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Abstract
We introduce a stochastic R&D network formation model where firms choose both R&D efforts and collaboration
partners. Neighbors in the network benefit from each other’s R&D efforts through local technology spillovers,
and there exists a global competition effect reflecting strategic substitutability in R&D efforts. We provide a
complete equilibrium characterization of the network formation model and show that the model is consistent with
empirically observed R&D networks. Based on the equilibrium characterization, we propose an estimation method
that is computationally feasible even for large networks. With the estimated model we then conduct an analysis
of R&D collaboration subsidies to demonstrate the policy relevance of this model. We find that a subsidy scheme
targeting specific R&D collaborations in the network can be much more effective than a uniform subsidy, with a
welfare gain up to five times larger than the cost of the subsidy. (JEL: C11, C63, C73, D83, L22)
Keywords: R&D networks, network formation, peer effects, technology spillovers, subsidies.

1. Introduction

Research and development (R&D) collaborations facilitate technology spillovers between firms, lead

to higher R&D investment levels, and improve the economic performance of firms (e.g., Belderbos

et al. 2004). Fostering R&D collaborations has therefore been widely used by policymakers as a

potent means to boost economic growth, improve industrial competitiveness, and generate welfare

in society (OECD 2001, 2008). Since R&D collaborations not only affect but also are affected by
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Figure 1. The left panel shows the empirical R&D expenditures distribution and the right panel shows the degree
(number of R&D collaborations) distribution. The dashed lines indicate a power law decay in both distributions,
which is a functional relationship of the form: logP (y) ∝ −α log y for some α > 0. A detailed description of the
data used for the analysis in this paper can be found in Supplementary Appendix F.

firms’ R&D investment decisions, to understand how R&D collaborations can facilitate technology

spillovers and contribute to social welfare, it is crucial to account for the joint endogeneity of firms’

R&D collaboration and investment decisions. Ignoring the interdependence of these two decisions

might lead to biased estimation results and erroneous policy conclusions. In this paper, we introduce

a tractable model to account for the co-evolution of R&D networks and firms’ R&D expenditures,

which can be applied to real-world network data and used for policy analysis.

Any suitable R&D network model should account for a number of empirical regularities that are

characteristic of R&D networks. Similar to R&D expenditures, the distribution of the number of

R&D collaborations (degree) is highly unequal and can be approximated with a power law over a

wide range of the distribution. Such a power law characterizes a network in which most nodes have

only a few links while a few nodes (hubs) accumulate a large fraction of all the links in the network.

An illustration can be seen in Figure 1. Moreover, R&D networks exhibit a complex architecture

composed of densely connected clusters dividing firms along geographic, technological, and sectoral

domains. The largest connected component (i.e., a set of nodes that are connected via a sequence of

links to each other) of the R&D network considered in the empirical analysis of this paper is shown

in Figure 2. The figure indicates two clusters representing the manufacturing and pharmaceutical

sectors, respectively, with most of the collaborations within a sector and a few collaborations across

sectors. The adjacency matrices (with zero/one elements indicating whether pairs of firms have

R&D collaborations) of these sectors are shown in Figure 3. These matrices are highly non-random

and indicate a specific hierarchical structure of the underlying network that can be measured with

the so-called “nestedness” coefficient (Atmar and Patterson 1993). A binary matrix is nested if
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Figure 2. The largest connected component in the observed network of R&D collaborations in the year 2006
for the firms without missing observations on R&D expenditures and industry classifications. The color of a node
indicates the sector of a firm (at the 2-digit SIC level) and its size scales with the number of R&D collaborations.
The names of the five largest firms in terms of their R&D expenditures are shown in the graph. The number of
firms in the largest connected component is 431.

most of its ones are concentrated in the top left corner of the matrix (in contrast to a non-nested

matrix with evenly distributed ones). Moreover, in a network with a nested adjacency matrix there

exists a hierarchy of connections such that nodes tend to be linked to other nodes with a higher

degree (Mahadev and Peled 1995). In Figure 3 we observe that the nestedness coefficients of the

adjacency matrices (which measure the degree of concentration of ones in the top left corner) in

the manufacturing and pharmaceutical sectors are very high (as compared to a random matrix of

the same size and density). This shows that the R&D collaborations within sectors follow a specific

hierarchical organization that is indicated with a nested adjacency matrix.1

Overview of the results and contributions. Our paper makes three interrelated contributions in

(i) network theory, (ii) econometrics, and (iii) policy analysis. Albeit our framework has a broad

1. A more detailed analysis of nestedness in the R&D network and its sub-networks can be found in Supplementary

Appendix F.5.
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Figure 3. The left panel shows the adjacency matrix (with ones indicated with black squares and zeros indicated
with white squares) of the largest connected component of firms in the chemicals and allied products sector (SIC
code 28). The right panel shows the adjacency matrix of the largest connected component of firms in the three
largest manufacturing sectors (SIC codes 35, 36, and 38). The degree of nestedness of an adjacency matrix is
measured by the nestedness coefficient, Cn, which ranges from zero for a totally random (non-nested) network to
one for a totally nested network (Atmar and Patterson 1993). The empirically observed nestedness coefficients are
very high: for the left matrix (chemicals and allied products) Cn = 0.95 while for the right matrix (manufacturing)
Cn = 0.93. The solid red line is the isocline (that is, a curve that divides the ones from the zeros of a perfectly
nested matrix of the same size and connectance). Both matrices are statistically significantly nested at the 5%
level. Statistical significance is computed via comparison to a null model generated from 100 random networks
with the same link density as the observed network.

range of applications in various fields (Jackson and Zenou 2015), in the following we will outline

our contributions in the context of firms forming R&D collaborations to benefit from technology

spillovers while, at the same time, competing in the product market (D’Aspremont and Jacquemin

1988).

First, we provide an analytic characterization of both R&D collaboration and investment choices

in equilibrium by endogenizing the network structure in the model introduced by Ballester et al.

(2006). We show that firms’ R&D expenditures and the number of collaborations follow a power law

distribution, consistent with the data illustrated in Figure 1. Moreover, we show that equilibrium

networks are “nested split graphs” (Mahadev and Peled 1995), providing an explanation for why

nestedness has been observed in empirical R&D networks (cf. Figure 3). Nested graphs have a core-

periphery structure which has also been documented in empirical studies on R&D networks (Kitsak

et al. 2010; Rosenkopf and Schilling 2007). Furthermore, Kitsak et al. (2010) find that firms in the

core have a higher market share, consistent with the predictions of our model. We then investigate

the efficient network structure that maximizes social welfare and show that efficient networks are

also nested split graphs. However, we find that equilibrium networks tend to be under-connected

compared to the social optimum. This suggests that policies promoting R&D collaborations can be

welfare improving.
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Next, we proposed an empirical estimation framework based on the analytic equilibrium

characterization. The proposed composite likelihood estimation method (Lindsay 1988; Varin et al.

2011) accounts for the joint endogeneity of R&D collaborations and expenditures and remains

computationally feasible even for large network datasets. We study firms’ R&D collaboration and

investment decisions using a comprehensive dataset on R&D collaborations matched to firms’

balance sheets and patents. Consistent with the theory’s predictions, our estimates show that the

technology spillover effect has a positive impact on R&D investment while the competition effect has

a negative impact. Technology spillovers in R&D collaborations dominate business stealing effects

from competition. Moreover, our estimated model fits the data well along with various network

statistics considered in the literature.

Finally, we conduct a novel counterfactual policy analysis taking into account that both the

R&D collaboration network and firms’ R&D investment decisions are endogenous and respond

to a policy intervention. In particular, we consider several different policy scenarios subsidizing

R&D collaboration costs: a uniform subsidy, a size-dependent subsidy (small vs. large firms),

a sector-dependent subsidy (within vs. across sectors), and a targeted subsidy to specific R&D

collaborations. To evaluate the efficiency of the policy, we compute the return on the R&D

collaboration subsidy (ROS) defined as the ratio of the welfare gain induced by the subsidy relative

to the cost of the subsidy. For the case of a uniform subsidy, we find that ROS of up to two can

be achieved when subsidizing up to 20% of the collaboration costs. We also find that subsidizing

collaborations involving large firms yields higher returns than subsidizing collaborations with small

firms. Furthermore, subsidizing collaborations in more productive sectors yields higher returns than

subsidizing less productive sectors, and subsidizing intra-industry collaborations tends to be more

effective than cross-industry collaborations. Moreover, we find that a targeted subsidy can yield a

welfare gain almost five times larger than the cost of the subsidy, which is more than two times

higher than the ROS from a uniform subsidy. Subsidizing firms with higher productivity, which also

tend to be larger firms in our data, yields the largest expected welfare gains and ROS as these firms

have more collaborations and thus generate the highest spillover effects in the R&D network. Our

finding contributes to the innovation policy debate emphasizing that it is important to subsidize the

“right firms” (i.e., more productive firms) to be effective (cf. e.g. König et al. 2022). Our analysis

further shows that ignoring network endogeneity in the policy analysis would underestimate the ROS

substantially, which highlights the importance of taking network endogeneity into account when
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evaluating R&D policies. As subsidies have been increasingly used by governmental organizations

to stimulate collaborative R&D activities (cf. Cohen 1994; Broekel and Graf 2012; Eureka 2021),

our framework could be used to assist governmental funding agencies that typically do not take into

account the technology spillovers generated within an endogenous R&D network structure.

Related literature. Our paper is related to previous studies on networks in the economics

literature. The most closely related is the paper by Hsieh et al. (2022) where the authors analyze

a similar econometric model for the coevolution of networks and behavior. However, different from

Hsieh et al. (2022), here we also include a competition term in the firms’ profit function, and we

show analytically that our model generates equilibrium network structures that resemble real-world

networks (i.e., the stochastically stable networks are nested split graphs and the degrees, as well as

the R&D effort levels, are power law distributed, all of which is supported by the data). Furthermore,

we develop a composite likelihood estimation method that can be applied to large networks, and we

conduct a policy analysis of subsidies to R&D collaboration costs.

Moreover, similar to our framework, Dawid and Hellmann (2014), Goyal and Moraga-González

(2001), and Westbrock (2010) study the formation of R&D networks in which firms can form

collaborations to reduce their production costs. In particular, Dawid and Hellmann (2014) study

a noisy best response dynamic process as we do here and analyze the stochastically stable states.

However, different from the current model, they ignore the R&D investment decision, and the

technology spillovers from collaborations in these models are independent of the identity and the

characteristics of the firms involved. Goyal and Moraga-González (2001) present a more general

setup which relaxes this assumption, but their analysis is restricted to regular graphs or networks

with four firms. In this paper, we consider general equilibrium structures with an arbitrary number

of firms and make no ex-ante restrictions on the potential collaboration pattern between them.

Our approach is a further generalization of the econometric network formation models proposed

in Snijders (2001), Chandrasekhar and Jackson (2012), and Mele (2017), which also use a potential

function (Monderer and Shapley 1996) to characterize the stationary states. But different from these

papers, both action choices and linking decisions are fully endogenized in our model. Moreover, we

provide microfoundations (from a Cournot competition model with externalities) for the potential

function. In a recent paper by Badev (2021), a potential function is used to analyze the formation

of networks in which agents not only form links but also make binary choices of adopting a certain

behavior depending on the choices of their neighbors. Different from Badev (2021), we consider a
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continuum of choices, provide an explicit equilibrium characterization, and propose an alternative

estimation method that can also be applied to large networks. Relatedly, Hsieh et al. (2020) also

apply a potential function to an empirical model of joint network formation and action choices.

However, their potential function is based on a transferable utility function so that linking decisions

are based on maximizing aggregate payoffs, while here we consider decentralized link formation

decisions between payoff maximizing agents.

Finally, in a related paper by König et al. (2019), the authors characterize the Nash equilibrium

of R&D investment decisions taking the R&D network as given. In contrast, in the current paper,

we explicitly model the joint endogeneity of R&D investment and collaboration decisions. Moreover,

the R&D policy considered in König et al. (2019) subsidizes the total R&D expenditures of firms,

while the R&D policy considered in this paper aims at subsidizing the R&D collaboration costs

between firms. The latter is more relevant for large-scale R&D collaboration funding programs such

as Eureka (Eureka 2021).

Organization of the paper. The theoretical model is outlined in Section 2. Section 2.1 introduces

the profit function of the firm. Section 2.2 defines the stochastic network formation process, with

its stationary distribution and complete equilibrium characterization given in Sections 2.3 and

2.4, respectively. In Section 2.5 the welfare maximizing networks are derived, and compared to

the equilibrium outcome. Section 2.6 discusses several extensions of the model that allow for firm

heterogeneity. Section 3 provides an empirical analysis of the model. Section 3.1 describes the data

used for the empirical analysis, Section 3.2 introduces the empirical model, and Section 3.3 explains

the estimation strategy. The estimation results are reported in Section 3.4. Section 3.5 analyzes

the goodness-of-fit of our model to the data. Section 4 uses the estimated model to analyze the

effectiveness of R&D collaboration subsidies. We consider four different cases, namely, a uniform

subsidy (Section 4.1), a firm-size-specific subsidy (Section 4.2), a sector-specific subsidy (Section

4.3), and a subsidy targeting specific collaborations (Section 4.4). Finally, Section 5 concludes. All

proofs are relegated to Appendix A.

Additional relevant material can be found in the supplementary appendices. Supplementary

Appendix B provides basic definitions and characterizations of networks. Microfoundations for

the profit function used in this paper from a Cournot oligopoly model with cost-reducing R&D

collaborations can be found in Supplementary Appendix C. Supplementary Appendix D provides a

complete equilibrium characterization in the case of homogenous firms. Supplementary Appendix E
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explains in detail the extensions mentioned in the main text. Supplementary Appendix F provides a

detailed description of the data used for our empirical analysis. Supplementary Appendix G provides

further details for the implementation of the estimation algorithm. Supplementary Appendix H

provides a simulation study to examine the small sample properties of our estimation algorithm, as

well as the impact of unobserved heterogeneity on the estimation results. Finally, Supplementary

Appendix I provides additional empirical results and robustness checks.

2. Theoretical Framework

2.1. Profits from R&D Collaborations

Consider a set N = {1, . . . , n} of firms and a collaboration network G ∈ Gn, where Gn denotes

the set of all graphs/networks with n nodes.2 Let the firms’ R&D effort levels be given by

y = (y1, . . . , yn)
⊤ ∈ Yn. Firm i ∈ N sets its R&D effort yi ∈ Y and earns a profit πi : Yn × Gn → R

given by the following linear-quadratic function:3

πi(y,G) = ηiyi −
1

2
y2i + ρyi

n∑
j=1

aijyj − λyi

n∑
j ̸=i

yj − ζdi. (1)

The indicator variables aij ∈ {0, 1} in Equation (1) indicate whether firms i and j are collaborating

(or not), and can be represented by the symmetric adjacency matrix A = (aij)1≤i,j≤n (with a

zero diagonal, aii = 0). The degree, di =
∑n
j=1 aij , counts the number of collaborations of i, with

its coefficient ζ > 0 representing the linking cost. Net of linking costs, Equation (1) is identical

to the payoff function analyzed in Ballester et al. (2006). This payoff function is characterized by

a linear-quadratic term, ηiyi − 1
2y

2
i , representing direct gains from a firm’s own R&D effort with

ηi capturing firm heterogeneity in productivity and −1
2y

2
i indicating decreasing returns in R&D

effort; a local complementarity term, ρyi
∑n
j=1 aijyj , reflecting technology spillover effects from R&D

collaborations with the spillover parameter ρ > 0; and a global substitutability term, λyi
∑n
j ̸=i yj ,

reflecting market stealing effects from the competition with the competition parameter λ > 0.

2. A summary of basic network definitions can be found in Supplementary Appendix B.

3. Microfoundations for the profit function in Equation (1) derived from a Cournot oligopoly model with cost reducing

R&D collaborations can be found in Supplementary Appendix C.
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An important feature of the profit function introduced in Equation (1) is that it admits a potential

function (Monderer and Shapley 1996) as shown in the following proposition.

Proposition 1. The profit function of Equation (1) admits a potential game where firms choose

both R&D efforts and links with a potential function Φ: Yn × Gn → R given by

Φ(y,G) =
n∑
i=1

ηiyi −
1

2

n∑
i=1

y2i +
ρ

2

n∑
i=1

n∑
j=1

aijyiyj −
λ

2

n∑
i=1

n∑
j ̸=i

yiyj − ζm, (2)

for any y ∈ Yn and G ∈ Gn, where m = 1
2

∑n
i=1

∑n
j=1 aij denotes the number of links in G.

The potential function has the property that the marginal profit of a firm from adding or removing

a link is equivalent to the change in the potential function of adding or removing a link. Similarly,

the marginal profit of a firm from changing its R&D effort level is equivalent to the corresponding

change of the potential function.4 The potential function thus allows us to aggregate the incentives

of the firms to either change their links or adjust their effort levels in a single global function.

This feature of the potential function is crucial for the equilibrium characterization of the network

formation process that will be introduced in the following section.

2.2. R&D Network Formation Process

In the following, we introduce a network formation process where firms endogenously choose both

R&D efforts and collaboration partners based on the profit function given by Equation (1). We follow

the best response dynamics dating back to Cournot (1838), where the opportunities for change arrive

as a Poisson process (similar to the pricing model in Calvo 1983) and the firm that receives the

opportunity maximizes profit by taking the R&D effort levels and collaborations of the other firms

as given.5 To capture the fact that R&D projects and collaborations are fraught with ambiguity

4. More formally, the potential Φ has the property that for any y ∈ Yn and G,G′ ∈ Gn with G′ = G ⊕ (i, j) or

G′ = G ⊖ (i, j) we have that Φ(y,G′) − Φ(y,G) = πi(y,G
′) − πi(y,G), where G ⊕ (i, j) (G ⊖ (i, j)) denotes the

network obtained from G by adding (removing) the link (i, j). Moreover, for yi, y′i ∈ Y, y−i ∈ Yn−1 and G ∈ Gn we

have that Φ(y′i,y−i,G)−Φ(yi,y−i,G) = πi(y
′
i,y−i,G)− πi(yi,y−i,G).

5. Cournot (1838) analyzed a dynamic process in which firms myopically best respond in the current period to the

existing output levels of all rivals (cf. Daughety 2008). For similar network formation models with myopic agents, see,

e.g., Watts (2001) and Jackson and Watts (2002). The assumption of myopic behavior is common in the complex strategic

environment that R&D networks represent. For example, Jackson and Watts (2002) state that “...in larger networks and
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and uncertainty (Czarnitzki et al. 2015), we will introduce some noise in this decision process. The

precise definition of the R&D effort adjustment and network evolution process is given as follows.

Definition 1 (Cournot Best Response Dynamics). The network formation process is characterized

by a sequence of states (ωt)t∈R+ , ωt ∈ Ω = Yn × Gn, where each state ωt = (yt,Gt) consists of a

vector of firms’ R&D effort levels, yt ∈ Yn, and a network of collaborations, Gt ∈ Gn. In a short

time interval [t, t+∆t), t ∈ R+, one of the following events happens:

Effort adjustment: At rate χ ≥ 0, a firm i ∈ N receives an R&D effort adjustment opportunity.

We follow the random utility framework by assuming that the profit of firm i from choosing an R&D

effort level y ∈ Y is given by πi(y,y−it,G) + εit, where πi(yt,Gt) is defined in Equation (1) and εit

is a random noise. Under the assumption that εit is identically and independently type-I extreme

value distributed, the probability of choosing a certain R&D effort level is given by a continuous

analog of the standard multinomial logit function (Anderson et al. 1992). More specifically, taking

the R&D effort levels of all the other firms, y−it, and the network, Gt, as given, the probability that

firm i adjusts the R&D effort level to y at time t is

P (ωt+∆t = (y,y−it,Gt)|ωt = (yt,Gt)) = χ
eϑπi(y,y−it,Gt)∫

Y e
ϑπi(y′,y−it,Gt)dy′

∆t+ o(∆t), (3)

where ϑ captures the level of noise in the decision process.

