Undecidable Problems in Algebra From Turing Machines to Algebras

Matthew Moore

The University of Colorado at Boulder

March 15, 2011

We describe a method by which each Turing machine, \mathcal{T}, is encoded in a finite algebra, $\mathrm{A}(\mathcal{T})$. The algebra $\mathrm{A}(\mathcal{T})$ will be such that $\mathrm{A}(\mathcal{T})$ possesses certain properties if and only if \mathcal{T} halts, thus showing that these properties are undecidable in general.

Last time...

- Turing machines: A theoretical machine consisting of a tape, a reading head, and a program consisting of 5-tuples of the form (α, r, w, D, β) where α, β are states, $r, w \in\{0,1\}$, and $D \in\{\mathrm{~L}, \mathrm{R}\}$. Meant to be interpreted as "if in state α reading r, write w, move D, and enter state β."
- The Church-Turing Thesis: Any effectively calculable function is a computable function.
- The halting problem: given a Turing machine \mathcal{T} and an input tape, n, decide if $\mathcal{T}(n)$ halts. This problem is uncomputable (undecidable).
- Thus, if we show that

$$
\forall \mathcal{T}[\mathrm{A}(\mathcal{T}) \text { has } P \Leftrightarrow \mathcal{T} \text { halts }]
$$

then we have shown that P is undecidable.

Configurations

Definition

Given a Turing machine, \mathcal{T}, a configuration of \mathcal{T} is a triple $\mathcal{Q}=(t, n, \gamma)$, where $t: \mathbb{Z} \rightarrow\{0,1\}$ is a tape, $n \in \mathbb{Z}$ is the position of the reading head on the tape, and γ is a state of \mathcal{T}. If the line $\left(\gamma, t(n), w, D, \gamma^{\prime}\right)$ appears in the program of \mathcal{T}, we write $\mathcal{T}(\mathcal{Q})=\left(t^{\prime}, n \pm 1, \gamma^{\prime}\right)$, where t^{\prime} is the modified tape and $n \pm 1$ is determined by D.

$$
\mathcal{T}(t, n, \gamma)=\left(t^{\prime}, n+1, \gamma^{\prime}\right)
$$

The Configuration Algebra

- The set of all possible configurations of \mathcal{T} together with the unary partial operation $\mathcal{T}(\cdot)$ is called the configuration algebra of \mathcal{T}.
- The configuration algebra is finite if and only if \mathcal{T} halts.
- We will define $\mathrm{A}(\mathcal{T})$ such that $\mathbf{B} \leq \mathrm{A}(\mathcal{T})^{X}$ encodes the configuration algebra as certain subsets of \mathbf{B}.

The underlying set of $\mathrm{A}(\mathcal{T})$

- Let $U=\{1,2, H\}$ and $W=\{C, D, \bar{C}, \bar{D}\}$. Let

$$
A=\{0\} \cup U \cup W
$$

- Let μ_{0}, \ldots, μ_{k} be the states of \mathcal{T}, with μ_{0} the halting state and μ_{1} the starting state.
- Let

$$
V_{i r}^{w}=\left\{C_{i r}^{w}, D_{i r}^{w}, M_{i}^{r}, \overline{C_{i r}^{w}}, \overline{D_{i r}^{w}}, \overline{M_{i}^{r}}\right\}
$$

for $0 \leq i \leq k$ and $r, w \in\{0,1\}$.

- Let $V_{i r}=V_{i r}^{0} \cup V_{i r}^{1}, V_{i}=V_{i 0} \cup V_{i 1}$, and $V=\bigcup_{i} V_{i}$.
- $\mathrm{A}(\mathcal{T})=A \cup V$.

Marking the Tape

Define a non-transitive relation \prec on $U=\{1,2, H\}$ by

$$
Q_{2} \prec H \prec 1 ?
$$

Extend the relation pointwise to $U^{X}: f \prec g$ iff $f(x) \prec g(x)$ for all $x \in X$.

