This course is designed to build on some of the skills you learned in your prior courses on political science research and analysis. We will divide our time between three different topics. We will begin with a unit on experimental design and analysis. Our focus will be on how to design and implement experiments as well as a survey of some of the analytical tools common to experimental research. Next, we will study multilevel models, considering the unique problems and challenges that occur with hierarchical data. Finally, we will spend the last unit of the course considering time series data and the best approaches for analyzing the dynamics of time series.

Given the ratio of topics to weeks of the semester, we will not have time to richly develop each topic. Instead, we will spend more time on applications and hands-on data analysis than we spend on the mathematics and statistics behind the specific methods. Those interested in developing greater specialization in a given topic are encouraged to contact the instructor for additional background readings on a topic. While we will not be writing R code or developing our own estimators in this course, you should have a basic familiarity with probability, statistics, and the classic linear model. If you have successfully completed PSCI 7085 and PSCI 7095, you should have sufficient background for the topics covered in the course.

reading assignments

Readings for the course will be drawn from several texts as well as journal articles. Journal articles are accessible through the library’s website, while book chapters will be available via the course’s CULearn site. In addition, you should also purchase the following required texts. The recommended texts are also excellent references that will be useful additions to your bookshelf.

required texts:


recommended texts:


CULearn is your friend

This syllabus, assignments, data sets, and other exciting material can be accessed on the class website on culearn.colorado.edu.

requirements

homework and participation (60% of your final grade)

It is recommended that you complete each week’s readings before that week’s class session.

Each week, you will also be responsible for a homework assignment designed to help you practice the skills learned in class. Some of these assignments will be written memos while others will be designed as problem sets. While you are welcome to consult with your classmates on the homework assignments, the final work you turn in must be your own. Late homework assignments will not be accepted.

research paper (40% of your final grade)

You will also develop a research paper that incorporates one of the methods discussed in class. In style, this paper should resemble the journal articles you have read in your classes. The research paper will be due the last week of the class. Additional guidelines will be detailed in a separate handout.

special accommodations

If you qualify for accommodations because of a disability, please submit to me a letter from Disability Services in a timely manner so that your needs may be addressed. You can contact the Disability Services office for more information at www.colorado.edu/disabilityservices.

some important comments on academic integrity

- Plagiarism and other academic dishonesty will not be tolerated. If you are not familiar with the rules of citing sources in written work or what constitutes plagiarism, you should contact me or refer to the University Honor Code at www.colorado.edu/academics/honorcode. Academic dishonesty will result in an F in the course and referral to the Honor Court for additional non-academic sanctions.
- All papers are expected to be original work, not previously or simultaneously handed in for credit in another course (unless prior approval of all instructors involved is obtained).
COURSE OUTLINE

1. Introduction to the course
   Tuesday, August 24

EXPERIMENTS

2. Why conduct experiments.
   Tuesday, August 31
   - Morton and Williams, Chapters 1, 2, and 7.

3. Causal inference
   Tuesday, September 7
   - Morton and Williams, Chapters 3-5.

4. Designing experiments
   Tuesday, September 14
   - Morton and Williams, Chapters 8-10.

5. Conducting experimental research
   Tuesday, September 21
   - Morton and Williams, Chapters 11-13.

6. Analyzing experimental data
   Tuesday, September 28
   - Field and Hole, Chapters 6 and 7.
   - Morton and Williams, Chapter 14.

MULTILEVEL MODELING

7. Why use multilevel modeling
   Tuesday, October 5
   - Snijders and Bosker, Chapters 1-3.

8. Specification of multilevel models
   Tuesday, October 12
   - Snijders and Bosker, Chapters 4-6.
9. Estimation and diagnostics for multilevel models
   Tuesday, October 19
   - Snijders and Bosker, Chapters 7, 9.
     Public Opinion Quarterly 69:530-560.

10. Nonlinear multilevel models
    Tuesday, October 26
    - Snijders and Bosker, Chapter 14.

TIME SERIES ANALYSIS

11. Why use time series and the special problems of time series analysis
    Tuesday, November 2
      series chapter from your favorite stats textbook).

12. Regression models for dynamic causation
    Tuesday, November 9
      Political Analysis 3:51-88.
      Dependent Variables.” Political Analysis 14:186-205.

13. More about time series estimation, causality tests
    Tuesday, November 16

Class does not meet – fall break
   Tuesday, November 23

14. Integration and cointegration
    Tuesday, November 30
    - Murray, Michel P. 1994. “A Drunk and Her Dog: An Illustration of Cointegration and Error 

15. Pooled cross-sectional time series
    Tuesday, December 7
      of Political Science 29: 914-947.
    - Beck, Nathaniel and Jonathan N. Katz. 1995. “What to Do (and Not to Do) with Time Series Cross-
      Section Data.” American Political Science Review 89:634-647.
    - Beck, Nathaniel. 2007. “From Statistical Nuisances to Serious Modeling: Changing How We Think 
      About the Analysis of Time-Series-Cross-Section Data.” Political Analysis 15(2): 97-100.