Link adjustment: With rate ξ ≥ 0, a pair of firms (i, j) receives the opportunity to form a

link if they are not connected, or to remove the link if they are connected. Let G′ = G ⊕ (i, j)

(or G′ = G ⊖ (i, j)) denote the network obtained from G by adding (or removing) link (i, j). As

πi(y,G
′) − πi(y,G) = πj(y,G

′) − πj(y,G) = Φ(y,G′) − Φ(y,G), where πi(y,G) and Φ(y,G) are

defined in Equations (1) and (2) respectively, the incentives for firms i and j to create (or remove)

a link are in line with each other and are identical to the corresponding change in the potential

function. Following the random utility framework, we assume link (i, j) is created (or removed) if

and only if Φ(yt,G′
t) + ε′ij,t > Φ(yt,Gt) + εij,t, where εij,t and ε′ij,t are identically and independently

type-I extreme value distributed. Then, taking the R&D effort levels of all firms, yt, and the rest of

networks where players’ information might be local and limited, or in networks where players significantly discount the

future, myopic behavior is a more natural assumption”.
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the network as given, the probability that link (i, j) is created (or removed) is

P
(
ωt+∆t = (yt,G

′
t)|ωt = (yt,Gt)

)
= ξ

eϑΦ(yt,G
′
t)

eϑΦ(yt,G′
t) + eϑΦ(yt,Gt)

∆t+ o(∆t), (4)

where ϑ captures the level of noise in the decision process.

The parameter ϑ is inversely related to the level of noise. In the limit of ϑ→∞ the noise vanishes

and firms choose the R&D effort level that maximizes πi(y,G), while in the limit of ϑ→ 0 the noise

term dominates and R&D effort adjustments in Equation (3) become totally random. The same

holds for the link formation and removal decisions in Equation (4).

Note that we can numerically simulate the stochastic process introduced in Definition 1 using

the “next reaction method” for simulating a continuous time Markov chain (Gibson and Bruck

2000). We use this method throughout the paper to illustrate our theoretical predictions for various

network statistics (for example in Figure 5). However, this method is computationally infeasible for

large networks, where we have to rely on our theoretical equilibrium characterization and alternative

simulation methods.

2.3. Stationary Distribution

With the potential function Φ(y,G) defined in Proposition 1, we can derive the stationary

distribution of the network formation process in the form of an exponential family distribution

called the Gibbs measure (cf. Grimmett 2010).

Theorem 1. The stochastic process (ωt)t∈R+ with states ωt ∈ Ω = Yn × Gn is an ergodic Markov

chain with a unique stationary distribution µϑ(y,G) : Ω→ [0, 1] such that limt→∞ P(ωt = (y,G)|ω0 =

(y0,G0)) = µϑ(y,G). The distribution µϑ(y,G) is given by the Gibbs measure

µϑ(y,G) =
eϑΦ(y,G)∑

G′∈Gn

∫
Yn eϑΦ(y′,G′)dy′ , (5)

for any y ∈ Yn and G ∈ Gn.

From Theorem 1 we know that the Markov chain is ergodic, so that the Ergodic Theorem applies

(Norris 1998), which states that

lim
t→∞

1

t

∫ t

0

1{ωs∈A}ds = µϑ(A), P-a.s.,
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for any measurable set A ∈ Ω, and long-run averages of sample paths converge to the invariant

distribution. Moreover, for any measurable function f : (Ω,F) → (R,B) in L1(P) we have that

lim
t→∞

1

t

∫ t

0

f (ωs)ds = Eµϑ(f), P-a.s.,

where Eµϑ(f) is the expected value of f under the invariant probability measure µϑ(y,G). Note that

since the stationary distribution µϑ(y,G) characterizes the long run outcome, Equation (5) does not

depend on the R&D effort adjustment rate χ nor the link adjustment rate ξ.

In the empirical analysis of the model, we assume the observation (y,G) is a random draw

from the stationary distribution µϑ(y,G) given in Theorem 1. Then, the structural parameters of

the model can be identified based on the maximum likelihood principle (Lewbel 2019). However,

the evaluation of µϑ(y,G) is computationally costly, if not impossible, for a large network due to

the intractable denominator
∑
G′∈Gn

∫
Yn e

ϑΦ(y′,G′)dy′. To overcome this computational difficulty,

we take a composite likelihood approach (Lindsay 1988; Varin et al. 2011) based on the conditional

distributions µϑ(y|G) and µϑ(G|y) given in the following proposition. These conditional distributions

are simple to compute. They also provide additional insight into the properties of the stationary

distribution.

Proposition 2. The stationary distribution µϑ(y,G) given in Theorem 1 admits the following

conditional distributions.

(i) Assume M(G) ≡ In − ρA + λB is nonsingular, where A ≡ (aij)1≤i,j≤n is the adjacency

matrix and B is a zero-diagonal square matrix with all off-diagonal elements equal to one. Let

η = (η1, . . . , ηn)
⊤. Then, the stationary distribution of R&D efforts y, conditional on the R&D

network G, is given by

µϑ(y|G) =
(
2π

ϑ

)−n
2

|M(G)|
1
2 exp

{
−ϑ
2

(
y−M(G)−1η

)⊤
M(G)(y−M(G)−1η)

}
. (6)

(ii) The stationary distribution of the R&D network G, conditional on R&D efforts y, is given by

µϑ(G|y) =
n∏
i=1

n∏
j=i+1

eϑaij(ρyiyj−ζ)

1 + eϑ(ρyiyj−ζ)
. (7)

Proposition 2 (i) shows that, conditional on the R&D network G, the stationary distribution of

R&D efforts y is jointly normal with mean M(G)−1η and variance 1
ϑM(G)−1. The matrix M(G)
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captures the interdependence of R&D efforts due to the spillover effect (ρ) and the competition effect

(λ). In the absence of these effects (i.e., ρ = λ = 0), the matrix M(G) reduces to the identity matrix

In and the R&D effort of a firm yi becomes independently normally distributed with mean ηi and

variance 1
ϑ .

Proposition 2 (ii) indicates that, conditional on the R&D efforts y, the network links aij are

pairwise independent with the linking probability

P(aij = 1|y) = eϑ(ρyiyj−ζ)

1 + eϑ(ρyiyj−ζ)
. (8)

Equation (8) suggests that firms with higher R&D efforts are more likely to form an R&D

collaboration. Although the network links are conditionally independent given the R&D efforts,

they are not unconditionally independent due to the interdependence of R&D efforts in the presence

of the spillover effect (ρ ̸= 0). This is an important feature of our model that distinguishes it from

an inhomogeneous random graph model (defined in Supplementary Appendix B).

2.4. Equilibrium Characterization of Stochastically Stable States

In this subsection, we derive the R&D effort profile and network (y,G) in the limit of vanishing

noise (i.e., ϑ → ∞). In the following, we denote µ∗(y,G) ≡ limϑ→∞ µϑ(y,G). We call the states

in the support of µ∗(y,G) the stochastically stable states (Kandori et al. 1993; Jackson and Watts

2002). The set of stochastically stable states is denoted by Ω∗ ⊆ Ω. From the Gibbs distribution

in Equation (5) it follows that (y,G) ∈ Ω∗ if and only if Φ(y,G) ≥ Φ(y′,G′) for all y′ ∈ Yn and

G′ ∈ Gn. The following proposition provides an explicit characterization of the equilibrium R&D

effort profile and network in the stochastically stable state.6

Proposition 3. In the limit of ϑ → ∞, the stochastically stable network G ∈ Gn in the support

of µ∗(y,G) is a nested split graph7 in which the link between firms i and j is determined by the

6. Proposition 3 analyzes the general case of heterogeneous firms (that is, ηi ̸= ηj for at least one pair i, j ∈ N ) while

additional results for the special case of ex-ante homogeneous firms (ηi = η for all i ∈ N ) can be found in Supplementary

Appendix D.

7. A nested split graph is characterized by the fact that the neighborhood of every node is contained in the neighborhoods

of the nodes with higher degrees (Mahadev and Peled 1995). That is, the neighborhoods of the nodes are nested.

Furthermore, the adjacency matrix of a nested split graph is stepwise, meaning that a step function separates the zero

entries from the one entries in the matrix. See Supplementary Appendix B for further details.
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Figure 4. The (stepwise) adjacency matrixA= (aij)1≤i,j≤n of a nested split graph, with aij given in Proposition
3. The matrices from left to right correspond to increasing linking costs ζ ∈ {0.0075, 0.01, 0.02}. The parameters
used are n = 10, λ = 0.06, ρ = 0.02 and η = (1.00, 0.71, 0.58, 0.50, 0.45, 0.41, 0.38, 0.35, 0.33, 0.32)⊤, where the
firms with the highest (lowest) productivity ηi have the lowest (highest) index.

indicator function

aij = 1{yiyj>ζ/ρ}, µ∗-a.s., (9)

and the stochastically stable R&D effort profile y ∈ Yn in the support of µ∗(y,G) is the fixed point

to the following system of equations

yi = ηi +
n∑
j ̸=i

yj (ρaij − λ) , µ∗-a.s.. (10)

Moreover, if firm i is more productive than firm j (ηi > ηj), then i has higher R&D effort (yi > yj)

and more collaborations (di > dj) than j, µ∗-a.s..

Proposition 3 has some important implications. First, in the limit of ϑ→ ∞, the network in the

stochastically stable state is a nested split graph with a stepwise adjacency matrix. In Figure 4, we

numerically generate some adjacency matrices A = (aij)1≤i,j≤n, where the entries of the adjacency

matrix aij together with the equilibrium effort level yi are jointly determined by Equations (9)

and (10) in Proposition 3. The figure shows that the numerically generated adjacency matrix A is

indeed stepwise, characterizing a nested split graph,7 and becomes increasingly sparse with increasing

linking cost ζ. This is consistent with the nestedness of empirical R&D networks in our data as shown

in Figure 3. Furthermore, nested split graphs are paramount examples of core-periphery networks.

The core-periphery structure of R&D alliance networks has been documented empirically in Kitsak

et al. (2010) and Rosenkopf and Schilling (2007). Our model thus provides a theoretical explanation

for why real-world R&D networks exhibit such a core-periphery structure.

Second, Proposition 3 shows that firms with higher productivity tend to have higher R&D effort

levels and form more links in the stochastically stable state. As a firm’s R&D effort level is associated



14

10
0

10
1

η

10
-3

10
-2

10
-1

10
0

P
(η
)

100 101 102
q

100

P
(q
)

𝑦

𝑃(
𝑦)

10
0

10
1

10
2

d

10
0

P
(d
)

Figure 5. The distribution P (η) of η following a power law with exponent 2 (left panel), the resulting R&D effort
distribution P (y) (middle panel) and the degree distribution P (d) (right panel) from a numerical simulation of
the stochastic process of Definition 1. Dashed lines indicate a power law fit. The parameters used are n = 350,
λ = 0.75, ρ = 2 and ζ = 75.

with its market value (see Supplementary Appendix C) and, in a nested split graph, firms with more

links are more central in the network, Proposition 3 implies that firms with high R&D effort and

market value are at the core of the R&D network. This is in line with what we observe in Figure 2

and findings in previous empirical studies (e.g., Kitsak et al. 2010).

Third, Proposition 3 provides a plausible explanation on the heavy-tailed distributions of R&D

efforts and network degrees that are prevalent in empirical data. Taking network links aij as given,

it follows from Equation (10) that R&D efforts are weighted sums of productivities, y = M(G)−1η,

where M(G) is defined in Proposition 2. Hence, when productivities (ηi)
n
i=1 are ex-ante drawn from

a power law distribution, the distribution of R&D efforts also follows a power law distribution in the

tail (Wang and Tang 2006). On the other hand, taking the R&D efforts y as given, network links

are determined by Equation (9). Hence, when R&D efforts are power law distributed, the degree

distribution will also be a power law (Boguná and Pastor-Satorras 2003).8 An example based on a

numerical simulation of the stochastic process of Definition 1 with a power law distribution of η can

be seen in Figure 5. Our model can thus provide an explanation for the heavy-tailed distributions

of R&D efforts and network degrees as illustrated in Figure 1.

8. Equation (9) can be rewritten as aij = 1{yiyj>ζ/ρ} = 1{log yi+log yj>log(ζ/ρ)}. When R&D effort levels are power

law distributed, with density f(y) = γ
c

(
c
y

)γ+1
for y > c, where c > 0 is a lower-cut-off and γ > 0 is a positive

parameter, the log-effort levels, ln y, follow an exponential distribution with density f(y) = γcγe−γy . Boguná and

Pastor-Satorras (2003) show that the random graph with links aij determined by Equation (9) is characterized by a

power law degree distribution, a negative clustering degree correlation, and a decaying average nearest neighbor degree

distribution indicating a disassortative network. In Appendix E.1 we discuss how such network characteristics can also

be obtained when firms are heterogeneous in terms of their marginal collaboration costs.
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2.5. Efficiency

Social welfare, W (y,G), is given by the sum of consumer surplus, U(y), and producer surplus,

Π(y,G). Consumer surplus is given by U(y) = ψ
2

∑n
i=1 y

2
i +

λ
2

∑n
i=1

∑n
j ̸=i yiyj with ψ > λ > 0

(Singh and Vives 1984; Vives 1999).9 Producer surplus is given by firms’ aggregate profits Π(y,G) =∑n
i=1 πi(y,G). The efficient state is then defined by the network G∗ ∈ Gn and R&D effort profile

y∗ ∈ Yn that maximize welfare W (y,G), that is, W (y∗,G∗) ≥W (y,G) for all G ∈ Gn and y ∈ Yn.

The following proposition shows that similar to the equilibrium network (Proposition 3), the efficient

network is a nested split graph. However, the equilibrium network tends to be under-connected, and

the equilibrium R&D effort is low compared to what would be socially optimal.

Proposition 4. The efficient network G∗ ∈ Gn is a nested split graph where the R&D effort profile

y∗ ∈ Yn is the solution to the following system of equations:

yi =
ηi

1− ψ
+

1

1− ψ

n∑
j ̸=i

yj
(
ρ1{ρyiyj>ζ} − λ

)
. (11)

Furthermore, the stochastically stable equilibrium R&D efforts and the collaboration intensity are

too low compared to the social optimum (µ∗-a.s.).

Comparing the recursive Equations (10) and (11) in Propositions 3 and 4, respectively, we observe

that the equilibrium R&D effort is lower than the efficient R&D effort level (since 1
1−ψ > 1), and this

difference increases with ψ. Since both the equilibrium network and the efficient network are nested

split graphs in which the link between firms i and j is determined by Equation (9), the equilibrium

R&D effort being less than the social optimum implies that the equilibrium network tends to be

under-connected. In Section 4 we will analyze the welfare-improving impact of a subsidy on firms’

R&D collaboration costs, which gives firms additional incentives to form collaborations and thus

increases the network connectivity.

9. See Supplementary Appendix C for further details and explanation.
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2.6. Extensions

The model presented so far can be extended in a number of different directions that account for

firm heterogeneity, which are summarized below and described in greater detail in Supplementary

Appendix E.

a) Heterogeneous collaboration costs: We can extend the model by allowing for heterogenous

collaboration costs (see Supplementary Appendix E.1 for further details). One can show that a similar

equilibrium characterization using a Gibbs measure as in Theorem 1 is possible. Moreover, in the

special case that the productivity is power law distributed, one can show that the degree distribution

also follows a power law distribution (see Proposition E.1), consistent with previous empirical studies

of R&D networks, together with other empirically relevant correlations (see Propositions E.2 and

E.3).10

b) Heterogeneous technology spillovers: We can further extend the model by assuming that there

are heterogeneous spillovers between collaborating firms depending on their technology portfolios

(see Supplementary Appendix E.2 for further details). For example, under the assumption that firms

can only benefit from collaborations if they have at least one technology in common, one can show

that our model is a generalization of a “random intersection graph” (see supplementary Appendix

B) for which positive degree correlations can be obtained (i.e., “assortativity”, see Proposition E.4).

The above extensions show that our model is capable of generating networks with various

properties that can be observed in real-world networks, such as power law degree distributions

and degree correlations, once we introduce firm heterogeneity. This contrasts with (simple variants

of) exponential random graphs often used in the statistics/econometrics literature, which often

have difficulties in generating networks with empirically relevant characteristics (Chandrasekhar

and Jackson 2012).

10. We also note that other statistics such as the clustering degree distribution can be computed. See Supplementary

Appendix E.2 for further details. In particular, under the assumption of a power law productivity distribution, we can

generate two-vertex and three-vertex degree correlations, such as a decreasing average nearest neighbor connectivity,

knn(d), indicating a disassortative network, as well as a decreasing clustering degree distribution, C(d).
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3. Empirical Analysis

3.1. Data

To get a comprehensive picture of R&D alliances we use data on interfirm R&D collaborations

stemming from two sources that have been widely used in the literature (Schilling 2009). The

first is the Cooperative Agreements and Technology Indicators (CATI) database (Hagedoorn 2002).

The database only records agreements for which a combined innovative activity or an exchange

of technology is at least part of the agreement. Moreover, only agreements that have at least two

industrial partners are included in the database, thus agreements involving only universities or

government labs, or one company with a university or lab, are disregarded. The second is the

Thomson Securities Data Company (SDC) alliance database. SDC collects data from the U.S.

Securities and Exchange Commission (SEC) filings (and their international counterparts), trade

publications, wires, and news sources. We include only alliances from SDC which are classified

explicitly as R&D collaborations. Supplementary Appendix F provides more information about the

databases used for this study.

We then merged the CATI database with the Thomson SDC alliance database. For the matching

of firms across datasets, we adopted and extended the name-matching algorithm developed as part

of the NBER patent data project (Trajtenberg et al. 2009).11 The systematic collection of inter-

firm alliances in CATI started in 1987 and ended in 2006. As the CATI database only includes

collaborations up to 2006, we take this year as the base year for our empirical analysis. We then

construct the R&D alliance network by assuming that an alliance lasts for 5 years (similar to, e.g.,

Rosenkopf and Padula 2008). The corresponding entry in the adjacency matrix between two firms is

coded as one if an alliance between them exists during this period, and zero otherwise. An illustration

of the observed R&D network can be seen in Figure 2. The figure indicates two clusters representing

the manufacturing and the pharmaceutical sectors, respectively, with most collaborations within a

sector and a few across sectors. We will use the fact that these two sectors (markets) are not perfectly

overlapping with the R&D collaboration clusters (within and across sectors) to separately identify

the technology spillover and the product market competition effect.

11. See https://sites.google.com/site/patentdataproject. We would like to thank Enghin Atalay and Ali Hortacsu for

sharing their name-matching algorithm with us.

https://sites.google.com/site/patentdataproject
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The combined CATI-SDC database provides only the names of the firms in an alliance. To

obtain information on their balance sheets and income statements we matched the firms’ names in

the CATI-SDC database with the firms’ names in Standard & Poor’s Compustat U.S. and Global

Fundamentals databases, as well as Bureau van Dijk’s Orbis database (Bloom et al. 2013). For

the purpose of matching firms across databases, we employ the aforementioned name-matching

algorithm. The balance sheet information is available for roughly 25% of the firms in the alliance

data.12 By matching the firms’ names between the alliance database and the Compustat and Orbis

databases, we obtain a firm’s R&D expenditure, primary industry code, and location for a sample

of 1,738 firms with 632 R&D collaborations.13

We use a firm’s log R&D expenditures to measure its R&D effort. A firm’s productivity is

measured by its log R&D capital stock (lagged by one year) representing the learning-by-doing effect

from conducting R&D.14 The R&D capital stock is computed using a perpetual inventory method

based on the firms’ R&D expenditures with a 15% depreciation rate (Hall et al. 2000; Bloom et al.

2013; König et al. 2019).15 We further identify the patent portfolios of the firms in our data using

12. For many small private firms, no information on R&D expenditures is available, either because these firms do not

conduct R&D or due to missing data. Hence, these firms could not be matched by our algorithm. Nevertheless, R&D is

mostly concentrated in larger firms, which cover most of the R&D activities in the economy and thus tend to generate

larger R&D spillovers (cf. Bloom et al. 2013), and these firms are typically included in our sample.

13. After matching the CATI-SDC R&D alliance database with Compustat-Orbis and keeping only firms without

missing information on R&D expenditures (the dependent variable in our empirical analysis), we obtain a sample

composed of 1,931 firms (which corresponds to 25% of all firms in the alliance data). We further drop firms with

missing information about the industry in which they operate and industries with only a single firm (in order to identify

the competition effect). This leaves us with a sample of 1,738 firms. The two samples (with 1,738 firms and 1,931 firms

respectively) show only minor differences in descriptive statistics: the average R&D expenditure is slightly higher (9.1467

vs. 9.0671), and the average number of R&D collaborations is slightly lower (0.7273 vs. 0.7281) in the sample of 1,738

compared to the sample of 1,931 firms.

14. We have also used value-added per employee as an additional measure of a firm’s productivity. However, as many

firms have missing information on value-added or employment, using value-added per employee as a productivity measure

would reduce the sample size by 25% while leaving the estimation results qualitatively unchanged. In order to avoid this

reduction in the sample size, we used the time-lagged log R&D capital stock to measure a firm’s productivity as our

main specification. The estimation results for the alternative specification with value-added per employee can be found

in Supplementary Appendix Table I.1.