Definition

For $\mathbf{B} \leq \mathrm{A}(\mathcal{T})^{X}$ and $F \subseteq B \cap U^{X}$, we say that F is sequentiable if $f^{-1}(\{H\}) \neq \emptyset$ for all $f \in F$ and there is some ordering, $F=\left\{f_{n} \mid n \in N\right\}$ and $N=[a, b] \cap \mathbb{Z}$, such that $f_{n} \prec f_{n+1}$.

f_{n-1}	1	\cdots	1	H	2	2	2	\cdots	2
	f_{n}	1	\cdots	1	1	H	2	2	\cdots
f_{n+1}	1	\cdots	1	1	1	H	2	\cdots	2
	1								

Marking the Tape

Let $X_{n}=f_{n}^{-1}(\{H\}) \neq \emptyset$,

$$
X_{L}=\bigcap_{f \in F} f^{-1}(\{1\}) \quad \text { and } \quad X_{R}=\bigcap_{f \in F} f^{-1}(\{2\})
$$

Then $X=X_{L} \cup X_{R} \cup \bigcup X_{n}$ is a partitioning of X.

	X_{L}		\cdots	X_{n-2}	X_{n-1}	X_{n}	X_{n+1}	X_{n+2}	\cdots	X_{R}
	f_{n-1}	1	\cdots	1	H	2	2	2	\cdots	2
	f_{n}	1	\cdots	1	1	H	2	2	\cdots	2
f_{n+1}	1	\cdots	1	1	1	H	2	\cdots	2	

Encoding the Configurations

Let $n \in N, \mathcal{Q}=\left(t, n, \mu_{i}\right)$ be a configuration, and $\eta \in\{0,1\}^{X}$ any function. Define an element $\beta=\beta(\mathcal{Q}) \in \mathbf{B} \leq \mathrm{A}(\mathcal{T})^{X}$ by

$$
\beta(x)= \begin{cases}C_{i t(n)}^{\eta(n)} & \text { when } x \in X_{L} \\ C_{i t(n)}^{t(j)} & \text { when } x \in X_{j}, j<n \\ M_{i}^{t(n)} & \text { when } x \in X_{n} \\ D_{i t(n)}^{t(j)} & \text { when } x \in X_{j}, j>n \\ D_{i t(n)}^{\eta(x)} & \text { when } x \in X_{R}\end{cases}
$$

Note that $\beta(\mathcal{Q})$ encodes t (restricted to $N), \mu_{i}, t(n)$, and n as $\beta(x)=M_{i}^{t(n)}$ when $x \in X_{n}$.

A Picture

Encoding the Initial Input

Define the unary operation I on $\mathrm{A}(\mathcal{T})$ by

$$
I(x)= \begin{cases}C_{10}^{0} & \text { if } x=1 \\ M_{1}^{0} & \text { if } x=H \\ D_{10}^{0} & \text { if } x=2 \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
I(1, \ldots, 1, H, 2, \ldots, 2)=\left(C_{10}^{0}, \ldots, C_{10}^{0}, M_{1}^{0}, D_{10}^{0}, \ldots D_{10}^{0}\right)=\beta\left(\overline{0}, n, \mu_{1}\right)
$$

Encoding the Turing Program (or $\mathcal{T}(\cdot)$)

For each instruction $\left(\mu_{i}, r, w, L, \mu_{j}\right)$ in the program of \mathcal{T}, and for each $s \in\{0,1\}$, define the 3 -ary operation $L_{i r s}$ on $\mathrm{A}(\mathcal{T})$ by

$$
L_{i r s}(x, y, z)= \begin{cases}C_{j s}^{w^{\prime}} & \text { if } x=y=1, z=C_{j s}^{w^{\prime}} \text { for some } w^{\prime} \\ M_{j}^{s} & \text { if } x=H, y=1, z=C_{i r}^{w} \\ D_{j s}^{w} & \text { if } x=2, y=H, z=M_{i}^{r} \\ D_{j s}^{w^{\prime}} & \text { if } x=y=2, z=D_{i r}^{w^{\prime}} \text { for some } w^{\prime} \\ \bar{v} & \text { if } z \in V \text { and } L_{i r s}(x, y, \bar{z})=v \in V \\ 0 & \text { otherwise }\end{cases}
$$

This emulates the operation of \mathcal{T} when it is in state μ_{i} reading r and the square to the left of the head contains an s.

