) ∈ N2, can we computably decide if
(i , x) ∈ K ?
That is... Is there a Turing machine, η, such that η = χK?
Answer: No!
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The Halting Problem

Theorem

There is no Turing machine, η, such that η = χK .

Proof. Suppose that such an η exists. Then

Ψ(x , i) =

{
ϕi (x) + 1 if η(i , x) = 1

1 otherwise

is computable (need a universal Turing machine for this). Let
ψ(x) = Ψ(x , x). Since ψ is computable, there is some y such that
ψ = ϕy . Note that ψ is total, so (y , y) ∈ K . Therefore

ϕy (y) = ψ(y) = ϕy (y) + 1,

a contradiction.
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Summary (and more!)

A Turing machine is theoretic construction to model a kind of
computer.

The Church-Turing Thesis:

Every effectively calculable function is computable.

There is no algorithm to determine whether a general Turing machine
halts (K is undecidable).

Given a property P, if we show

∀T [(T has P) ⇔ (T halts)],

then we have shown that there is no algorithm to decide if T has P.
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Thank you.
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