15. We also use different depreciation rates (10% and 20%) to calculate the R&D capital stock and find the estimation

results are qualitatively similar. The detailed estimation results are in Supplementary Appendix Table I.2.
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Table 1. Descriptive statistics.

All Sectors SIC 283

Variable mean s.d. min max mean s.d. min max

R&D effort 9.147 2.226 0.000 15.247 8.950 2.033 1.632 15.247
Collaborators’ R&D efforts 8.453 23.729 0.000 242.357 11.085 25.696 0.000 192.290
Competitors’ R&D efforts 1338.013 1386.564 15.227 3669.380 1440.998 557.776 159.886 1903.573
Productivity 10.598 2.267 0.643 17.061 10.172 2.070 3.838 16.816
R&D collaborations 0.727 2.057 0.000 24.000 0.966 2.340 0.000 19.000

Number of firms 1738 410

Notes: R&D effort is measured by log R&D expenditure (measured in thousand U.S. dollars). The reference year
is 2006. Competitors of a firm are the firms operating in the same three-digit SIC sector. A firm’s productivity is
measured by its log-R&D capital stock (lagged by one year). To compute the R&D capital stocks we use a perpetual
inventory method based on the firms’ R&D expenditures with a 15% depreciation rate (cf. Hall et al. 2000; Bloom
et al. 2013). SIC 283 refers to the drugs development sector.

the EPO Worldwide Patent Statistical (PATSTAT) database (Jaffe and Trajtenberg (2002); see also

Supplementary Appendix F.4). We only consider granted patents (or successful patents), as opposed

to patents applied for, as they are the main drivers of revenue derived from R&D (Copeland and

Fixler 2012). The technology classes are identified using the main international patent classification

(IPC) numbers at the 4-digit level.

Table 1 shows descriptive statistics of the full sample covering all sectors and the subsample of

the drugs development sector with standard industry classification (SIC) code 283, which is not only

the largest three-digit SIC sector in our sample (with 410 firms) but also has the largest number

of R&D collaborations (with 198 collaborations). We focus on this sector (SIC 283) to conduct an

analysis of R&D collaboration subsidies in Section 4. Table 1 shows that the total R&D effort of

the competitors of a firm is much higher than that of collaborating firms. This is due to the fact

that firms typically have more competitors in the product market (defined as all other firms in the

same three-digit SIC sector) than R&D collaborators. In the SIC 283 subsample, the average R&D

effort of a firm is slightly lower than that in the full sample. However, due to a relatively larger

number of firms and R&D collaborations in SIC 283, on average, the total R&D effort of both, the

collaborators and competitors in SIC 283, are higher than in the full sample including all sectors.

Moreover, in Table 2 we show the correlations between a firm’s own R&D effort, the collaborators’

total efforts, and the competitors’ total efforts. We observe that, for both the full sample and the

SIC 283 subsample, the correlation between the firm’s own effort and the collaborators’ efforts is

significantly positive, while the correlation between the firm’s own effort and the competitors’ efforts

is significantly negative. This is consistent with the predictions of the theoretical model.
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Table 2. Correlations between a firm’s own R&D effort and peers’ (collaborators’ or competitors’) R&D efforts.

All Sectors SIC 283

Own effort Collab. efforts Compet. efforts Own effort Collab. efforts Compet. efforts

Own R&D effort 1.000 1.000
Collaborators’ efforts 0.399 1.000 0.515 1.000
Competitors’ efforts -0.058 0.131 1.000 -0.156 0.090 1.000

Notes: The correlation coefficients reported in this table are all statistically significant at the 10% level.

3.2. Empirical Model

To account for the firm level heterogeneity in the empirical analysis, we extend the profit function

of Equation (1) in Section 2 to accommodate heterogeneous spillover effects and collaboration costs

(see also Section 2.6), so that the profit of firm i can be written as follows:

πi(y,G) = ηiyi −
1

2
y2i + ρ

n∑
j=1

fijaijyjyi − λ
n∑
j ̸=i

bijyjyi −
n∑
j=1

aijζij , (12)

where ηi represents firm level heterogeneity in productivity. We define

ηi = Xiδ + κzi, (13)

where Xi is a (row) vector of observable measures for productivity including one-year-lagged log

R&D capital stock, a sector dummy (at the four-digit SIC level), and zi is a latent variable that

captures unobserved heterogeneity in productivity. When the coefficient κ is positive, a firm with a

higher zi is more productive ceteris paribus.

The coefficient ρ multiplied on the term
∑n
j=1 fijaijyjyi in Equation (12) measures the R&D

spillover effect. The indicator variable aij is equal to one if firms i and j form an R&D collaboration

and zero otherwise. To capture heterogeneous spillover effects across firms, we further introduce the

weights (fij)1≤i,j≤n (with fij = fji) based on the technological similarity of firms i and j (in terms

of their patent portfolios),16 so that firms with high (low) technological similarities can benefit more

(less) from their collaborations.

The structure of the product market is captured by the indicator variable bij ∈ {0, 1} such that

bij = 1 if firms i and j are in the same three-digit SIC sector and bij = 0 otherwise. Each firm faces

a substitutability effect (or competition effect) from all other firms within the same sector (market)

measured by the coefficient λ.

16. See Supplementary Appendix E.2 for a simple example and the implications for the network structure.
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The total cost of R&D collaborations for firm i is given by
∑n
j=1 aijζij , with the pairwise

symmetric marginal cost function

ζij = Wijγ − zi − zj . (14)

The r-dimensional (row) vector of dyad-specific variables, Wij , captures the similarity between firms

i and j regarding the sector, location, productivity, etc., that might affect the collaboration cost (see,

e.g., Lychagin et al. 2016). We also include individual latent variables zi and zj in Equation (14) to

capture unobserved degree heterogeneity (Graham 2017).17 More specifically, as the latent variable

zi is positively associated with a firm’s productivity when κ > 0 in Equation (13), subtracting zi

and zj from Wijγ in Equation (14) implies that more productive firms have lower costs to form

R&D collaborations and are more likely to collaborate with each other.

The generalized potential function corresponding to Equation (12) is given by

Φ(y,G) =
n∑
i=1

ηiyi −
1

2

n∑
i=1

y2i +
ρ

2

n∑
i=1

n∑
j ̸=i

fijaijyiyj −
λ

2

n∑
i=1

n∑
j ̸=i

bijyiyj −
1

2

n∑
i=1

n∑
j ̸=i

aijζij .

In vector-matrix form, this can be written as

Φ(y,G) = η⊤y− 1

2
y⊤M(G)y− 1

2
tr(Aζ), (15)

with η = (η1, . . . , ηn)
⊤, ζ = (ζij)1≤i,j≤n, M(G) = In − ρ(A ◦ F) + λB, A = (aij)1≤i,j≤n, B =

(bij)1≤i,j≤n, F = (fij)1≤i,j≤n, and ◦ denotes the Hadamard element-wise matrix product. The

stationary distribution of the Markov process described in Definition 1 is then given by the Gibbs

measure µϑ(y,G) defined in Equation (5) of Theorem 1 with the potential function Φ(y,G) given by

Equation (15). In the following, we introduce an estimation approach that is based on this stationary

distribution µϑ(y,G).

3.3. Composite Likelihood Estimation

Assuming the observation (y,G) is a random draw from the stationary distribution µϑ(y,G)

given in Theorem 1, the structural parameters of the model can be identified and estimated

based on the maximum likelihood principle (Lewbel 2019). However, the evaluation of µϑ(y,G)

17. Supplementary Appendix E.1 discusses a simple example and what this implies for the network structure.
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is computationally cumbersome due to the intractable denominator
∑
G′∈Gn

∫
Yn e

ϑΦ(y′,G′)dy′. To

overcome this computational difficulty, Hsieh et al. (2022) adopt the Double Metropolis-Hastings

(DMH) algorithm that avoids the evaluation of the intractable denominator of µϑ(y,G). While

the DMH algorithm can accommodate a more general linking cost function than the one given by

Equation (14) (see, e.g., Mele 2017; Hsieh et al. 2022), it is computationally costly for large networks

since the DMH algorithm needs to repeatedly simulate auxiliary network data in the Markov Chain

Monte Carlo (MCMC) procedure. In this paper, we show that, for the linking cost function given by

Equation (14), the structural parameters of the model can be estimated by the composite likelihood

approach (Lindsay 1988; Varin et al. 2011). The composite likelihood method is computationally

simple even for large networks.

In the absence of the latent variable zi, Equations (13) and (14) become ηi =Xiδ and ζij =Wijγ.

In this case, the composite likelihood method maximizes the objective function

lnµϑ(y|G)µϑ(G|y) = lnµϑ(y|G) + lnµϑ(G|y),

where µϑ(y|G) and µϑ(G|y) are defined in Proposition 2. More specifically, µϑ(y|G) is the probability

density function of a multivariate normal distribution with mean M(G)−1η = M(G)−1Xδ, where

X = (X⊤
1 , . . . ,X

⊤
n )

⊤, and variance 1
ϑM(G)−1; and µϑ(G|y) is the joint probability function of

conditionally pairwise independent network links18 with

P(aij = 1|y) = eϑ(ρfijyiyj−ζij)

1 + eϑ(ρfijyiyj−ζij)
=

eϑ(ρfijyiyj−Wijγ)

1 + eϑ(ρfijyiyj−Wijγ)
. (16)

As in a conditional autoregressive (CAR) model in the spatial statistics literature (see, e.g., Besag

1974, 1975), the structural parameters ρ, λ, δ and ϑ can be identified from the conditional

distribution µϑ(y|G).19 In particular, ρ and λ can be separately identified when the R&D

collaboration network and the product competition network do not perfectly overlap with each

other (i.e., A ◦F ̸= B). Given that ϑ and ρ are identified, γ can be identified from the conditional

18. It is worth pointing out that the network links are not unconditionally independent due to the interdependence of

R&D efforts in the presence of the spillover effect (ρ ̸= 0).

19. In Supplementary Appendix H.1, we show that, when the latent variable zi is absent in the data generating process,

the spillover effect ρ and the substitutability effect λ can be successfully recovered from the conditional distribution

µϑ(y|G) alone.
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distribution µϑ(G|y). Using the terminology in Lewbel (2019), the above identification strategy is

distribution based. Since the score function of the composite likelihood is a linear combination of

valid score functions associated with each log-likelihood term (i.e., lnµϑ(y|G) and lnµϑ(G|y)), the

composite likelihood estimator is consistent and asymptotically normal (see, e.g., Pauli et al. 2011).

A well-known identification problem for network models is the so-called “reflection problem”

(Manski 1993), which refers to the difficulty of disentangling the spillover effect from other

confounding effects. In the context of R&D networks, if one fails to control for an unobservable firm-

specific attribute that is associated with a firm’s tendency to increase R&D spending and form more

R&D collaborations, then the R&D spillover effect is likely to be overestimated. Hence, including

the latent variable zi in Equations (13) and (14) can alleviate the potential reflection problem. In

the presence of the latent variable zi, the R&D effort profile y follows a joint normal distribution

conditional on the network G and latent variables z with mean M(G)−1η = M(G)−1(Xδ + κz),

where z = (z1, . . . , zn)
⊤, and variance 1

ϑM(G)−1. Since we use a single snapshot of y, instead of

repeated observations of y over time, we cannot identify the latent variable zi from µϑ(y|G, z) alone.

However, as the latent variable zi shows up in all network links of firm i, it can be identified from

P(aij = 1|y, z) = eϑ(ρfijyiyj−ζij)

1 + eϑ(ρfijyiyj−ζij)
=

eϑ(ρfijyiyj−Wijγ+zi+zj)

1 + eϑ(ρfijyiyj−Wijγ+zi+zj)

following the same argument as in Graham (2017). Intuitively, assuming that ϑ can be identified

from the conditional distribution µϑ(y|G, z), we can identify zi from the different linking decisions,

ai1, ai2, ai3, . . ., of firm i in a similar manner as the individual effect in panel data. On the other

hand, the identification of ϑ from the conditional distribution µϑ(y|G, z) relies on the identification

of zi from µϑ(G|y, z). Therefore, it is crucial to estimate µϑ(y|G, z) and µϑ(G|y, z) jointly in the

composite likelihood framework. We assume the latent variable zi is normally distributed with zero

mean and variance σ2z , and take the Bayesian data augmentation approach (Zeger and Karim 1991)

to implement the composite likelihood estimation.20 The technical details regarding the Bayesian

estimation procedure are provided in Supplementary Appendix G. We also perform Monte Carlo

simulations to gauge the finite-sample performance of the proposed Bayesian estimation procedure

20. By contrast, the frequentist estimation approach needs to evaluate the high-dimensional integrals in

µϑ(G|y)µϑ(y|G) =
∫
µϑ(G|y,z)µϑ(y|G, z)f(z)dz, where z = (z1, . . . , zn)

⊤ and f(z) denotes the density function

of z, and hence is computationally cumbersome. A similar Bayesian approach using the composite likelihood has been

considered in Pauli et al. (2011), Friel (2012) and Ribatet et al. (2012).
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and the results in Supplementary Appendix H.2 show that the estimator can successfully recover

the true parameter values of the model.

3.4. Estimation Results

Table 3 presents the estimation results for the homogeneous spillover case, i.e., when the weight

fij = 1 is applied to all pairs i, j ∈ N .21 We consider two alternative models: Model (A) ignores

the latent variables zi’s in Equations (13) and (14) while Model (B) includes them. The estimated

technology spillover effect ρ and substitutability effect λ are statistically significant and have the

expected signs in both models, which match the theoretical predictions from Section 2. This shows

that firms face a positive complementary effect from R&D collaborations and a negative product

substitutability effect from competing firms in the same market. The estimated substitutability effect

coefficient λ is small because it is associated with the total R&D effort of all the other firms in the

same sector (i.e., the competitors). Since the total R&D effort of the competitors is high on average

(see Table 1), the substitutability effect is not negligible as shown in the following marginal effect

analysis. Moreover, we find that failing to control for unobserved individual heterogeneity with the

latent variables in Model (A) leads to a significant upward bias on the estimate of the spillover

effect ρ, which is consistent with the Monte Carlo simulation results reported in Supplementary

Appendix H.2. Finally, we find that more productive firms are more active in R&D investment (see,

e.g., Cohen et al. 1987) and firms in the same sector or in the same country are more likely to form

R&D collaborations.

The magnitudes of the estimated ρ and λ are not directly comparable due to the different densities

of the collaboration and competition networks. To gain a deeper understanding of the relative

magnitudes of the estimated ρ and λ, we carry out the following marginal effect analysis. Recall the

conditional expectation of the R&D profile y given the network G is E(y|G) = M(G)−1(Xδ + κz),

where M(G) = In − ρ(A ◦ F) + λB. The (i, k)th element of X, denoted by xik, represents the ith

observation on the kth explanatory variable. Then, the marginal effect of xik is given by MEik =∑n
j=1 ∂E(yj |G)/∂xik. In the absence of the spillover effect and substitutability effect (i.e., ρ= λ= 0),

M(G) = In and hence the marginal effect of xik is simply MEik =
∑n
j=1 ∂E(yj |G)/∂xik = δk, where

21. In Supplementary Appendix Tables I.3 and I.4, we provide additional estimation results by taking into account

heterogeneous technology spillovers among collaborating firms.
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Table 3. Estimation results for the case of homogeneous technology spillovers.

Model (A) Model (B)
W/o Unobs. Heterogeneity With Unobs. Heterogeneity

Profits
R&D Spillover (ρ) 0.017*** (0.001) 0.010*** (0.001)
Substitutability (λ) 3.77e-5*** (1.35e-5) 3.45e-5*** (1.35e-5)
Productivity (δ) 0.848*** (0.002) 0.853*** (0.002)
Unobs. Heterogeneity (κ) – 0.010*** (0.004)
Sector Dummies Yes Yes

Linking Cost
Constant (γ0) 6.843*** (0.180) 8.454*** (0.274)
Same Sector (γ1) -1.194*** (0.055) -1.479*** (0.083)
Same Country (γ2) -0.379*** (0.048) -0.648*** (0.077)
Diff-in-Productivity (γ3) -0.090*** (0.011) 0.002 (0.014)

Noise/Uncertainty
Noise in Decisions (ϑ) 1.736*** (0.048) 1.421*** (0.043)
Unobs. Heterogeneity (σ2z) – 1.020*** (0.129)

Sample Size (n) 1,738

Notes: The dependent variables are log-R&D expenditures and (presence or absence of)
R&D collaborations between firms. A firm’s productivity is measured by its one-year-lagged
log-R&D capital stock. To compute the R&D capital stock we use a perpetual inventory
method based on the firms’ R&D expenditures with a 15% depreciation rate (cf. Hall et al.
2000; Bloom et al. 2013). The parameters are given in the empirical profit function of
Equation (12). We make 50,000 MCMC draws where the first 10,000 draws are dropped
during a burn-in phase and every 10th of the remaining draws are kept to calculate the
posterior mean (as point estimates) and posterior standard deviation (shown in parenthesis).
All cases pass the convergence diagnostics provided by Geweke (1992) and Raftery et al.
(1992). The asterisks ∗∗∗(∗∗,∗) indicate that a parameter’s 99% (95%, 90%) highest posterior
density range does not cover zero (Kruschke 2015).

δk denotes the kth element of δ. Figure 6 plots the distribution of the marginal effect of productivity

based on the estimates of Model (B) in Table 3. In the left panel, we set the spillover effect to

zero (ρ = 0) and the substitutability effect parameter λ to its estimate. In this case, the average

marginal effect AMEk = 1
n

∑n
i=1MEik (indicated by the blue line) is lower than the estimated

coefficient of productivity (δ). In the middle panel, we set the substitutability effect to zero (λ = 0)

and the spillover effect parameter ρ to its estimate. In this case, the average marginal effect is higher

than the estimated δ. In the right panel, we set both ρ and λ to their estimates. In this case, the

average marginal effect is also higher than the estimated δ. In summary, the spillover effect and

the substitutability effect amplify and reduce the marginal effect of productivity respectively, and

the spillover effect dominates the substitutability effect. This echoes the previous findings by Bloom

et al. (2013).

3.5. Goodness-of-fit

In this subsection, we investigate how well our model fits the observed network data. We simulate

one hundred networks using our model with the estimates reported for Model (B) in Table 3. The

goodness-of-fit of our model is examined by comparing the simulated y and G with the observed
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Figure 6. Marginal effect (ME) of productivity.

ones from the full sample of 1,738 firms in terms of the distributions of the R&D effort and the four

network statistics considered in Hunter et al. (2008): the degree, the geodesic distance, the number

of edge-wise shared partners, and the degree-specific clustering coefficient. The degree is the number

of links of a node. The geodesic distance between any two nodes refers to the length of the shortest

path joining these two nodes. The edge-wise shared nodes contain information related to the count

of triangles in a network. The clustering coefficient is the fraction of the number of links between the

neighbors of a node divided by the maximum number of links that could possibly exist between the

neighbors. In Figure 7, we plot the empirical distributions of the above statistics from the observed

data (by solid lines) and the corresponding means and 95% confidence intervals (by dashed lines)

from the simulated data. From the figure, we can see that the simulated y and G from our model

match the observed ones for all statistics considered, which suggests our model does a good job of

capturing the underlying data generating process.22

4. R&D Collaboration Subsidy Analysis

Many governments provide R&D subsidies to foster the R&D activities of firms (see e.g., Cohen

1994). One example is the Advanced Technology Program (ATP) which was administered by the

National Institute of Standards and Technology (NIST) in the U.S. (Feldman and Kelley 2003). In

Europe, Eureka is a Europe-wide network for promoting market-driven collaborative research and

22. To further illustrate the goodness-of-fit of our model, we compare the observed links with the simulated links for

the largest 150 firms in our sample in Supplementary Appendix Figure I.1.
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Figure 7. Goodness-of-fit statistics.

technology development. Its subsidies amounted to more than €682 million in 2021, with a total of

€7.1 billion since 2014, and most subsidies awarded to firms in the biotech sector (Eureka 2021).23

In this section, we analyze the welfare impact of subsidizing R&D collaboration costs in the

framework of an endogenous R&D network. More specifically, suppose that the government subsidizes

the R&D collaboration cost between firms with a subsidy rate of s ∈ [0, 1]. With this subsidy rate,

the R&D collaboration cost of firms i and j reduces from ζij to (1− s)ζij , while the government

bears the cost of the subsidy, sζij . To evaluate the welfare impact of the subsidy, we perform 300

simulations based on the network formation process in Definition 1 with the estimates of Model

(B) reported in Table 3, and calculate welfare (defined in Section 2.5) across the 300 simulated

networks in the stationary state with and without the subsidy. For this exercise, the parameter ψ

in consumer surplus is normalized to one. The welfare gain is defined as the difference between the

average welfare with and without the subsidy, and the return on subsidy (ROS) is defined as the

welfare gain divided by the total cost of the subsidy. Because the computational cost of simulating

23. See Takalo et al. (2013) for an analysis of R&D subsidies provided by the Finnish Funding Agency for Technology

and Innovation. The effect of federal government subsidies to stimulate R&D collaboration activities in Germany is

analyzed in Broekel and Graf (2012). For a general discussion about the effectiveness of public R&D funding see Bloom

et al. (2019).
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Figure 8. The left panel shows the welfare gain and the right panel the return on subsidy (ROS) for varying
uniform subsidy rates in the drugs development sector (SIC code 283). Solid lines indicate the average across 300
simulations, while the shaded areas represent the 95% confidence interval.

the network formation process increases exponentially with the network size, we only focus on the

drugs development sector (SIC 283) for the subsidy analysis, which also has the largest number of

R&D collaborations across sectors.