Encoding the Turing Program (or $\mathcal{T}(\cdot)$)

For each instruction ($\mu_{i}, r, w, R, \mu_{j}$) in the program of \mathcal{T}, and for each $s \in\{0,1\}$, define the 3 -ary operation $R_{\text {irs }}$ on $\mathrm{A}(\mathcal{T})$ by

$$
R_{i r s}(x, y, z)= \begin{cases}C_{j s}^{w^{\prime}} & \text { if } x=y=1, z=C_{j s}^{w^{\prime}} \text { for some } w^{\prime} \\ C_{j s}^{w} & \text { if } x=H, y=1, z=M_{i}^{r} \\ M_{j}^{s} & \text { if } x=2, y=H, z=D_{i r}^{w} \\ D_{j s}^{w^{\prime}} & \text { if } x=y=2, z=D_{i r}^{w^{\prime}} \text { for some } w^{\prime} \\ \bar{v} & \text { if } z \in V \text { and } R_{i r s}(x, y, \bar{z})=v \in V \\ 0 & \text { otherwise }\end{cases}
$$

This emulates the operation of \mathcal{T} when it is in state μ_{i} reading r and the square to the right of the head contains an s.

Another Picture

$$
\begin{array}{ll}
\beta=\beta\left(t, n, \mu_{i}\right), & \left(\mu_{i}, 0,1, R, \mu_{j}\right) \in \mathcal{T} \\
\mathcal{T}\left(t, n, \mu_{i}\right)=\left(t^{\prime}, n+1, \mu_{j}\right), & \beta^{\prime}=\beta\left(t^{\prime}, n+1, \mu_{j}\right)
\end{array}
$$

	$n-2$	$n-1$	n	$n+1$	$n+2$	
\cdots	0	1	0	1	1	\cdots

X_{L}			X_{n-2}	X_{n-1}	X_{n}	X_{n+1}	X_{n+2}		X_{R}
f_{n-1}	1	\cdots	1	H	2	2	2	\cdots	2
f_{n}	1	\cdots	1	1	H	2	2	\cdots	2
f_{n+1}	1	\ldots	1	1	1	H	2	\cdots	2

$$
\begin{aligned}
& \beta \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline C_{i 0}^{\eta} & \cdots & C_{i 0}^{0} & C_{i 0}^{1} & M_{i}^{0} & D_{i 0}^{1} & D_{i 0}^{1} & \cdots & D_{i 0}^{\eta} \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline \beta^{\prime} & C_{j 1}^{\eta} & \cdots & C_{j 1}^{0} & C_{j 1}^{1} & C_{j 1}^{1} & M_{j}^{1} & D_{j 1}^{1} & \cdots \\
\hline
\end{array} \\
& R_{i 01}\left(f_{n}, f_{n+1}, \beta\right)=\beta^{\prime}
\end{aligned}
$$

How Did We Do?

$$
\text { Let } B_{0}=\{f \in B \mid 0 \notin f(X)\} .
$$

Lemma

Let $j, j^{\prime}, n \in N, \mathcal{Q}=\left(t, n, \mu_{i}\right)$, and $t(n)=r$.

- Suppose that $\left(\mu_{i^{\prime}}, r^{\prime}, w^{\prime}, L, \gamma\right) \in \mathcal{T}$ and $\varepsilon \in\{0,1\}$. Then $L_{i^{\prime} r^{\prime} \varepsilon}\left(f_{j}, f_{j^{\prime}}, \beta(\mathcal{Q})\right) \in B-B_{0}$ iff $i^{\prime}=i, r^{\prime}=r, j^{\prime}=n, j=n-1$, and $\varepsilon=t(n-1)$. In this case, $L_{i^{\prime} r^{\prime} \varepsilon}\left(f_{j}, f_{j^{\prime}}, \beta(\mathcal{Q})\right)=\beta(\mathcal{T}(\mathcal{Q}))$.
- Suppose that $\left(\mu_{i^{\prime}}, r^{\prime}, w^{\prime}, R, \gamma\right) \in \mathcal{T}$ and $\varepsilon \in\{0,1\}$. Then $R_{i^{\prime} r^{\prime} \varepsilon}\left(f_{j}, f_{j^{\prime}}, \beta(\mathcal{Q})\right) \in B-B_{0}$ iff $i^{\prime}=i, r^{\prime}=r, j^{\prime}=n+1, j=n$, and $\varepsilon=t(n+1)$. In this case, $R_{i^{\prime} r^{\prime} \varepsilon}\left(f_{j}, f_{j^{\prime}}, \beta(\mathcal{Q})\right)=\beta(\mathcal{T}(\mathcal{Q}))$.