In the following subsections, we consider four different cases for the analysis of the effectiveness of

the R&D collaboration subsidy: a uniform subsidy (Section 4.1), a firm-size-specific subsidy (Section

4.2), a sector-specific subsidy (Section 4.3), and a subsidy targeting specific collaborations (Section

4.4).

4.1. Uniform Subsidy

In this subsection, we consider a subsidy that reduces the collaboration costs uniformly across all

firm pairs. Figure 8 plots the welfare gain and the ROS under this subsidy scheme. We find that,

for a subsidy rate of up to 20%, a welfare gain of up to 3% can be achieved with an ROS of up to

2. The ROS shows that the welfare gain from the subsidy can be twice as large as the cost of the

subsidy. As discussed in more detail in Section 2.5, the welfare gain due to the subsidy stems from

the R&D externalities that are not fully internalized by the firm’s profit-maximizing decisions.



29

4.2. Firm-Size-Specific Subsidy

Many countries have introduced R&D support programs that discriminate between small and large

firms. For example, Dechezleprêtre et al. (2016) analyze an R&D policy in the United Kingdom

targeting specifically small firms. Relatedly, Mindruta et al. (2016) provide an empirical analysis of

the importance of firm size on the formation of R&D collaborations in the biotech-pharmaceutical

industry. Motivated by the empirical relevance, in this subsection, we consider a firm-size-specific

subsidy.

Figure 9 plots the ROS for three different subsidy schemes that reduce the collaboration cost

between (i) small firms (firms with size below the 10% firm size percentile), (ii) small and large firms,

and (iii) large firms (firms with size above the 90% firm size percentile), by 10%, respectively. We

find that subsidizing a collaboration between two small firms yields a ROS lower than one, indicating

that the cost of the subsidy exceeds the welfare gain; while subsidizing a collaboration involving a

large firm yields a ROS higher than one, suggesting that the welfare gain of the subsidy exceeds its

cost. In particular, subsidizing a collaboration between two large firms generates a welfare gain that

is more than double the cost of the subsidy.

It is not surprising that subsidizing collaborations involving large firms leads to higher welfare

gains as larger firms also tend to be more productive. Figure 10 shows that the productivity of large

firms is significantly higher than that of small firms in the drugs development sector (SIC 283). An

important implication of Proposition 3 is that firms with higher productivity are better connected

and more central in the R&D network. Hence, subsidizing collaborations involving large firms will

not only foster the R&D activities of these more productive firms but also generate larger technology

spillovers to other firms in the network. This complements the findings in Mindruta et al. (2016) who

emphasize the importance of firm size in facilitating knowledge transfers and document a tendency

for large firms to form R&D collaborations in the biopharmaceutical industry.

4.3. Sector-Specific Subsidy

In this subsection, we investigate how the effectiveness of the subsidy varies across different sub-

sectors. The four largest sub-sectors in the drugs-development sector (SIC 283) in our sample

are pharmaceutical preparations (SIC 2834) with 204 firms, biological products except diagnostic

substances (SIC 2836) with 147 firms, in vitro and in vivo diagnostic substances (SIC 2835) with 41

firms, and medicinal chemicals and botanical products (SIC 2833) with 18 firms. Figure 11 plots the
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Figure 9. Return on subsidy (ROS) for collaborations between firms of different sizes.

Figure 10. Distribution of productivity for large and small firms in the drugs development sector (SIC 283).

ROS for three different subsidy schemes that reduce the collaboration cost between firms (i) within

SIC 2834, (ii) within other sub-sectors (SIC 2836, SIC 2835, and SIC 2833), and (iii) across SIC

2834 and other sub-sectors, by 10%, respectively. We find that the ROS is slightly higher subsidizing

collaborations within SIC 2834 (with a median ROS of 1.86) than subsidizing collaborations within

other sub-sectors (with a median ROS of 1.48) or collaborations across SIC 2834 and other sub-

sectors (with a median ROS of 1.40). Based on the discussion in Section 4.2, the higher ROS from

subsidizing collaborations within SIC 2834 is in line with the higher productivity of firms in that

sub-sector as shown in Figure 12.
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Figure 11. Return on a uniform R&D collaboration subsidy within and across sub-sectors.

Figure 12. The distribution of productivity in the pharmaceutical preparations sector (SIC 2834) and the other
drugs development sectors (SIC 2836, 2835, and 2833).

4.4. Subsidies Targeting Specific Collaborations

In this subsection, we consider a subsidy scheme where the government compensates the total

collaboration cost of a specific pair of firms through a subsidy. We assume the collaboration between

firms i and j is contingent on the availability of this subsidy (i.e., the link aij = 1 if and only if firms

i and j receive this subsidy). In Table 4, we provide a ranking of the potential collaborations to be

subsidized according to the ROS.

To calculate the ROS, we consider two cases in Table 4: the short-run ROS and the long-run ROS.

To obtain the short-run ROS, we assume the other firms in the network can adjust their R&D efforts
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but cannot change their R&D collaborations in response to the subsidy received by firms i and j.

To obtain the long-run ROS, we assume the other firms in the network can adjust their R&D efforts

and collaborations according to the stochastic process in Definition 1 in response to the subsidy

received by firms i and j.24 Table 4 shows that the long-run ROS is constantly higher than the

short-run ROS and the short-run and the long-run ROS rankings differ considerably. This highlights

the importance of taking network endogeneity into account when evaluating the effectiveness of R&D

subsidy policies.

From Table 4 we find that a subsidy for the collaboration between Novartis, a Swiss multinational

pharmaceutical company, and Pfizer, an American multinational pharmaceutical and biotechnology

corporation, would yield the highest long-run ROS of 5.17. This is more than two times higher

than the ROS from the uniform subsidy in Section 4.1, which is around 2. This suggests that

a targeted subsidy can be potentially much more effective than a uniform subsidy. The ranking in

Table 4 further shows that higher ROS can be obtained from subsidizing R&D collaborations between

more productive firms (the correlation between the long-run ROS and productivity is 0.78). This is

consistent with the findings and discussion in Section 4.2. Our findings show that it is important to

subsidize the “right firms” (i.e., more productive firms) for an R&D collaboration subsidy program

to be effective (cf. e.g. König et al. 2022).

5. Conclusion

In this paper, we introduce a tractable framework to model the coevolution of networks and behavior,

and we apply it to study the formation of R&D networks in which firms form R&D collaborations

to benefit from technology spillovers while competing in the product market. We provide a complete

equilibrium characterization and show that our model can reproduce the important patterns of

observed networks in the real world. Moreover, the model can be conveniently estimated even in large

networks based on a composite-likelihood function. Finally, our model is amenable to policy analysis

as we demonstrated with the example of subsidizing R&D collaborations. While our policy analysis

focuses on the stationary equilibrium, we leave a dynamic policy analysis that takes into account

transitional dynamics toward the stationary state to future work. Other important avenues for future

24. Note that the ROS reported in Sections 4.1-4.3 refers to the long-run ROS.
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work would be to incorporate convex link formation costs, multi-product firms, and diminishing

returns to scale in the marginal cost specification.

Due to the generality of the payoff function that we consider in this paper, we believe that

our model, both from theoretical and empirical perspectives, can be applied to a variety of related

contexts, where externalities can be modeled in the form of an endogenous network. Examples

include peer effects in education, crime, risk sharing, scientific co-authorship, etc. (cf. Jackson and

Zenou 2015). Our methodology can also be extended to study network games with local substitutes

(Bramoullé and Kranton 2007), when we assume a negative sign for the local externality parameter

in our payoff function.
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Appendix

Appendix A: Proofs

We first prove that the potential function has the property that the marginal profit of a firm from adding or removing
a link is equivalent to the difference in the potential function from adding or removing a link. Similarly, the marginal
profit of a firm from changing its R&D effort level is equivalent to the change of the potential function.

Proof of Proposition 1. The potential Φ(y,G) has the property that Φ(y,G ⊕ (i, j)) − Φ(y,G) =
ρyiyj − ζ = πi(y,G⊕ (i, j))− πi(y,G), and similarly, Φ(y,G⊖ (i, j))−Φ(y,G) = ζ − ρyiyj = πi(y,G⊖
(i, j)) − πi(y,G) for any y ∈ Yn and G ∈ Gn. From the properties of πi(y,G) it also follows that
Φ(y′i,y−i,G)−Φ(yi,y−i,G) = πi(y

′
i,y−i,G)− πi(yi,y−i,G). □

We next introduce some definitions and notations that allow us to formally characterize the stochastic process
in Definition 1. Let F denote the smallest σ-algebra generated by σ (ωt : t ∈ R+). The filtration is the non-
decreasing family of sub-σ-algebras {Ft}t∈R+ on the measure space (Ω,F), Ω = Yn × Gn, with the property that
F0 ⊆ F1 ⊆ · · · ⊆ Ft ⊆ · · · ⊆ F . The probability space is given by the triple (Ω,F ,P), where P : F → [0, 1] is
the probability measure satisfying

∫
Ω
P(dω) = 1. As we will see below in Theorem 1 the sequence of states (ωt)t∈R+

,
ωt ∈ Ω, induces an irreducible and positive recurrent (i.e., ergodic) time homogeneous Markov chain.

The one-step transition probability matrix Pϑ(t) : Ω2 → [0, 1]|Ω|2 has elements which determine the probability
of a transition from a state ω ∈ Ω to a state ω′ ∈ Ω in a small time interval [t, t + ∆t) of length ∆t given by
P(ωt+∆t = ω′|Ft = σ(ω0,ω1, . . . ,ωt = ω)) = P(ωt+∆t = ω′|ωt = ω) = yϑ(ω,ω′)∆t + o(∆t) if ω′ ̸= ω
and P(ωt+∆t = ω|Ft = σ(ω0,ω1, . . . ,ωt = ω)) = P(ωt+∆t = ω|ωt = ω) = 1 + xϑ(ω,ω)∆t+ o(∆t), where
yϑ(ω,ω′) is the transition rate from state ω to state ω′ and lim∆t→0

o(∆t)
∆t = 0 (see Theorem 2.8.2 in Norris

(1998)). From the stochastic process of Definition 1 we see that the transition rate matrix (or infinitesimal generator)
Qϑ = (yϑ(ω,ω′))ω,ω′∈Ω of the Markov chain has the elements

xϑ(ω,ω′) =



χ eϑπi(y
′,y−i,G)∫

Y e
ϑπi(y

′′,y−i,G)dy′′
if ω′ = (y′,y−i,G) and ω = (y,G),

ξ eϑΦ(y,G⊕(i,j))

eϑΦ(y,G⊕(i,j))+eϑΦ(y,G) if ω′ = (y,G⊕ (i, j)) and ω = (y,G),

ξ eϑΦ(y,G⊖(i,j))

eϑΦ(y,G⊖(i,j))+eϑΦ(y,G) if ω′ = (y,G⊖ (i, j)) and ω = (y,G),

−
∑

ω′ ̸=ω x
ϑ(ω,ω′) if ω′ = ω,

0 otherwise,

(A.1)

with
∑

ω′∈Ω x
ϑ(ω,ω′) = 0. The transition rate matrix satisfies the Chapman-Kolmogorov forward equation

d
dtP

ϑ(t) = Pϑ(t)Qϑ so that Pϑ(t) = I|Ω| + Qϑ∆t + o(∆t) (Norris 1998). Conversely, we have that Qϑ =

lim∆t→0
Pϑ(t+∆t)−I|Ω|

∆t .As the Markov chain is time homogeneous, the transition rates are independent of time. The
stationary distribution µϑ : Ω → [0, 1] is then the solution to µϑPϑ = µϑ, or equivalently µϑQϑ = 0 (Norris 1998).

We are now in the position to give a proof of Theorem 1 where it is shown that the stationary distribution can be
characterized by a Gibbs measure (Grimmett 2010).

Proof of Theorem 1. First, note from Equation (A.1) that yϑ(ω,ω′) > 0 for any ω ̸= ω′ and finite ϑ, so
that there is a positive probability of a transition from any state ω to any other state ω′, and there can
be no absorbing state. The generator matrix Qϑ = (yϑ(ω,ω′))ω,ω′∈Ω is therefore irreducible. Moreover,
for an irreducible Markov chain on a finite state space Ω?all states are positive recurrent. The Markov
chain then is ergodic and has a unique stationary distribution (Norris 1998).

The stationary distribution solves µϑQϑ = 0 with the transition rates matrix Qϑ of Equation (A.1).
This equation is satisfied when the probability distribution µϑ satisfies the following detailed balance
condition (Norris 1998)

∀ω,ω′ ∈ Ω : µϑ(ω)yϑ(ω,ω′) = µϑ(ω′)yϑ(ω′,ω). (A.2)
Observe that the detailed balance condition is trivially satisfied if ω′ and ω differ in more than one link
or more than one R&D effort level. Hence, we consider only the case of link creation G′ = G⊕ (i, j) (and
removal G′ = G⊖ (i, j)) or an adjustment in quantity y′i ̸= yi for some i ∈ N . For the case of link creation
with a transition from ω = (y,G) to ω′ = (y,G⊕ (i, j)) we can write the detailed balance condition as
follows

1

Zθ
eϑΦ(y,G) eϑΦ(y,G⊕(i,j))

eϑΦ(y,G⊕(i,j)) + eϑΦ(y,G)
ξ =

1

Zθ
eϑΦ(y,G⊕(i,j)) eϑΦ(y,G)

eϑΦ(y,G) + eϑΦ(y,G⊕(i,j))
ξ.

This equality is trivially satisfied. A similar argument holds for the removal of a link with a transition
from ω = (y,G) to ω′ = (y,G⊖ (i, j)) where the detailed balance condition reads

1

Zθ
eϑΦ(y,G) eϑΦ(y,G⊖(i,j))

eϑΦ(y,G⊖(i,j)) + eϑΦ(y,G)
ξ =

1

Zθ
eϑΦ(y,G⊖(i,j)) eϑΦ(y,G)

eϑΦ(y,G) + eϑΦ(y,G⊖(i,j))
ξ.
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For a change in the R&D effort level with a transition from ω = (yi,y−i,G) to ω′ = (y′i,y−i,G) we get
for the following detailed balance condition

1

Zθ
eϑΦ(yi,y−i,G) eϑπi(y

′
i,y−i,G)∫

Y e
ϑπi(y′,y−i,G)dy′

χ =
1

Zθ
eϑΦ(y′i,y−i,G) eϑπi(yi,y−i,G)∫

Y e
ϑπi(y′,y−i,G)dy′

χ.

This can be written as eϑ(Φ(yi,y−i,G)−Φ(y′i,y−i,G)) = eϑ(πi(yi,y−i,G)−πi(y
′
i,y−i,G)), which is satisfied since we

have for the potential Φ(yi,y−i,G)−Φ(y′i,y−i,G) = πi(yi,y−i,G)−πi(y
′
i,y−i,G). Hence, the probability

measure µϑ satisfies a detailed balance condition of Equation (A.2) and therefore is the stationary
distribution of the Markov chain with transition rate matrix Qϑ. □

We next state a useful lemma that will be needed in the proofs that follow.

Lemma A.1. Consider a binary sequence h1, h2, . . . , hn with elements hi ∈ {0, 1} and a real sequence
c1, c2, . . . , cn with elements ci ∈ R for i= 1, . . . , n and n≥ 1. Let Hn be the set of all binary sequences
h = (h1, . . . , hn) with n elements. Then we have that

∑
h∈Hn

e
∑n

i=1 hici =
n∏
i=1

∑
hi∈{0,1}

ehici . (A.3)

Proof of Lemma A.1. We give proof by induction. For the induction, the basis considers n = 2 (the case
of n = 1 is trivially true). Then H2 = {(0, 0), (1, 0), (0, 1), (1, 1)}, and we have that∑

h∈H2

e
∑2

i=1 hici = 1+ ec1 + ec2 + ec1+c2 .

On the other hand, we have that
2∏
i=1

∑
hi∈{0,1}

ehici =
2∏
i=1

(1 + eci) = 1 + ec1 + ec2 + ec1+c2 .

Next, for the induction step, assume that Equation (A.3) holds for some n ≥ 2. Note that all binary
sequences h ∈ Hn+1 can be constructed from a binary sequence h ∈ Hn with one additional element,
hn+1, added to the sequence h1, . . . , hn where hn+1 takes on the two possible values 0 or 1. Hence, we
can write ∑

h∈Hn+1

e
∑n+1

i=1 hici =
∑

h∈Hn+1

n+1∏
i=1

ehici

=
∑

h∈Hn

n∏
i=1

ehici +
∑

h∈Hn

n∏
i=1

ehiciecn+1

=
∑

h∈Hn

n∏
i=1

ehici (1 + ecn+1)

=
n∏
i=1

∑
hi∈{0,1}

ehici (1 + ecn+1)

=
n+1∏
i=1

∑
hi∈{0,1}

ehici ,

where we have used the induction hypothesis that Equation (A.3) holds for n. This concludes the
proof. □

For the proof of Proposition 2 we first introduce some notation and definitions. The partition function is defined
as

Zϑ =
∑
G∈Gn

∫
Yn

eϑΦ(y,G)dy, (A.4)

so that we can write µϑ(y,G) = 1
Zϑ
eϑΦ(y,G) for any y ∈ Yn and G ∈ Gn. We also introduce the Hamiltonian,

defined by Hϑ(y) ≡ 1
ϑ ln

(∑
G∈Gn eϑΦ(y,G)

)
, which allows us to write the partition function more compactly as

Zϑ =
∫
Yn e

ϑHϑ(y)dy.
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Proof of Proposition 2. We first give proof of part (ii) of the proposition. We have that µϑ(y,G) =
µϑ(G|y)µϑ(y). Observe that the potential of Equation (2) can be written as

Φ(y,G) =
n∑
i=1

ηi − 1

2
yi −

λ

2

n∑
j ̸=i

yj

 yi︸ ︷︷ ︸
φ(y)

+
n∑
i=1

n∑
j=i+1

aij (ρyiyj − ζ)︸ ︷︷ ︸
σij

= φ(y) +
n∑
i=1

n∑
j=i+1

aijσij . (A.5)

We then have that eϑΦ(y,G) = eϑφ(y)eϑ
∑n

i<j aijσij , where only the last factor on the RHS is network
dependent. Observing that the sequence (aij)1≤i<j≤n = (a12, a13, . . . , an−1,n) is a binary sequence as in
Lemma A.1, we can use the fact that for any constant, symmetric σij = σji, 1 ≤ i, j ≤ n, we can write∑

G∈Gn

eϑ
∑n

i<j aijσij =
n∏
i=1

n∏
j=i+1

(
1 + eϑσij

)
. (A.6)

From Equation (A.6) we then obtain∑
G∈Gn

eϑΦ(y,G) = eϑφ(y)
n∏
i<j

(
1 + eϑσij

)
=

n∏
i=1

eϑ(ηi−
1
2yi−

λ
2

∑n
j ̸=i yj)yi

n∏
i<j

(
1 + eϑ(ρyiyj−ζ)

)
. (A.7)

We can use Equation (A.7) to compute the marginal distribution

µϑ(y) =
1

Zϑ

∑
G∈Gn

eϑΦ(y,G)

=
1

Zϑ

n∏
i=1

eϑ(ηi−
1
2yi−

λ
2

∑
j ̸=i yj)yi

n∏
i<j

(
1 + eϑ(ρyiyj−ζ)

)
=

1

Zϑ
eϑ

∑n
i=1(ηi− 1

2yi−
λ
2

∑
j ̸=i yj)yie

∑n
i<j ln(1+e

ϑ(ρyiyj−ζ))

=
1

Zϑ
eϑHϑ(y), (A.8)

where we have introduced the Hamiltonian

Hϑ(y) ≡
n∑
i=1

ηiyi − 1

2
y2i +

n∑
j>i

(
1

ϑ
ln
(
1 + eϑ(ρyiyj−ζ)

)
− λyiyj

) . (A.9)

With the marginal distribution from Equation (A.8) and the potential in Equation (A.5) we then can
write the conditional distribution as

µϑ(G|y) = µϑ(y,G)

µϑ(y)
=

eϑΦ(y,G)∑
G′∈Gn eϑΦ(y,G′)

=
eφ(y)eϑ

∑n
i<j aij(ρyiyj−ζ)

eφ(y)
∏
i<j

(
1 + eϑ(ρyiyj−ζ)

)
=

eϑ
∑n

i<j aij(ρyiyj−ζ)∏
i<j

(
1 + eϑ(ρyiyj−ζ)

)
=
∏
i<j

eϑaij(ρyiyj−ζ)

1 + eϑ(ρyiyj−ζ)

=
∏
i<j

(
eϑ(ρyiyj−ζ)

1 + eϑ(ρyiyj−ζ)

)aij (
1− eϑ(ρyiyj−ζ)

1 + eϑ(ρyiyj−ζ)

)1−aij

=
∏
i<j

pϑ(yi, yj)
aij
(
1− pϑ(yi, yj)

)1−aij
. (A.10)

Hence, we obtain the likelihood of an inhomogeneous random graph with a link probability

pϑ(yi, yj) =
eϑ(ρyiyj−ζ)

1 + eϑ(ρyiyj−ζ)
.

See also Supplementary Appendix B for further details about inhomogeneous random graphs.
We next give proof of part (i) of the proposition. The conditional probability µϑ(y|G) of the R&D

effort profile y given the network G is

µϑ(y|G) = µϑ(y,G)

µϑ(G)
=

eϑ(η
⊤y− 1

2yM(G)y)∫
Yn e

ϑ(η⊤y′⊤− 1
2y

′⊤M(G)y′)dy′
, (A.11)
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where M = In + λB− ρA. Using the Gaussian integral formula (Bronshtein et al. 2013), we can write
the denominator in Equation (A.11) as∫

Yn

exp

{
ϑ

(
η⊤y′ − 1

2
y′⊤M(G)y′

)}
dy′ =

(
2π

ϑ

)n
2

|M(G)|− 1
2 exp

{
ϑ

2
η⊤M(G)−1η

}
,

and hence

µϑ(y|G) =
(
2π

ϑ

)−n
2

|M(G)| 12 exp
{
−ϑ
2

(
y−M(G)−1η

)⊤
M(G)(y−M(G)−1η)

}
,

which implies that the R&D effort y, conditional on the R&D network G, follows a Gaussian normal
density function with mean M(G)−1η and variance 1

ϑM(G)−1. □

We next provide the proof of Proposition 3 which is concerned with the case of large ϑ and the
characterization of the stochastically stable states. In Proposition D.1 in Supplementary Appendix
D we provide an analogous characterization for the special case of homogenous firms.

Proof of Proposition 3. We first show that the networks G in support of the stationary distribution
µϑ(y,G) in the limit of vanishing noise ϑ→ ∞ are nested split graphs. Before proceeding with the
proof we give an alternative definition of nested split graphs following Mahadev and Peled (1995),
which are also known as threshold graphs.

Definition A.1 (Mahadev and Peled (1995)). A graph G is a nested split graph if for every node
i ∈ N there exists a real weight yi and a real threshold τ such that nodes i and j are linked if and
only if yi + yj ≥ τ .

In the limit ϑ → ∞ the conditional probability of the network G can be written as µ∗(G|y) =
limϑ→∞ µϑ(G|y) =

∏n
i<j 1

aij
{ρyiyj>ζ}1

1−aij
{ρyiyj<ζ}. Assume that G is a stochastically stable network,

that is for G ∈ Ω∗, we must have that µ∗(y,G) = limϑ→∞ µϑ(y,G) > 0. Since, µ∗(y,G) =
µ∗(G|y)µ∗(y) this implies that µ∗(G|y) > 0. It follows that ρyiyj > ζ for all aij = 1 and ρyiyj < ζ
for all aij = 0. We then define the weights yi ≡ log yi, yj ≡ log yj and a threshold τ ≡ log ζ − log ρ,
and conclude that G is a nested split graph as defined in Definition A.1.

Moreover, the R&D effort distribution is given by µϑ(y) = 1
Zϑ

∑
G∈Gn eϑΦ(y,G) = 1

Z ϑ
n
eϑHϑ(y),

where the Hamiltonian is given by Equation (A.9). The R&D effort profile that maximizes the
Hamiltonian can be found from the FOC, ∂Hϑ

∂yi
= 0, from which we get

yi = ηi +
n∑
j ̸=i

(
ρ

2

(
1 + tanh

(
ϑ

2
(ρyiyj − ζ)

))
− λ

)
yj .

Taking the limit ϑ→ ∞ and noting that

lim
ϑ→∞

1

2

(
1 + tanh

(
ϑ

2
(ρyiyj − ζ)

))
=

{
1, if ρyiyj > ζ,

0, if ρyiyj < ζ,

we thus obtain
yi = ηi +

n∑
j ̸=i

yj

(
ρ1{yiyj> ζ

ρ} − λ
)
. (A.12)

Note that for any profile of R&D effort levels y there exists a unique nested split graph with adjacency
matrix A = (aij)1≤i,j,n whose elements are given by aij = 1{yiyj>ζ/ρ}. Then we can write Equation
(A.12) as follows

yi = ηi + ρ
n∑
j ̸=i

aijyj − λ
n∑
j ̸=i

yj . (A.13)

Moreover, assume that ηi > ηj , then we want to show that yj > yi for the R&D effort profile y
solving Equation (A.12). For this purpose we consider the iteration (yt)

∞
t=0 with updates

yi,t+1 = fi(yt) ≡ max

0, ηi + ρ
n∑
j ̸=i

yj,t1{yi,tyj,t> ζ
ρ} − λ

n∑
j ̸=i

yj

 , (A.14)
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Figure A.1. The R&D effort iteration of Equation (A.14) over the firm fixed effects ηi. Filled circles indicate
the fixed points. The insets show the adjacency matrix A = (aij)1≤i,j,n (where ones are indicated with white
squares and zeros are indicated with black squares) with elements are given by aij = 1{yiyj>ζ/ρ} (see also
Figure 4), where the vector y is the fixed point of Equation (A.14). The panels from left to right correspond
to increasing linking costs ζ ∈ {0.0075, 0.01, 0.02}. The parameters used are n = 10, λ = 0.06, ρ = 0.02 and
η = (1.00, 0.71, 0.58, 0.50, 0.45, 0.41, 0.38, 0.35, 0.33, 0.32)⊤.

starting from the initial vector y0 = (0, . . . , 0)⊤. We then observe that the map fi : R+ → R+ is
η-order preserving. That is, if ηi > ηj and yi,t > yj,t, then also yi,t+1 > yj,t+1. To show this, we
proceed by induction. For the induction basis consider t = 0. Then yi,1 = ηi for all i = 1, . . . , n, and
the claim follows. Next, consider the induction step, assuming that the claim holds for some t > 0.
Then

yi,t+1 − yj,t+1 = fi(yt)− fj(yt) = λ(ηi − ηj) + ρ
∑

k∈Ni,t\Nj,t

yk,t + λ(yi,t − yj,t) > 0,

where we have used the fact that the condition yi,tyj,t >
ζ
ρ for i and j being linked represents a

nested split graph, and for such a graph if yi,t > yj,t (so that di,t > dj,t) then Nj,t ⊂ Ni,t. Hence,
for all t, the claim holds, and in particular, taking the limit as t → ∞ it holds for the fixed point
y∗ = limt→∞ yt solving Equation (A.12).

□

Figure A.1 shows the R&D effort iteration of Eq. (A.14) over the firm fixed effects ηi together
with the adjacency matrix A = (aij)1≤i,j,n (see also Figure 4) whose elements are given by
aij = 1{yiyj>ζ/ρ} and the vector y is the fixed point of Equation (A.14). We observe that firms
with higher ηi also have higher R&D effort levels. Moreover, the corresponding adjacency matrix
is stepwise, characterizing a nested split graph (see also Supplementary Appendix B), and becomes
increasingly sparse with increasing linking costs ζ.

We next provide the proof identifying the welfare maximizing state.

Proof of Proposition 4. Welfare can be written as

W (y) =

n∑
i=1

ηiyi −
1− ψ

2

n∑
i=1

y2i −
λ

2

n∑
i=1

n∑
j ̸=i

yiyj +

n∑
i=1

n∑
j ̸=i

aij(ρyiyj − ζ).

The only network dependent part in W (y,G) is the last term
∑n
i=1

∑n
j ̸=i aij(ρyiyj − ζ). For a given R&D

effort vector y, the network that maximizes this term is a nested split graph G (see Definition A.1 and
Supplementary Appendix B) where ij ∈ G if and only if ρyiyj > ζ.In such a network, the optimal R&D
effort levels satisfy the following necessary first-order conditions

yi = fi(y) ≡ max

0,
ηi

1− ψ
− λ

1− ψ

n∑
j ̸=i

yj +
2ρ

1− ψ

n∑
j ̸=i

yj1{ρyiyj>ζ}

 . (A.15)

We can compare this to the equilibrium R&D effort levels of Equation (A.12), which were given by

yi = gi(y) ≡ max

0, ηi − λ

n∑
j ̸=i

yj + ρ

n∑
j ̸=i

yj1{ρyiyj>ζ}

 . (A.16)

We have for any y ∈ Yn that fi(y) > gi(y). This is because

fi(y)− gi(y) =

(
1

1− ψ
− 1

)ηi − λ
n∑
j ̸=i

yj

+

(
2

1− ψ
− 1

)
ρ

n∑
j ̸=i

yj1{ρyiyj>ζ} ≥ 0.
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Next, consider the differential equations dy
dt = f(y)− y and dx

dt = g(x)− x, both with initial condition
y0 = x0 = (0, . . . , 0)⊤. Because f(y) > g(y), the comparison lemma implies that y(t) > x(t) for all t ≥ 0
(see Khalil (2002), Lemma 3.4). In particular, we can conclude that the fixed point f(y) = y must be
higher than the fixed point g(x) = x. That is, in the stochastically stable equilibrium R&D effort levels
are too low compared to the social optimum. Moreover, because a link is only present if ρyiyj > ζ there
are fewer links in the stochastically stable network than in the efficient network. □
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Appendix B: Network Definitions and Characterizations

A network (graph) G is the pair (N ,E) consisting of a set of nodes (vertices) N = {1, . . . , n} and
a set of edges (links) E ⊂ N ×N between them. A link (i, j) is incident with nodes i and j. The
neighborhood of a node i ∈ N is the set Ni = {j ∈ N : (i, j) ∈ E}. The degree di of a node i ∈ N gives
the number of links incident to node i. Clearly, di = |Ni|. Let N (2)

i =
⋃
j∈Ni

Nj\ (Ni ∪ {i}) denote
the second-order neighbors of node i. Similarly, the k-th order neighborhood of node i is defined
recursively from N (0)

i = {i}, N (1)
i = Ni and N (k)

i =
⋃
j∈N (k−1)

i

Nj\
(⋃k−1

l=0 N (l)
i

)
. A walk in G of

length k from i to j is a sequence ⟨i0, i1, . . . , ik⟩ of nodes such that i0 = i, ik = j, ip ̸= ip+1, and ip
and ip+1 are (directly) linked, that is ipip+1 ∈ E , for all 0 ≤ p ≤ k − 1. Nodes i and j are said to be
indirectly linked in G if there exists a walk from i to j in G containing nodes other than i and j. A
pair of nodes i and j is connected if they are either directly or indirectly linked. A node i ∈ N is
isolated in G if Ni = ∅. The network G is said to be empty (denoted by Kn) when all its nodes are
isolated.

Let A = (aij)1≤i,j≤n be the symmetric n× n adjacency matrix of the network G. The element
aij ∈ {0, 1} indicates if there exists a link between nodes i and j such that aij = 1 if (i, j) ∈ E and
aij = 0 if (i, j) /∈ E .

A subgraph, G′, of G is the graph of subsets of the nodes, N (G′)⊆N (G), and links, E(G′)⊆ E(G).
A graph G is connected, if there is a path connecting every pair of nodes. Otherwise G is disconnected.
The components of a graph G are the maximally connected subgraphs. A component is said to be
minimally connected if the removal of any link makes the component disconnected.

Given a graph G and a set S ⊆ N , we say that GS is the subgraph G induced S whenever the
adjacency matrix of GS is AS . We write G−S to denote the network GN\S , that is G−S is the
network that results after eliminating all the nodes in S.

A dominating set for a graph G = (N ,E) is a subset S ⊆ N such that every node not in S is
connected to at least one member of S by a link. An independent set is a set of nodes in a graph in
which no two nodes are adjacent. For example the central node in a star K1,n−1 forms a dominating
set while the peripheral nodes form an independent set.

Let G = (N ,E) be a graph whose distinct positive degrees are d(1) < d(2) < . . . < d(k), and let
d0 = 0 (even if no agent with degree 0 exists in G). Further, define Di = {v ∈ N : dv = d(i)} for
i = 0, . . . , k. Then the set-valued vector D = (D0,D1, . . . ,Dk) is called the degree partition of G. A
nested split graph is a graph with a nested neighborhood structure such that the set of neighbors of
each node is contained in the set of neighbors of each higher degree node (Cvetkovic and Rowlinson
1990; Mahadev and Peled 1995). Let D = (D0,D1, . . . ,Dk) be the degree partition of a nested split
graph G = (N ,E). Then the nodes N can be partitioned in independent sets Di, i = 1, . . . ,

⌊
k
2

⌋
and a dominating set

⋃k
i=⌊k

2 ⌋+1Di in the graph G′ = (N\D0,E). Moreover, the neighborhoods of
the nodes are nested. In particular, for each node v ∈ Di, Nv =

⋃i
j=1Dk+1−j if i = 1, . . . ,

⌊
k
2

⌋
if

i = 1, . . . , k, while Nv =
⋃i
j=1Dk+1−j \ {v} if i =

⌊
k
2

⌋
+ 1, . . . , k. See also the left panel of Figure

B.1. An alternative definition can be found in Definition A.1.
In a complete graph Kn, every node is adjacent to every other node. The graph in which no pair

of nodes is adjacent is the empty graph Kn. A clique Kn′ , n′ ≤ n, is a complete subgraph of the
network G. A graph is k-regular if every node i has the same number of links di = k for all i ∈ N .
The complete graph Kn is (n− 1)-regular. The cycle Cn is 2-regular. In a bipartite graph there exists
a partition of the nodes in two disjoint sets V1 and V2 such that each link connects a node in V1 to a
node in V2. V1 and V2 are independent sets with cardinalities n1 and n2, respectively. In a complete
bipartite graph Kn1,n2 each node in V1 is connected to each other node in V2. The star K1,n−1 is a
complete bipartite graph in which n1 = 1 and n2 = n− 1.

The complement of a graph G is a graph G with the same nodes as G such that any two nodes
of G are adjacent if and only if they are not adjacent in G. For example the complement of the
complete graph Kn is the empty graph Kn.

The k-th power of the adjacency matrix is related to walks of length k in the graph. In particular,(
Ak
)
ij

gives the number of walks of length k from node i to node j. The eigenvalues of the adjacency
matrix A are the numbers λ1, λ2, . . . , λn such that Avi = λivi has a nonzero solution vector vi, which
is an eigenvector associated with λi for i = 1, . . . , n. Since the adjacency matrix A of an undirected
graph G is real and symmetric, the eigenvalues of A are real, λi ∈ R for all i = 1, . . . , n. Moreover,
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Figure B.1. (Left panel) Representation of nested split graphs and their degree partitions D with corresponding
adjacency matrices A. A line between Di and Dj indicates that every node in Di is adjacent to every node in
Dj . The partitions included in the solid frame (Di with

⌊
k
2

⌋
+ 1 ≤ i ≤ k) are the dominating subsets while the

partitions in the dashed frame (Di with 1 ≤ i ≤
⌊
k
2

⌋
) are the independent sets with k = 6. The illustration follows

Mahadev and Peled (1995, p. 11). (Right panel) The corresponding stepwise adjacency matrix A = (aij)1≤i,j≤n

with elements aij satisfying the following condition: if i < j and aij = 1 then ahk = 1 whenever h < k ≤ j and
h ≤ i. The step function separating the zero entries in the adjacency matrix from the one entries is shown with a
line.

if vi and vj are eigenvectors for different eigenvalues, λi ̸= λj , then vi and vj are orthogonal, i.e.,
v⊤
i vj = 0 if i ̸= j. In particular, Rn has an orthonormal basis consisting of eigenvectors of A. Since

A is a real symmetric matrix, there exists an orthogonal matrix S such that S⊤S = SS⊤ = I (that
is S⊤ = S−1) and S⊤AS = D, where D is the diagonal matrix of eigenvalues of A and the columns
of S are the corresponding eigenvectors. The Perron-Frobenius eigenvalue λmax(G) is the largest real
eigenvalue of A associated with G, i.e., all eigenvalues λi of A satisfy |λi| ≤ λmax(G) for i = 1, . . . , n
and there exists an associated nonnegative eigenvector vmax ≥ 0 such that Avmax = λmax(G)vmax.
For a connected graph G the adjacency matrix A has a unique largest real eigenvalue λmax(G) and
a positive associated eigenvector vmax > 0. There exists a relation between the number of walks in a
graph and its eigenvalues. The number of closed walks of length k from a node i in G to herself is given
by
(
Ak
)
ii

and the total number of closed walks of length k in G is tr
(
Ak
)
=
∑n
i=1

(
Ak
)
ii
=
∑n
i=1 λ

k
i .

We further have that tr (A) = 0, tr
(
A2
)

gives twice the number of links in G and tr
(
A3
)

gives six
times the number of triangles in G.

A nested split graph is characterized by a stepwise adjacency matrix, A, which is a symmetric,
binary (n× n)-matrix with elements aij satisfying the following condition: if i < j and aij = 1 then
ahk = 1 whenever h < k ≤ j and h ≤ i. In a stepwise adjacency matrix, a step function separates
the zero entries from the one entries in the matrix. See also the right panel in Figure B.1. Both,
the complete graph, Kn, as well as the star K1,n−1, are particular examples of nested split graphs.
Nested split graphs are also the graphs that maximize the largest eigenvalue, λmax(G), for a given
number of links (Brualdi and Solheid 1986), and they are the ones that maximize the degree variance
(Peled et al. 1999). See e.g., König et al. (2014) for further properties.

Given n and p ∈ [0, 1], the random graph G(n, p) is generated by letting each pair of nodes
be connected by an edge with probability p, independently. A natural generalization of G(n, p)
is obtained by replacing the single parameter p by a symmetric n × n matrix (pij)1≤i,j,n with
0 ≤ pij ≤ 1. We write G(n, (pij)1≤i,j,n) for the inhomogeneous random graph with nodes set N
where i and j are connected by a link with probability pij , and these events are independent for all
pairs (i, j) with 1 ≤ i < j ≤ n (Söderberg 2002; Bollobás et al. 2007).

Given a set of attributes A = {a1, a2, . . . , am}, a vertex v is associated with the set S(v) of
attributes selected by v from A. Let the vertices v1, . . . , vn choose their attribute sets Si = S(vi),
1 ≤ i ≤ n, independently at random, and make vi and vj adjacent whenever they have at least s ≥ 1
attributes in common, that is, |Si ∩ Sj | ≥ s. The graph on the vertex set N = {v1, . . . , vn} defined
by this adjacency relationship is then called the random intersection graph G(n,m, s) (Deijfen and
Kets 2009).