Thus, we can produce $\beta(\mathcal{T}(\mathcal{Q}))$ from $\beta(\mathcal{Q})$ by applying $L_{\text {ire }}$ or $R_{\text {ire }}$, which have nonzero coordinates $\left(\notin B_{0}\right)$ precisely when the correct one has been applied and ε is the correct value of $t(n-1)$ (for L) or $t(n+1)$ (for R).

Other Operations on $\mathrm{A}(\mathcal{T})$

- The operations $I, L_{i r s}$, and $R_{i r s}$ encode the configuration algebra of \mathcal{T}.
- We want $\mathrm{A}(\mathcal{T})$ to not only model the configuration algebra of \mathcal{T}, but to also have certain algebraic properties. Thus, we need more structure (i.e. more operations).
- Define a "multiplication": $x \cdot y=0$ unless

$$
\begin{array}{ll}
2 \cdot D=H \cdot C=D, & 1 \cdot C=C \\
2 \cdot \bar{D}=H \cdot \bar{C}=\bar{D}, & 1 \cdot \bar{C}=\bar{C}
\end{array}
$$

- $\langle\mathrm{A}(\mathcal{T}) ; \wedge\rangle$ is a height 1 meet semilattice with 0 at the bottom:

$$
\begin{aligned}
& x \wedge y=0 \text { if } x \neq y \\
& x \wedge x=x
\end{aligned}
$$

Other Operations on $\mathrm{A}(\mathcal{T})$

$$
\begin{aligned}
& J(x, y, z)=\left\{\begin{array}{ll}
x & \text { if } x=y \\
x \wedge z & \text { if } x=\bar{y} \\
0 & \text { otherwise }
\end{array} \quad S_{0}(u, x, y, z)=\left\{\begin{array}{l}
0 \quad \text { if } u \notin V_{0} \\
(x \wedge y) \vee(x \wedge z)
\end{array}\right.\right. \\
& J^{\prime}(x, y, z)=\left\{\begin{array}{ll}
x \wedge z & \text { if } x=y \\
x & \text { if } x=\bar{y} \\
0 & \text { otherwise }
\end{array} \quad S_{1}(u, x, y, z)= \begin{cases}0 \quad \text { if } u \notin\{0,1\} \\
(x \wedge y) \vee(x \wedge z)\end{cases} \right.
\end{aligned}
$$

$$
\begin{gathered}
S_{2}(u, v, x, y, z)= \begin{cases}0 & \text { if } u \neq \bar{v} \\
(x \wedge y) \vee(x \wedge z)\end{cases} \\
T(x, y, z, u)= \begin{cases}0 & \text { unless } x \cdot y=z \cdot u \neq 0 \\
x \cdot y & \text { if } x \cdot y, x=z, y=u \\
\overline{x \cdot y} & \text { if } x \cdot y=z \cdot u,[x \neq z \text { or } y \neq u]\end{cases}
\end{gathered}
$$

Summary

- $\mathrm{A}(\mathcal{T})$ has underlying set

$$
\begin{aligned}
&\{0\} \cup\{1, H, 2\} \cup\{C, D, \bar{C}, \bar{D}\} \\
& \cup\left\{C_{i r}^{w}, D_{i r}^{w}, M_{i}^{r}, \overline{C_{i r}^{w}}, \overline{D_{i r}^{w}}, \overline{M_{i}^{r}} \mid r, w \in\{0,1\}, 1 \leq i \leq k\right\}
\end{aligned}
$$

with operations

$$
\left\{I, L_{i r s}, R_{i r s} \mid r, s \in\{0,1\}, 1 \leq i \leq k\right\} \cup\left\{\cdot, \wedge, J, J^{\prime}, S_{0}, S_{1}, S_{2}, T\right\}
$$

- Certain tuples from $\{1, H, 2\}$ allow for a "marking" of the tape.
- Certain tuples from the last set encode the configurations of \mathcal{T}.
- I produces an empty tape with a head marker in the initial state.
- $L_{\text {irs }}$ and $R_{\text {irs }}$ emulate the action of \mathcal{T} on a configuration.
- The Turing machine "computations" in this encoding aren't represented in $\mathrm{A}(\mathcal{T})$, but in certain subalgebras of powers of $\mathrm{A}(\mathcal{T})$. These are elements of $\mathcal{V}(\mathrm{A}(\mathcal{T}))$.

Thank you.