3

Appendix C: Cournot Oligopoly with Cost Reducing R&D Collaborations

We consider a Cournot oligopoly game in which a set N = {1, . . . , n} of firms is competing in
a product market with imperfectly substitutable goods.1 Firms are not only competitors in the
product market, but they can also form pairwise collaborative R&D agreements. These pairwise
links involve a commitment to share R&D results and lead to lower marginal cost of production of
the collaborating firms. The amount of this cost reduction depends on the effort the firms invest
into R&D. Given the collaboration network G ∈ Gn, where Gn denotes the set of all graphs with n
nodes, and the firms’ R&D effort levels, e = (ei)

n
i=1, the marginal cost of production for firm i is

given by (Goyal and Moraga-González 2001):

ci = c̄i − αei − β
n∑
j=1

aijej . (C.1)

where aij ∈ {0, 1} in Equation (C.1) is the ij-th element of the adjacency matrix A = (aij)1≤i,j≤n
indicating whether firms i and j are collaborating (or not). The parameter α ≥ 0 measures the
relative cost reduction due to a firm’s own R&D effort while the parameter β ≥ 0 measures the
relative cost reduction due to the R&D effort of its collaboration partners.2 We further allow for ex-
ante heterogeneity among firms in the fixed marginal cost parameter c̄i ≥ 0 expressing their different
technological and organizational capabilities (Blundell et al. 1995).

We also assume that firms incur a direct cost γe2i , γ ≥ 0, for their R&D effort and a fixed cost
ζ ≥ 0 for each R&D collaboration.3 The profit of firm i is then given by

πi = (pi − ci)qi − γe2i − ζdi, (C.2)

where qi ≥ 0 is the output level and di =
∑n
j=1 aij counts the number of collaborations of firm i.

Inserting marginal costs from Equation (C.1) gives

πi = piqi − c̄iqi + αqiei + βqi

n∑
j=1

aijej − γe2i − ζdi.

The optimal R&D effort level follows from the first-order condition ∂πi

∂ei
= αqi− 2γei = 0. Solving for

ei delivers e∗i = τqi, where we have denoted by τ ≡ α
2γ . This equation can be viewed as reflecting the

learning-by-doing effects of production on R&D efforts. It is consistent with various empirical studies
which have found that the R&D effort is correlated with firm size (Cohen and Klepper 1996a,b). We
then can write marginal costs from Equation (C.1) as follows4

ci = c̄i − ταqi − τβ
n∑
j=1

aijqj , (C.3)

while profits can be written as

πi = piqi − c̄iqi + ταq2i + τβqi

n∑
j=1

aijqj − τ2γq2i − ζdi. (C.4)

1. Generalizations to Bertrand competition are straightforward (see e.g., König et al. 2019; Westbrock 2010). In the
empirical application of the model in Section 3 we further generalize the model by allowing for competition in multiple
product markets.
2. Note that in this model, firms are exposed to business stealing effects if their rivals increase their output via cost
reducing R&D collaborations.
3. In Section 2.6 we discuss several extensions of the model including heterogeneous linking costs.
4. We assume that firms always implement the optimal R&D effort level. Since the optimal R&D effort decision only
depends on a firm’s own output, we assume that a firm does not face any uncertainty when implementing this strategy.
See also Kamien et al. (1992) for a similar model of competitive research joint ventures in which firms unilaterally (and
optimally) choose their R&D effort levels.
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Next we consider the demand for goods produced by firm i. A representative consumer maximizes
(Singh and Vives 1984)

U = I + υ
n∑
i=1

qi −
ψ

2

n∑
i=1

q2i −
λ

2

n∑
i=1

n∑
j ̸=i

qiqj , (C.5)

with the budget constraint I +
∑n
i=1 piqi ≤ E, endowment E and a numeraire good I. The parameter

υ > 0 captures the total size of the market, whereas λ ∈ (0, 1], measures the degree of substitutability
between products. In particular, λ = 1 depicts a market of perfect substitutable goods, while λ→ 0
represents the case of almost independent markets. The parameter λ is therefore a measure of the
degree of competition between firms. We assume that ψ > λ > 0 to ensure that the utility function
is concave. The budget constraint is binding and the utility maximization of the representative
consumer gives the inverse demand function for firm i:5

pi = υ − ψqi − λ
n∑
j ̸=i

qj . (C.6)

Moreover, inserting Equation (C.6) into the utility (C.5) of the consumer gives:

U = E −
n∑
i=1

piqi + υ
n∑
i=1

qi −
ψ

2

n∑
i=1

q2i −
λ

2

n∑
i=1

n∑
j ̸=i

qiqj

= E −
n∑
i=1

υ − ψqi − λ
n∑
j ̸=i

qj

 qi + υ
n∑
i=1

qi −
ψ

2

n∑
i=1

q2i −
λ

2

n∑
i=1

n∑
j ̸=i

qiqj

= E +
ψ

2

n∑
i=1

q2i +
λ

2

n∑
i=1

n∑
j ̸=i

qiqj . (C.7)

This defines the consumer surplus and is relevant for the efficiency analysis in Section 2.5. Note that
in the special case of non-substitutable goods, when λ→ 0, we obtain U = E + ψ

2

∑n
i=1 q

2
i , while in

the case of perfectly substitutable goods, when λ→ 1, we get U = E + 1+ψ
2

(∑n
i=1 qi

)2.
Inserting marginal cost from Equation (C.3) and inverse demand from Equation (C.6) we can

write firm i’s profit as

πi = (υ − c̄i)qi − (ψ − τα+ τ2γ)q2i − λqi
∑
j ̸=i

qj + τβ
n∑
j=1

aijqiqj − ζdi. (C.8)

If we denote by ηi ≡ υ − c̄i, ν ≡ ψ − τα+ τ2γ and ρ ≡ τβ then we can write Equation (C.8) more
compactly as follows

πi = ηiqi − νq2i − λqi
∑
j ̸=i

qj + ρ
n∑
j=1

aijqiqj − ζdi. (C.9)

Further, if we normalize ν = 1/2 then profits from Equation (C.9) can be written as in Equation
(1).

Appendix D: Equilibrium Characterization for Homogeneous Firms

In the following we provide a complete equilibrium characterization in the special case of ex-ante
homogeneous firms, that is, ηi = η for all i ∈ N in Equation (1).

5. With the budget constraint I = E −
∑n

i=1 piqi in the consumer’s utility in Equation (C.5), the FOC is given by
∂U
∂qi

= −pi + υ − ψqi − λ
∑n

j ̸=i yj = 0, from which we obtain Equation (C.6).
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Figure D.1. The average degree d̄ (left panel) and the average R&D effort ȳ (right panel) as a function of the
linking cost ζ for varying values of ϑ ∈ {0.05, 0.1, 0.2} with n = 20 firms and τ = ξ = χ = 1, η = 300, ρ = 1,
λ = 1 and ν = 20. Dashed lines indicate the theoretical predictions of Equations (D.1) and Equation (D.3) in
Proposition D.1, respectively.

Proposition D.1. Consider homogeneous firms such that ηi = η in the profit function of
Equation (1) for all i = 1, . . . , n, and let the evolution of the firms’ R&D effort levels and
collaborations be governed by the stochastic process in Definition 1. Denote by η∗ ≡ η/(n− 1) and
ν∗ ≡ ν/(n− 1). Moreover, let the empirical average R&D effort level be denoted by ȳ ≡ 1

n

∑n
i=1 yi

and the average degree be d̄ ≡ 1
n

∑n
i=1 di. Further, let the empirical degree distribution be given by

P̄ϑ(k) ≡ 1
n

∑n
i=1 1{di=k}, and denote by Pϑ(k) ≡ Eµϑ

(
P̄ϑ(k)

)
.

(i) Let y∗ ∈ Y be the root of

(λ+ 2ν∗)y − η∗ =
ρ

2

(
1 + tanh

(
ϑ

2

(
ρy2 − ζ

)))
y, (D.1)

which has at least one solution if λ+ 2ν∗ > ρ. Then, ȳ a.s.−−→ y∗. Moreover, for large n, the firms’
R&D effort levels become independent Gaussian distributed random variables, yi

d−→ N (y∗, σ2), with
mean y∗ and variance σ2 = n/

(
2ϑν∗ + ϑ2(by∗ − η∗ + 2ν∗y∗)(y∗(b+ 2ν∗ − ρ)− η∗)

)
. The degree

di of firm i follows a mixed Poisson distribution with mixing parameter
∫
Y p

ϑ(y, y′)µϑ(dy′),
where pϑ(y, y′) = eϑ(ρyy

′−ζ)/(1 + eϑ(ρyy
′−ζ)), and for any 1 < m ≤ n the degrees d1, . . . , dm are

asymptotically independent. In particular,

Pϑ(k) = Eµϑ

(
e−d̄(y1)d̄(y1)

k

k!

)
(1 + o(1)) , (D.2)

where the expected degree for large ϑ is given by

Eµϑ

(
d̄
)
=
n− 1

2

(
1 + tanh

(
ϑ

2

(
ρ(y∗)2 − ζ

)))
+O

(
1

ϑ

)
, (D.3)

and y∗ is given by the solution to Equation (D.1).

(ii) For ϑ→ ∞, in the stochastically stable state, the probability measure µ∗ is concentrated on

y∗ =


η∗

λ+2ν∗−ρ , if ζ < ρ(η∗)2

(λ+2ν∗)2 ,{
η∗

λ+2ν∗−ρ ,
η∗

λ+2ν∗

}
, if ρ(η∗)2

(λ+2ν∗)2 < ζ < ρ(η∗)2

(λ+2ν∗−ρ)2 ,

η∗

λ+2ν∗ , if ρ(η∗)2

(λ+2ν∗−ρ)2 < ζ,

(D.4)

and we refer to the two possible R&D effort levels in Equation (D.4) as the high equilibrium
and the low equilibrium, respectively. The expected average degree in the high equilibrium is
Eµ∗

(
d̄
)
= limϑ→∞ Eµϑ

(
d̄
)
= n − 1, which corresponds to a complete graph, Kn, and Eµ∗

(
d̄
)
=

limϑ→∞ Eµϑ

(
d̄
)
= 0 in the low equilibrium, which corresponds to an empty graph, Kn.
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Figure D.2. (Left panel) The stationary R&D effort distribution, P (y), for n = 50, η = 150, λ = 0.5, ν = 10,
ρ = 1 , ϑ ∈ {0.1, 0.25, 0.75} and ζ = 60. Dashed lines indicate the normal distribution N (y∗, σ2) of part (i) of
Proposition D.1. (Right panel) The stationary degree distribution, P (d), for the same parameter values. The
dashed lines indicate the solution in Equation (D.2) of Proposition D.1.
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𝜌
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Figure D.3. A phase diagram illustrating the regions with a unique and with multiple equilibria according to
Equation (D.1) in Proposition D.1 for varying values of the competition parameter b ∈ {0, . . . , 0.01} and the
spillover parameter ρ ∈ {0, . . . , 0.01} with n = 100, ν = 0.5, η = 100 ϑ = 1 and ζ = 50.

Figure D.1 shows the average R&D effort ȳ of Equation (D.1) and the average degree d̄ of
Equation (D.3) in part (i) Proposition D.1 as a function of the linking cost ζ. With increasing cost,
ζ, both network connectivity and R&D effort are decreasing. The transition from an economy with
high R&D effort and collaboration intensity (high equilibrium) to an economy with low R&D effort
and collaboration intensity (low equilibrium) is becoming sharper as ϑ increases, consistent with
the limit of part (ii) in Proposition D.1. An illustration of the Gaussian R&D effort distribution,
N (y∗, σ2), in part (i) of Proposition D.1 together with the results of numerical simulations can be
seen in the left panel in Figure D.2. The figure shows that the analytic prediction reproduces the
simulation results fairly well even for small values of ϑ, and that the distribution becomes more
concentrated on y∗ as ϑ increases. Further note that in the limit of large n, the variance-covariance
matrix of the firms’ effort distribution becomes a diagonal matrix, implying that the output levels
become independent with mean y∗ given by the solution to Equation (D.4). This independence
for large networks has similarly been used in the mean-field approximation proposed in Mele and
Zhu (2022) for estimating exponential random graph models. Moreover, in the absence of network
spillovers, when we set ρ to zero, total output (Y ∗ = ny∗) converges to total output in the perfect
competition equilibrium (Y ∗ −→

n→∞
(υ − c̄)/λ; cf. Supplementary Appendix C).

A phase diagram illustrating the regions with a unique and with multiple equilibria according
to Equation (D.4) in part (ii) Proposition D.1 can be seen in Figure D.3. Multiple equilibria arise
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Figure D.4. (Left panel) The stationary R&D effort distribution. The vertical dashed lines indicate the
theoretical predictions from Equation (D.4). (Right panel) The average R&D effort level from numerical
simulations with ϑ = 1 starting with different initial conditions (indicated with different colors). The horizontal
dashed lines indicate the equilibrium quantities and the vertical dashed lines are the threshold cost levels from
Equation (D.4). In the region of the cost ζ between the lower and upper thresholds two equilibria exist.

in the intermediate range of technology spillovers (ρ) and market stealing effects from competition
(λ). In contrast, when spillovers are much stronger (weaker) than competition, then the unique
high (low) equilibrium is selected. Note that the equilibrium R&D effort levels in Equations (D.1)
and (D.4) are increasing in ρ (spillovers) and η (market size), and decreasing in ζ (linking cost)
and λ (competition).6 This implies that both higher collaboration costs (or weaker spillovers) and
more intense competition (or smaller market size and/or higher production costs) decrease overall
production and collaboration intensity. An illustration with the average R&D effort level from
numerical simulations starting with different initial conditions and a comparison with the predictions
of Equation (D.4) can be seen in Figure D.4.

Proof of Proposition D.1. We start with the proof of the first part of the proposition. Observe that
the potential of Equation (2) can be written as

Φ(y,G) =
n∑
i=1

η − νyi −
λ

2

n∑
j ̸=i

yj

 yi︸ ︷︷ ︸
φ(y)

+
n∑
i=1

n∑
j=i+1

aij (ρyiyj − ζ)︸ ︷︷ ︸
σij

= φ(y) +
n∑
i=1

n∑
j=i+1

aijσij . (D.5)

We then have that eϑΦ(y,G) = eϑφ(y)eϑ
∑n

i<j aijσij , where only the last factor on the RHS is network
dependent. Observing that the sequence (aij)1≤i<j≤n = (a12, a13, . . . , an−1,n) is a binary sequence
as in Lemma A.1, we then can use the fact that for any constant, symmetric σij = σji, 1 ≤ i, j ≤ n,
we can write ∑

G∈Gn

eϑ
∑n

i<j aijσij =
n∏
i=1

n∏
j=i+1

(
1 + eϑσij

)
. (D.6)

From Equation (D.6) we then obtain

∑
G∈Gn

eϑΦ(y,G) = eϑφ(y)
n∏
i<j

(
1 + eϑσij

)
=

n∏
i=1

eϑ(η−νyi−
λ
2

∑n
j ̸=i yj)yi

n∏
i<j

(
1 + eϑ(ρyiyj−ζ)

)
. (D.7)

6. See also Figure D.5.
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We can use Equation (D.7) to compute the marginal distribution

µϑ(y) =
1

Zϑ

∑
G∈Gn

eϑΦ(y,G)

=
1

Zϑ

n∏
i=1

eϑ(η−νyi−
λ
2

∑
j ̸=i yj)yi

n∏
i<j

(
1 + eϑ(ρyiyj−ζ)

)
=

1

Zϑ
eϑ

∑n
i=1(η−νyi−

λ
2

∑
j ̸=i yj)yie

∑n
i<j ln

(
1+eϑ(ρyiyj−ζ)

)

=
1

Zϑ
eϑHϑ(y), (D.8)

where we have introduced the Hamiltonian

Hϑ(y) ≡
n∑
i=1

ηyi − νy2i +
n∑
j>i

(
1

ϑ
ln
(
1 + eϑ(ρyiyj−ζ)

)
− λyiyj

) . (D.9)

Using the fact that
∫
Yn µ

ϑ(y)dy = 1, it follows from Equation (D.8) that we can write the partition
function as

Zϑ =

∫
Yn

eϑHϑ(y)dy.

We next make the Laplace approximation (Wong 2001, Theorem 3, p. 495)

Zϑ ∼
(
2π

ϑ

)n
2

∣∣∣∣∣
(
∂2Hϑ

∂yi∂yj

)
yi=y∗

∣∣∣∣∣
− 1

2

eϑHϑ(y
∗), (D.10)

for large ϑ, where y∗ = argmaxy∈[0,ȳ]n Hϑ(y), and the Hessian is given by ∂2Hϑ

∂yi∂yj
for 1 ≤ i, j ≤ n.

From Equation (D.9) we find that

∂Hϑ

∂yi
= η − 2νyi +

n∑
j ̸=i

(
ρ

2

(
1 + tanh

(
ϑ

2
(ρyiyj − ζ)

))
− λ

)
yj . (D.11)

The first order conditions ∂Hϑ

∂yi
= 0 in Equation (D.11) imply that

η − 2νyi =
n∑
j ̸=i

(
λ− ρ

2

(
1 + tanh

(
ϑ

2
(ρyiyj − ζ)

)))
yj .

This system of equations has a symmetric solution, yi = y for all i = 1, . . . , n, where

(λ(n− 1) + 2ν)y − η =
(n− 1)ρ

2

(
1 + tanh

(
ϑ

2

(
ρy2 − ζ

)))
y.

Introducing the variables η∗ ≡ η/(n− 1) and ν∗ ≡ ν/(n− 1), this can be written as

(λ+ 2ν∗)y − η∗ =
ρ

2

(
1 + tanh

(
ϑ

2

(
ρy2 − ζ

)))
y. (D.12)

Let the RHS of Equation (D.12) be denoted by F (y) so that we can write it as (λ+2ν∗)y− η∗ = F (y).
Then we have that F (0) = 0, F ′(y) ≥ 0 and F (y) ∼ ρy for y → ∞. It follows that (λ+ 2ν∗)y− η∗ =
F (y) has at least one solution when λ + 2ν∗ > ρ.7 Moreover, any iteration (yt)

∞
t=0 with updates

(λ + 2ν∗)yt+1 − η∗ = F (yt) starting at y0 = 0 converges to the smallest fixed point y∗ such that
(λ+ 2ν∗)y∗ − η∗ = F (y∗).

7. Since the RHS, F (y), of Equation (D.12) is increasing (one can see this from taking the derivative), is zero at y = 0,
i.e., F (0) = 0, and asymptotically grows linearly as ρy, it follows that when λ+ 2ν∗ > ρ there must exist at least one
fixed point. This is because the LHS, (λ+ 2ν∗)y − η∗, of Equation (D.12) starts below zero at y = 0 (where it is −η∗),
both LHS and RHS are increasing, and the RHS approaches asymptotically a line with a slope smaller than the slope
λ+ 2ν∗ of the LHS. Hence they must intersect at some y ≥ 0.
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We next compute the average R&D effort level ȳ = 1
n

∑n
i=1 yi. We have that

Eµϑ

(
n∑
i=1

yi

)
=
∑
G∈Gn

∫
Yn

dy

(
n∑
i=1

yi

)
µϑ(y,G) =

1

Zϑ

∑
G∈Gn

∫
Yn

dy

(
n∑
i=1

yi

)
eϑΦ(y,G)

=
1

Zϑ

∑
G∈Gn

∫
Yn

dy
1

ϑ

∂

∂η
eϑΦ(y,G) =

1

ϑ

1

Zϑ

∂Zϑ

∂η
=

1

ϑ

∂ lnZϑ

∂η
= − 1

ϑ

∂Fϑ

∂η
,

where we have denoted Fϑ ≡ − lnZϑ. The average R&D effort is then given by

Eµϑ

(
1

n

n∑
i=1

yi

)
= − 1

nϑ

∂Fϑ

∂η
.

With Equation (D.10) we get

Fϑ ∼ −n
2
ln

(
2π

ϑ

)
+

1

2
ln

∣∣∣∣∣
(
∂2Hϑ

∂yi∂yj

)
yi=y∗

∣∣∣∣∣− ϑHϑ(y
∗).

We then find that

∂Fϑ

∂η
= −ϑ∂Hϑ(y

∗)

∂η
+

1

2

∂

∂η
ln

∣∣∣∣∣
(
∂2Hϑ

∂yi∂yj

)
yi=y∗

∣∣∣∣∣
= −ϑ∂Hϑ(y

∗)

∂η
+

1

2
tr
((

∂2Hϑ

∂yi∂yj

)−1
∂

∂η

(
∂2Hϑ

∂yi∂yj

))
yi=y∗

,

where we have used Jacobi’s formula (Horn and Johnson 1990).8 From Equation (D.11) we further
have that

∂2Hϑ

∂y2i
= −2ν +

ϑρ2

4

n∑
j ̸=i

y2j

(
1− tanh

(
ϑ

2
(ρyiyj − ζ)

)2
)
, (D.13)

and for j ̸= i we have that

∂2Hϑ

∂yi∂yj
= −λ+

ρ

2

(
1 + tanh

(
ϑ

2
(ρyiyj − ζ)

))(
1 +

ϑρ

2
yiyj

(
1− tanh

(
ϑ

2
(ρyiyj − ζ)

)))
.

(D.14)

This shows that ∂
∂η

(
∂2Hϑ

∂yi∂yj

)
= 0, so that ∂Fϑ

∂η = −ϑ∂Hϑ(y
∗)

∂η , and the expected average R&D effort
level is then given by

Eµϑ

(
1

n

n∑
i=1

yi

)
=

1

n

∂Hϑ(y
∗)

∂η
.

Using the fact that ∂Hϑ(y
∗)

∂η =
∑n
i=1 yi = ny∗, we then get in leading order terms for large ϑ that

Eµϑ

(
1

n

n∑
i=1

yi

)
= lim
ϑ→∞

Eµϑ

(
1

n

n∑
i=1

yi

)
= y∗.

Next, we compute the R&D effort distribution. It can be written as follows

µϑ(y) =
1

Zϑ

∑
G∈Gn

eϑΦ(y,G) =
1

Z ϑ
n

eϑHϑ(y),

where the Hamiltonian is implicitly defined by eϑHϑ(y) =
∑
G∈Gn eϑΦ(y,G). From a Taylor expansion

around y∗ we have that

Hϑ(y) = Hϑ(y
∗) + (y− y∗)D1Hϑ(y

∗) +
1

2
(y− y∗)⊤D2Hϑ(y

∗)(y− y∗) + o
(
∥y− y∗∥2

)
,

8. For any invertible matrix M(y) for all y, Jacobi’s formula states that d
dy

|M(y)| = |M(y)| tr
(
M(y)−1 d

dy
M(y)

)
,

which can be written more compactly as d
dy

ln |M(y)| = tr
(
M(y)−1 d

dy
M(y)

)
.
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as ϑ → ∞, where y∗ = argmaxy∈[0,ȳ]n Hϑ(y), the gradient is D1Hϑ(y) =
(
∂Hϑ

∂yi

)
i=1,...,n

, and the

Hessian is D2Hϑ(y) =
(
∂2Hϑ

∂yi∂yj

)
i,j=1,...,n

. As the gradient D1Hϑ(y) vanishes at y∗, we have that

Hϑ(y) = Hϑ(y
∗) +

1

2
(y− y∗)⊤D2Hϑ(y

∗)(y− y∗) + o
(
∥y− y∗∥2

)
.

We then can write

µϑ(y) =
1

Z ϑ
n

eϑHϑ(y
∗) exp

{
−1

2
ϑ(y− y∗)⊤(−D2Hϑ(y

∗))(y− y∗)

}
+ o

(
∥y− y∗∥2

)
.

Normalization implies that

Z ϑ
n =

∫
Yn

dyeHϑ(y) = eϑHϑ(y
∗)

∫
Yn

e−
1
2ϑ(y−y∗)⊤(−D2Hϑ(y

∗))(y−y∗)dy+ o
(
∥y− y∗∥2

)
= eϑHϑ(y

∗)(2π)
n
2

∣∣−D2Hϑ(y
∗)
∣∣− 1

2 + o
(
∥y− y∗∥2

)
.

The Laplace approximation of µϑ(y) is then given by

µϑ(y) =

(
2π

ϑ

)−n
2 ∣∣−D2Hϑ(y

∗)
∣∣ 12 e− 1

2ϑ(y−y∗)⊤(−D2Hϑ(y
∗))(y−y∗) + o

(
∥y− y∗∥2

)
. (D.15)

That is, in the limit of large ϑ, y is asymptotically normally distributed with mean y∗ and variance
− 1
ϑD

2Hϑ(y
∗)−1.

Imposing symmetry, yi = y for all i = 1, . . . , n, in Equation (D.13) we can write

∂2Hϑ

∂y2i

∣∣∣∣
yi=y

= −2ν + (n− 1)
ϑρ2

4
y2
(
1− tanh

(
ϑ

2

(
ρy2 − ζ

)))(
1 + tanh

(
ϑ

2

(
ρy2 − ζ

)))
,

and for j ̸= i we have from Equation (D.13) that

∂2Hϑ

∂yi∂yj

∣∣∣∣
yi=yj=y

= −λ+
ρ

2

(
1 + tanh

(
ϑ

2

(
ρy2 − ζ

)))(
1 +

ϑρ

2
y2
(
1− tanh

(
ϑ

2

(
ρy2 − ζ

))))
.

Using Equation (D.12), from which we get

ρ

2

(
1 + tanh

(
ϑ

2

(
ρy2 − ζ

)))
=

((n− 1)λ+ 2ν)y − η

(n− 1)y
,

and
ρ

2

(
1− tanh

(
ϑ

2
(ρyiyj − ζ)

))
=

((n− 1)(ρ− λ)− 2ν)y + η

(n− 1)y
,

we then can write

∂2Hϑ

∂y2i

∣∣∣∣
yi=y

= −2ν +
ϑ(((n− 1)(ρ− λ)− 2ν)y + η)(((n− 1)λ+ 2ν)y − η)

n− 1
,

and

∂2Hϑ

∂yi∂yj

∣∣∣∣
yi=yj=y

= −b+ ((n− 1)λ+ 2ν)y − η

(n− 1)y

(
1 +

ϑx(((n− 1)(ρ− λ)− 2ν)y + η)

n− 1

)
.

Denoting by ν∗ ≡ ν/(n− 1) and η∗ ≡ η/(n− 1) we can further write

∂2Hϑ

∂y2i

∣∣∣∣
yi=y

= (n− 1)

(
−2ν∗ + ϑy2

(
ρ− λ− 2ν∗ +

η∗

y

)(
λ+ 2ν∗ − η∗

y

))
, (D.16)

and
∂2Hϑ

∂yi∂yj

∣∣∣∣
yi=yj=y

= −b+
(
λ+ 2ν∗ − η∗

y

)(
1 + ϑy2

(
ρ− λ− 2ν∗ +

η∗

y

))
. (D.17)
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Note that due to symmetry, the Hessian D2Hϑ(y
∗) with components in Equations (D.16) and (D.17)

is a special case of a circulant matrix. Denoting by a the diagonal elements of D2Hϑ(y
∗) and by

λ the off-diagonal elements, the determinant in Equation (D.15) follows from the general formula
(Horn and Johnson 1990):

∣∣−D2Hϑ(y
∗)
∣∣ =

∣∣∣∣∣∣∣∣∣
a b b . . .
b a b . . .
b b a
...

... . . .

∣∣∣∣∣∣∣∣∣ = (a− b)n−1(a+ (n− 1)b).

Similarly, for a circulant matrix (by applying the Sherman-Morrison formula; see e.g., Horn and
Johnson (1990)) we get for the inverse in Equation (D.15) that

−D2Hϑ(y
∗)−1 =


a b b . . .
b a b . . .
b b a
...

... . . .


−1

=
1

a2 + (n− 2)ab− (n− 1)b2


a+ (n− 2)b −b −b . . .

−b a+ (n− 2)b −b . . .
−b −b a+ (n− 2)b
...

... . . .


For large n we see from Equations (D.16) and (D.17) that the off-diagonal elements vanish relatively
to the diagonal elements. As y is asymptotically normally distributed with mean y∗ and variance
− 1
ϑD

2Hϑ(y
∗)−1, this implies that, in the limit of n → ∞, the individual firms’ R&D effort levels

become independent. The diagonal entries are given by

− 1

ϑ

(
D2Hϑ(y

∗)
)−1

ii
∼ 1

ϑ

n

2ν∗ + ϑ(λy − η∗ + 2ν∗y)(y(λ+ 2ν∗ − ρ)− η∗)
≡ σ2.

Next, we compute the expected average degree d̄. The expected number of links can be obtained as
follows

Eµϑ(m) =
∑
G∈Gn

∫
Yn

mµϑ(y,G)dy =
1

Zϑ

∑
G∈Gn

∫
Yn

meϑΦ(y,G)︸ ︷︷ ︸
− 1

ϑ
∂
∂ζ e

ϑΦ(y,G)

dy = − 1

ϑ

1

Zϑ

∂Zϑ

∂ζ
=

1

ϑ

∂Fϑ

∂ζ
,

where we have denoted Fϑ ≡ − lnZϑ. From the Laplace approximation in Equation (D.10) we find
that

∂Fϑ

∂ζ
= −ϑ∂Hϑ(y

∗)

∂ζ
+

1

2

∂

∂ζ
ln

∣∣∣∣∣
(
∂2Hϑ

∂yi∂yj

)
yi=y∗

∣∣∣∣∣
= −ϑ∂Hϑ(y

∗)

∂ζ
+

1

2
tr
((

∂2Hϑ

∂yi∂yj

)−1
∂

∂ζ

(
∂2Hϑ

∂yi∂yj

))
yi=y∗

,

where we have used Jacobi’s formula (see e.g., Horn and Johnson 1990). Consequently, the expected
number of links is

Eµϑ(m) = −∂Hϑ(y
∗)

∂ζ
+

1

2ϑ
tr
((

∂2Hϑ

∂yi∂yj

)−1
∂

∂ζ

(
∂2Hϑ

∂yi∂yj

))
yi=y∗

.

Further, we have that

∂Hϑ

∂ζ
= −1

2

n∑
i=1

n∑
j>i

(
1 + tanh

(
ϑ

2
(ρyiyj − ζ)

))
,

and in the symmetric equilibrium this is
∂Hϑ

∂ζ

∣∣∣∣
yi=y

= −n(n− 1)

4

(
1 + tanh

(
ϑ

2

(
ρy2 − ζ

)))
.
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The expected number of links can then be written as

Eµϑ(m) =
n(n− 1)

2

(
1 + tanh

(
ϑ

2

(
ρy2 − ζ

)))
+

1

2ϑ
tr
((

∂2Hϑ

∂yi∂yj

)−1
∂

∂ζ

(
∂2Hϑ

∂yi∂yj

))
yi=y∗

.

Using the fact that
ρ

2

(
1 + tanh

(
ϑ

2

(
ρy2 − ζ

))2
)

= λ+ 2ν∗ − η∗

y
,

where ν∗ = ν
n−1 and η∗ = η

n−1 , we can write

∂Hϑ

∂ζ

∣∣∣∣
yi=y

= −n(n− 1)

2ρ

(
λ+ 2ν∗ − η∗

y

)
.

In the limit of ϑ→ ∞ in the low equilibrium, where y = η∗

λ+2ν∗ and therefore η∗

y = λ+ 2ν∗, we then
get

∂Hϑ

∂ζ

∣∣∣∣
yi=y

= 0.

In contrast, in the limit of ϑ→∞ in the high equilibrium, where y = η∗

λ+2ν∗−ρ , and η∗

y = λ+2ν∗ − ρ
we find that

∂Hϑ

∂ζ

∣∣∣∣
yi=y

= −n(n− 1)

2
.

Further, the derivatives with respect to the linking cost ζ in Equation (D.13) are given by

∂

∂ζ

∂2Hϑ

∂y2i
=
ϑ2ρ2

4

n∑
j ̸=i

tanh

(
ϑ

2
(ρyiyj − ζ)

)(
1− tanh

(
ϑ

2
(ρyiyj − ζ)

)2
)
,

and for j ̸= i from Equation (D.14) we get that

∂

∂ζ

∂2Hϑ

∂yi∂yj
= −ϑρ

4

(
1− tanh

(
ϑ

2
(ρyiyj − ζ)

)2
)(

1− ϑρyiyj tanh

(
ϑ

2
(ρyiyj − ζ)

))
.

Imposing symmetry, yi = y for all i = 1, . . . , n, we then can write

∂

∂ζ

∂2Hϑ

∂y2i

∣∣∣∣
yi=y

=
(n− 1)ϑ2ρ2

4
tanh

(
ϑ

2

(
ρy2 − ζ

))(
1− tanh

(
ϑ

2

(
ρy2 − ζ

))2
)
, (D.18)

and

∂

∂ζ

∂2Hϑ

∂yi∂yj

∣∣∣∣
yi=yj=y

= −ϑρ
4

(
1− tanh

(
ϑ

2

(
ρy2 − ζ

))2
)(

1− ϑρy2 tanh

(
ϑ

2

(
ρy2 − ζ

)))
. (D.19)

For a circulant matrix (by applying the Sherman-Morrison formula) we have that
a b b . . .
b a b . . .
b b a
...

... . . .


−1

=
1

a2 + (n− 2)ab− (n− 1)b2


a+ (n− 2)b −b −b . . .

−b a+ (n− 2)b −b . . .
−b −b a+ (n− 2)b
...

... . . .


and

tr


c d d . . .
d c d . . .
d d c
...

... . . .



e f f . . .
f e f . . .
f f e
...

... . . .

 = n(ce+ (n− 1)df),
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so that

tr


a b b . . .
b a b . . .
b b a
...

... . . .


−1

e f f . . .
f e f . . .
f f e
...

... . . .

 =
n((a+ (n− 2)b)e− (n− 1)bf)

a2 + (n− 2)ab− (n− 1)b2
.

The expected number of links can then be written as follows

Eµϑ(m) =
n(n− 1)

2

(
1 + tanh

(
ϑ

2

(
ρy2 − ζ

)))
+

1

2ϑ
Rϑ,

where
Rϑ ≡ n((c1 + (n− 2)c2)c3 − (n− 1)c2c4)

c21 + (n− 2)c1c2 − (n− 1)c22
,

with

c1 ≡ −2ν + (n− 1)
ϑρ2y2

4

(
1− tanh

(
ϑ

2

(
ρy2 − ζ

))2
)
,

c2 ≡ −λ+
ρ

2

(
1 + tanh

(
ϑ

2

(
ρy2 − ζ

)))(
1 +

ϑρy2

2

(
1− tanh

(
ϑ

2

(
ρy2 − ζ

))))
,

c3 ≡ (n− 1)ϑ2ρ2

4
tanh

(
1− tanh

(
ϑ

2

(
ρy2 − ζ

))2
)
,

c4 ≡ −ρϑ
4

(
1− tanh

(
ϑ

2

(
ρy2 − ζ

))2
)(

1− ϑρy2 tanh

(
ϑ

2

(
ρy2 − ζ

)))
.

In the following we compute the degree distribution. From our previous discussion we know that each
firm i has an R&D effort level y distributed identically and independently with density µϑ(y) given
by N (y∗, σ2) and converging to δ(y − y∗) in the limit ϑ→ ∞. With the marginal distribution from
Equation (D.8) and the potential in Equation (D.5) we then can write the conditional distribution
as

µϑ(G|y) = µϑ(y,G)

µϑ(y)
=

eϑΦ(y,G)∑
G′∈Gn eϑΦ(y,G′)

=
eφ(y)eϑ

∑n
i<j aij(ρyiyj−ζ)

eφ(y)
∏
i<j

(
1 + eϑ(ρyiyj−ζ)

)
=

eϑ
∑n

i<j aij(ρyiyj−ζ)∏
i<j

(
1 + eϑ(ρyiyj−ζ)

)
=
∏
i<j

eϑaij(ρyiyj−ζ)

1 + eϑ(ρyiyj−ζ)

=
∏
i<j

(
eϑ(ρyiyj−ζ)

1 + eϑ(ρyiyj−ζ)

)aij (
1− eϑ(ρyiyj−ζ)

1 + eϑ(ρyiyj−ζ)

)1−aij

=
∏
i<j

pϑ(yi, yj)
aij
(
1− pϑ(yi, yj)

)1−aij
. (D.20)

Hence, we obtain the likelihood of an inhomogeneous random graph with link probability9

pϑ(yi, yj) =
eϑ(ρyiyj−ζ)

1 + eϑ(ρyiyj−ζ)
=

gϑ(yi, yj)

1 + gϑ(yi, yj)
, (D.21)

where we have denoted gϑ(y, y′) ≡ eϑ(ρyy
′−ζ). The probability of observing the network G, given the

R&D effort levels y can then be written as follows

µϑ(G|y) =
n∏
i=1

n∏
j=i+1

(
gϑ(yi, yj)

1 + gϑ(yi, yj)

)aij (
1

1 + gϑ(yi, yj)

)1−aij

9. See also Supplementary Appendix B for further details about inhomogeneous random graphs.
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which can be written as
µϑ(G|y) = Cϑ(y)

n∏
i=1

n∏
j=i+1

gϑ(yi, yj)
aij ,

with the normalizing constant

Cϑ(y) ≡
n∏
i=1

n∏
j=i+1

(
1 + gϑ(yi, yj)

)
.

Since
∑
G∈Gn P (G|y) = 1, the constant Cϑ(y) can also be written as

Cϑ(y) =
∑
G∈Gn

n∏
i=1

n∏
j=i+1

gϑ(yi, yj)
aij .

Next, we consider the probability generating function of the vector of degrees, (di(G))ni=1, given by

Eµϑ

(
n∏
i=1

y
di(G)
i

∣∣∣∣∣y
)

= E

 n∏
i=1

n∏
j=i+1

(yiyj)
aij

∣∣∣∣∣∣y


=
∑
G∈Gn

P (G|y)
n∏
i=1

n∏
j=i+1

(yiyj)
aij

=
1

Cϑ(y)

∑
G∈Gn

n∏
i=1

n∏
j=i+1

gϑ(yi, yj)
aij

n∏
i=1

n∏
j=i+1

(yiyj)
aij

=
1

Cϑ(y)

∑
G∈Gn

n∏
i=1

n∏
j=i+1

(
gϑ(yi, yj)yiyj

)aij
=

∑
G∈Gn

∏n
i=1

∏n
j=i+1

(
gϑ(yi, yj)yiyj

)aij∏n
i=1

∏n
j=i+1(1 + gϑ(yi, yj))

=
n∏
i=1

n∏
j=i+1

1 + gϑ(yi, yj)yiyj
1 + gϑ(yi, yj)

, (D.22)

where we have used the fact that∑
G∈Gn

n∏
i=1

n∏
j=i+1

(
gϑ(yi, yj)yiyj

)aij
=

n∏
i=1

n∏
j=i+1

(
1 + gϑ(yi, yj)yiyj

)
.

To compute the generating function of d1(G), we simply set yi = 1 for all i > 1. Then

Eµϑ

(
y
d1(G)
1

)
= Eµϑ

(
Eµϑ

(
y
d1(G)
1

∣∣∣ y1))
= Eµϑ

Eµϑ

 n∏
j=2

1 + gϑ(y1, yj)y1
1 + gϑ(y1, yj)

∣∣∣∣∣∣ y1


= Eµϑ

((
Eµϑ

(
1 + gϑ(y1, y2)y1
1 + gϑ(y1, y2)

∣∣∣∣ y1))n−1
)
,

where we have used symmetry and the independence of y1, . . . , yn. Further, note that
1 + xy

1 + x
= 1+ (y − 1)x+O

(
x2
)
.

Hence, for gϑ(y1, y2) small in the sparse graph limit, we can write

Eµϑ

(
1 + gϑ(y1, y2)y1
1 + gϑ(y1, y2)

∣∣∣∣ y1) =

∫
Y

1 + gϑ(y1, y2)y1
1 + gϑ(y1, yj)

µϑ(dy2)

= 1 + (y1 − 1)

∫
Y
gϑ(y1, y2)µ

ϑ(dy2) + o(1)

= 1 + (y1 − 1)νϑ(y1) + o(1),
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where we have denoted νϑ(y) ≡
∫
Y g

ϑ(y, y′)µϑ(dy′). It then follows that

Eµϑ

(
y
d1(G)
1

)
= Eµϑ

((
1 + (y1 − 1)νϑ(y1)

)n−1
)
(1 + o(1)) = Eµϑ

(
e(y1−1)(n−1)νϑ(y1)

)
(1 + o(1)) ,

where we have used the fact that e(y1−1)νϑ(y) = 1 + (y1 − 1)νϑ(y) + o(1). This is the probability
generating function of a mixed Poisson random variable with mixing parameter νϑ(y). In
particular, since pϑ(y, y′) = gϑ(y, y′) + o(1), we can write nνϑ(y) = n

∫
Y p(y, y

′)µϑ(dy′) =∑n
j=1

∫
Y p

ϑ(y, yj)µ
ϑ(dyj) =

∑n
j=1 P (a1j = 1| y1 = y) = Eµϑ (d1(G)| y1 = y), which is the expected

degree of a firm with R&D effort y, and we denote it by d̄(y). Further, it then follows that

Eµϑ

(
y
d1(G)
1

)
=

n∑
k=0

yk1P (d1(G) = k)

= Eµϑ

(
e(y1−1)d̄(y1)

)
(1 + o(1))

= Eµϑ

(
e−d̄(y1)

n∑
k=0

(y1d̄(y1))
k

k!

)
(1 + o(1))

=
n∑
k=0

yk1Eµϑ

(
e−d̄(y1)d̄(y1)

k

k!

)
(1 + o(1)) .

Let the empirical degree distribution be given by P̄ϑ(k) = 1
n

∑n
i=1 1{di(G)=k}, and denoted by

Pϑ(k) ≡ Eµϑ

(
P̄ϑ(k)

)
. Then we have that

Pϑ(k) = P (d1(G) = k) = Eµϑ

(
e−d̄(y1)d̄(y1)

k

k!

)
(1 + o(1)) .

We now give a proof of part (ii) of the proposition. In the limit of ϑ → ∞ we obtain from the
FOC in Equation (D.12) that

(λ+ 2ν∗)y − η∗ =

{
ρy, if ζ < ρy2,

0, if ρy2 < ζ.

This shows that the right hand side of Equation (D.1) has a point of discontinuity at
√

ζ
ρ (see Figure

D.5). It then follows that, in the limit of ϑ→ ∞ (for the stochastically stable equilibrium), we have

y∗ =


η

λ+2ν∗−ρ , if ζ < ρ(η∗)2

(λ+2ν∗)2 ,{
η∗

λ+2ν∗−ρ ,
η∗

λ+2ν∗

}
, if ρ(η∗)2

(λ+2ν∗)2 < ζ < ρη2

(λ+2ν∗−ρ)2 ,

η∗

λ+2ν∗ , if ρ(η∗)2

(λ+2ν∗−ρ)2 < ζ,

(D.23)

which is increasing in ρ and η∗, and decreasing in ζ and λ (see Figure D.5). Next, note that

Eµϑ

(
n∑
i=1

y2i

)
=
∑
G∈Gn

∫
Yn

n∑
i=1

y2i µ
ϑ(y,G)dy =

1

Zϑ

∑
G∈Gn

∫
Yn

n∑
i=1

y2i e
ϑΦ(y,G)dy

=
1

Zϑ

∑
G∈Gn

∫
Yn

1

ϑ2
∂2

∂η2
eϑΦ(y,G)dy =

1

Zϑ

1

ϑ2
∂2Zϑ

∂η2
,

where we have denoted Fϑ ≡ − lnZϑ. We further have that

∂2 lnZϑ

∂η2
=

1

Zϑ

∂2Zϑ

∂η2
− 1

Z 2
ϑ

(
∂Zϑ

∂η

)2

=
1

Zϑ

∂2Zϑ

∂η2
−
(
∂ lnZϑ

∂η

)2

= ϑ2Eµϑ

(
n∑
i=1

y2i

)
− ϑ2Eµϑ

(
n∑
i=1

yi

)2

.
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Figure D.5. (Top left panel) The right hand side of Equation (D.1) for different values of ζ1 = 25, ζ2 = 10,
ζ3 = 3 and λ = 4, ρ = 2, η = 6.5, ν = 0 and ϑ = 10. (Top right panel) The values of y solving Equation (D.1)
for different values of ζ with λ = 1.48, ρ = 0.45 and ϑ1 = 49.5, ϑ2 = 0.495, ϑ3 = 0.2475. (Bottom left panel) The
right hand side of Equation (D.1) for different values of η1 = 2.5, η2 = 6.5, η3 = 10 and b = 4, ρ = 2, ζ = 10 and
ϑ = 10. (Bottom right panel) The values of y solving Equation (D.1) for different values of η with λ = 4, ρ = 2
and ϑ1 = 10, ϑ2 = 0.26, ϑ3 = 0.2.

We then get

Varµϑ

(
n∑
i=1

yi

)
= Eµϑ

(
n∑
i=1

y2i

)
− Eµϑ

(
n∑
i=1

yi

)2

=
1

ϑ2
∂2 lnZϑ

∂η2
= − 1

ϑ2
∂2Fϑ

∂η2
.

The variance of the mean is then given by

Varµϑ

(
1

n

n∑
i=1

yi

)
= − 1

n2ϑ2
∂2Fϑ

∂η2
.

We have that
∂2Fϑ

∂η2
= −ϑ∂

2Hϑ(y
∗)

∂η2
= 0,

and we get

Varµ∗

(
1

n

n∑
i=1

yi

)
= lim
ϑ→∞

Varµϑ

(
1

n

n∑
i=1

yi

)
= 0.

Note that the variance of the average R&D effort can be equal to zero only if it is equal to its
expectation in all of its support. This can only happen if the average R&D effort is equal to y∗ with
probability one in the large ϑ limit.

Further, in the limit of ϑ → ∞, for both, the low equilibrium, where y = η∗

λ+2ν∗ and therefore
η∗

y = λ+ 2ν∗, as well as the high equilibrium, where y = η∗

λ+2ν∗−ρ , and η∗

y = λ+ 2ν∗ − ρ we find
from Equation (D.18) that

∂

∂ζ

∂2Hϑ

∂y2i

∣∣∣∣
yi=y

= 0,
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and from Equation (D.19) we get

∂

∂ζ

∂2Hϑ

∂yi∂yj

∣∣∣∣
yi=yj=y

= 0.

Hence, we find that in the high equilibrium Eµ∗(m) = limϑ→∞ Eµϑ(m) = n(n−1)
2 , while in the low

equilibrium Eµ∗(m) = limϑ→∞ Eµϑ(m) = 0. Consequently, the expected average degree in the high
equilibrium is Eµ∗

(
1
n

∑n
i=1 di

)
= limϑ→∞ Eµϑ

(
1
n

∑n
i=1 di

)
= n− 1, where we have a complete graph,

Kn, and zero in the low equilibrium where we obtain an empty graph, Kn. □

Appendix E: Additional Sources of Firm Heterogeneity

In the following sections we will discuss two possible extensions of the model that incorporate firm
heterogeneity (see also the empirical application in Section 3.2). First, in Section E.1 we allow for
heterogeneous collaboration costs. Second, in Section E.2 we incorporate heterogeneous spillovers
between collaborating firms.

E.1. Heterogeneous Marginal Collaboration Costs

In the following we assume that the marginal cost of collaboration between firms i and j can be
written as an additively separable function: ζij = zi + zj (cf. Equation (12) in Section 3.2). The
probability of a link between firms i and j is then given by Equation (8).10 It can be written as

pϑ(yi, zi, yj , zj) =
eϑ(ρyiyj−zi−zj)

1 + eϑ(ρyiyj−zi−zj)
. (E.1)

Similar to e.g., Melitz (2003); Melitz et al. (2008) we further assume that the cost parameter zi ≥ 0
is given by the inverse of the firm’s productivity, zi = 1

φi
, where φi > 0 is the productivity (or

efficiency) of firm i. Then firms with higher productivity incur lower collaboration costs. Moreover,
assume that the firms’ productivities, φi ≥ c > 0, are Pareto distributed (Melitz et al. 2008; König
et al. 2016), with density f(φ) = γ

c

(
c
φ

)γ+1

and φ > c, where c > 0 is a lower cut-off, and γ > 0 is

a positive parameter. The complementary distribution function is then given by F (φ) = 1−
(
c
φ

)γ
.

It follows that the cost z = 1
φ has the density f(z) = γcγzγ−1 for z ∈

(
0, 1c
)
, and the cumulative

distribution function F (z) = (cz)γ . For this specification of the cost, we can derive various network
statistics that are consistent with real-world networks. In particular, we show below that the degree
distribution is highly skewed and follows a power law (Proposition E.1), the average degree of the
neighbors of a node is correlated with the degree of the node (Proposition E.2), and the clustering
coefficient of a node (a measure for the tendency of the nodes in a graph to cluster together) is also
correlated with the degree of a node (Proposition E.3).11 An illustration is given in Figure E.1.12

10. Similar specifications can be found in the empirical literature on network formation (see e.g., Graham 2015, for
a review). For example, Graham (2017) and Fafchamps and Gubert (2007) consider an econometric network formation
model in which the probability of a link between agents i and j is given by P(aij = 1) = eYi+Yj+Z⊤

ijβ/(1+ eYi+Yj+Z⊤
ijβ)

where Yi is an agent specific fixed effect and Zij is a vector of pair-specific covariates. Similarly, Chatterjee et al. (2011)
analyze a network formation model with linking probability P(aij = 1) = eYi+Yj/(1 + eYi+Yj ).
11. In the following propositions, we will assume that the firms’ R&D effort levels are concentrated on y∗ in the limit
of ϑ→ ∞, and the assumption that is typically satisfied in the simulation studies that we did. Moreover, concentration
can be shown to hold in the basic model with homogeneous firms in the limit of vanishing noise.
12. See e.g., König (2016) for a comparison and additional details about these statistics.
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Proposition E.1. Assume that the firms’ R&D effort levels are concentrated on y∗ in the limit of
ϑ→ ∞. Then under a continuum approximation,13 the degree distribution is given by

P (k) =
cγ

k

(
ρ(y∗)2 −

(
k

(n− 1)cγ

) 1
γ

)γ−1(
k

(n− 1)cγ

) 1
γ

, (E.2)

and for large k the degree distribution P (k) decays as O
(
k−

γ−1
γ

)
.

Proof of Proposition E.1. The generating function of the degree d1(G) is given by

E
(
y
d1(G)
1

)
= E

(
E
(
y
d1(G)
1

∣∣∣ y1, z1))
= E

((
E
(
1 + p(y1, z1, y2, z2)y1
1 + p(y1, z1, y2, z2)

∣∣∣∣ y1, z1))n−1
)
,

With the cost distributed as f(z) = γcγzγ−1 for z ∈
(
0, 1c
)
, we can write

E
(
y
d1(G)
1

∣∣∣ y1 = y, z1 = z
)
= E

(
1 + p(y, z, y2, z2)y1
1 + p(y, z, y2, z2)

∣∣∣∣x, z)n−1

= (1 + (y1 − 1)E (p(y, z, y2, z2)| y1 = y, z1 = z))n−1

=

(
1 + (y1 − 1)

∫
Y
dy′µϑ(y′)

∫
dz′γcγ(z′)γ−1p(y, z, y′, z′)

)n−1

=

(
1 + (y1 − 1)

∫
Y
dy′µϑ(y′)

∫
dz′γcγ(z′)γ−1 eϑ(ρyy

′−z−z′)

1 + eϑ(ρyy′−z−z′)

)n−1

.

In the limit of ϑ→ ∞ in Equation (E.1) we obtain

lim
ϑ→∞

pϑ(y, z, y′, z′) = lim
ϑ→∞

eϑ(ρyy
′−z−z′)

1 + eϑ(ρyy′−z−z′)
= 1{ρyy′>z+z′},

so that we can write

E
(
y
d1(G)
1

∣∣∣ y1 = y, z1 = z
)
=

(
1 + (y1 − 1)

∫
Y
dy′µϑ(y′)

∫
dz′γcγ(z′)γ−11{ρyy′>z+z′}

)n−1

=

(
1 + (y1 − 1)γcγ

∫ ρyy∗−z

0

dz′(z′)γ−1

)n−1

=
(
1 + (y1 − 1)cγ (ρyy∗ − z)γ

)n−1

= e(y1−1)(n−1)cγ(ρyy∗−z)γ .

This is the generating function of a Poisson random variable with expectation and variance given by
d̄(y, z) ≡ (n− 1)cγ (ρyy∗ − z)γ . When the cut-off c is small, the variance becomes small, and we can
approximate the Poisson random variable with a constant random variable at the expected value.
Making further a continuum approximation, where we treat the degree as a continuous variable, we
can write

P (d1(G) = k| y1 = y, z1 = z) = δ
(
k − d̄(y, z)

)
= δ

(
k − (n− 1)cγ (ρyy∗ − z)γ

)
.

Note that under the continuum approximation there exists a one-to-one mapping from the degree k
to the cost z, where for a given k and R&D effort y, the cost s is given by

z = ρyy∗ −
(

k

(n− 1)cγ

) 1
γ

.

13. This is an approximation that has shown to be accurate in various network formation models as the network size
become large (Dorogovtsev and Mendes 2013, pp. 117).
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Using the fact that14

δ
(
k − (n− 1)cγ

(
ρ(y∗)2 − z

)γ)
= δ

(
z −

(
ρ(y∗)2 −

(
k

(n− 1)cγ

) 1
γ

))
1

γk

(
k

(n− 1)cγ

) 1
γ

, (E.3)

and assuming that the R&D effort distribution concentrates on y∗, the degree distribution is given
by

P (k) =

∫
dzP (d1(G) = k| y1 = y∗, z1 = z) f(z)

= γcγ
∫
dzδ

(
z − (n− 1)cγ

(
ρ(y∗)2 − z

)γ)
zγ−1

= γcγ
∫
dzδ

(
k −

(
ρ(y∗)2 −

(
k

(n− 1)cγ

) 1
γ

))
1

γk

(
k

(n− 1)cγ

) 1
γ

zγ−1

=
cγ

k

(
ρ(y∗)2 −

(
k

(n− 1)cγ

) 1
γ

)γ−1(
k

(n− 1)cγ

) 1
γ

= O
(
k−

γ−1
γ

)
.

□

Hence, we obtain a power law degree distribution with parameter γ−1
γ , consistent with previous

empirical studies which have found power law degree distributions in R&D alliance networks (e.g.,
Powell et al. 2005). An illustration can be seen in Figure E.1 for the case of γ = 2 and n = 200 firms.

We next analyze correlations between the average degree of a firm and its neighbors in the
network.

Proposition E.2. Assume that the firms R&D effort levels are concentrated on y∗ in the limit of
ϑ→ ∞. Then under the continuum approximation, the average nearest neighbor degree distribution
is given by

knn(k) = 1 +
(n− 1)2γc2γ

k

∫ (
k

(n−1)cγ

) 1
γ

0

dz′(z′)γ−1(ρ(y∗)2 − z′)γ . (E.4)

Proof of Proposition E.2. Next, we compute the average nearest neighbor degree distribution

knn(k) = 1 +
1

P (k)

∫
dz

∫
Y
dyf(z)µϑ(y)g(k|y, z)k̃nn(y, z),

where

k̃nn(y, z) =

∫
dz′
∫
Y
dy′p(y′, z′|y, z)d̄(y′, z′),

g(k|y, z) = P (d1(G) = k| y1 = y, z1 = z) = δ
(
k − d̄(y, z)

)
,

d̄(y, z) = (n− 1)cγ (ρyy∗ − z)γ

p(y′, z′|y, z) = (n− 1)p(y, z, y′, z′)f(z′)µϑ(y′)

d̄(y, z)
,

lim
ϑ→∞

pϑ(y, z, y′, z′) = lim
ϑ→∞

eϑ(ρyy
′−z−z′)

1 + eϑ(ρyy′−z−z′)
= 1{ρyy′>z+z′}

µϑ(y) = δ(y − y∗)

f(z) = γcγzγ−1.

14. When g(y) is a continuously differentiable function in R it holds that δ(g(y)) =
∑m

i=1
δ(y−yi)
|g′(yi)| where the m roots

yi satisfy g(yi) = 0 for all i = 1, . . . ,m.
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Figure E.1. (Top left panel) The empirical and the theoretical cumulative cost distribution F (s) = (cs)γ with
γ = 2 and c = 0.02. The empirical distribution is indicated with circles and the theoretical distribution with a
dashed line. (Top right panel) The degree distribution P (d). The dashed line indicates the theoretical prediction
of Equation (E.2). (Bottom left panel) The average nearest neighbor degree distribution knn(d), decreasing with
increasing degrees d and thus indicating a disassortative network. The dashed line indicates the theoretical
prediction of Equation (E.4). (Bottom right panel) The clustering degree distribution C(d), decreasing with
increasing degree d. The parameters used are b = 0.75, ν = 1 and ρ = 1. The distributions are computed across
10 independent simulation runs with n = 200 firms.

It then follows that

p(y′, z′|y, z) =
(n− 1)1{ρyy′>z+z′}γc

γ(z′)γ−1δ(y′ − y∗)

d̄(y, z)
,

and therefore

k̃nn(y, z) =
n− 1

d̄(y, z)

∫
dz′f(z′)

∫
dy′δ(y − y∗)1{ρyy′>z+z′}d̄(y

′, z′)

=
n− 1

d̄(y, z)

∫
dz′f(z′)1{ρyy∗>z+z′}d̄(y

∗, z′)

=
n− 1

d̄(y, z)

∫ ρyy∗−z

0

dz′f(z′)d̄(y∗, z′)

= c−γ(ρyy∗ − z)−γ
∫ ρyy∗−z

0

dz′γcγ(z′)γ−1(n− 1)cγ(ρ(y∗)2 − z′)−γ

=
(n− 1)γcγJ(y, z)

(ρyy∗ − z)γ
,

where we have denoted
J(y, z) ≡

∫ ρyy∗−z

0

dz′(ρ(y∗)2 − z′)γ(z′)γ−1.
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We then get

knn(k) = 1 +
1

P (k)

∫
dz

∫
Y
dyf(z)δ(y − y∗)δ

(
k − d̄(y, z)

)
k̃nn(y, z)

= 1 +
1

P (k)

∫
dzγcγzγ−1δ

(
k − d̄(y∗, z)

)
k̃nn(y

∗, z)

= 1 +
1

P (k)

∫
dzf(z)δ

(
k − d̄(y∗, z)

) (n− 1)γcγJ(y∗, z)

(ρyy∗ − z)γ
.

Using Equation (E.3) we can write this as

knn(k) = 1 +
1

P (k)
γcγ

(
ρ(y∗)2 −

(
k

(n− 1)cγ

) 1
γ

)γ−1
1

γk

(
k

(n− 1)cγ

) 1
γ

× (n− 1)cγγJ

(
y∗, ρ(y∗)2 −

(
k

(n− 1)cγ

) 1
γ

)

= 1+
(n− 1)2γc2γ

k
J

(
y∗, ρ(y∗)2 −

(
k

(n− 1)cγ

) 1
γ

)

= 1+
(n− 1)2γc2γ

k

∫ (
k

(n−1)cγ

) 1
γ

0

dz′(z′)γ−1(ρ(y∗)2 − z′)γ .

□

Figure E.1 shows the results from numerical simulations compared with the theoretical prediction
of Equation (E.4). Heterogeneous collaboration costs thus induce degree correlations between a node
and its neighbors, consistent with real-world networks.

The following proposition derives the clustering coefficient as a function of the degree of a node
in the network.

Proposition E.3. Assume that the firms R&D effort levels are concentrated on y∗ in the limit of
ϑ→ ∞. Then under the continuum approximation, the clustering coefficient is given by

C(k) = 1{
k<(n−1)

(
ρ(y∗)2c

2

)γ} + 1{
k>(n−1)

(
ρ(y∗)2c

2

)γ} (n− 1)cγ

k

×

1 + γ
(n− 1)cγ

k

∫ (
k

(n−1)cγ

) 1
γ

ρ(y∗)2−
(

k
(n−1)cγ

) 1
γ
dz′(z′)γ−1

(
ρ(y∗)2 − z′

)γ , (E.5)

and for large k the clustering coefficient C(k) decays as O
(
1
k

)
.

Proof of Proposition E.3. Next we analyze the clustering coefficient of a firm with degree k, which
can be written as

C(k) =
1

P (k)

∫
dz

∫
Y
dyf(z)δ(y − y∗)g(k|y, z)C̃(y, z)

=
1

P (k)

∫
dzf(z)g(k|y∗, z)C̃(y∗, z),

where
C̃(y∗, z) =

∫
dz′
∫
dz′′

∫
Y
dy′
∫
Y
dy′′p(y′, z′, y′′, z′′)p(y′, z′|y∗, z)p(y′′, z′′|y∗, z).
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This can further be written as follows

C̃(y∗, z) =

∫
dz′
∫
dz′′

∫
Y
dy′
∫
Y
dy′′1{ρy′y′′>z′+z′′}

×
(n− 1)1{ρy∗y′>z+z′}f(z

′)δ(y′ − y∗)

d̄(y∗, z)

(n− 1)1{ρy∗y′′>z+z′′}f(z
′′)δ(y′′ − y∗)

d̄(y∗, z)

=
(n− 1)2

d̄(y∗, z)2

∫
dz′f(z′)

∫
dz′′f(z′′)1{ρ(y∗)2>z′+z′′}1{ρ(y∗)2>z+z′}1{ρ(y∗)2>z+z′′}

=
(n− 1)2

d̄(y∗, z)2

(
1{

z>
ρ(y∗)2

2

} ∫ ρ(y∗)2−z

0

dz′f(z′)

∫ ρ(y∗)2−z

0

dz′′f(z′′)

+1{
z<

ρ(y∗)2

2

}
(∫ z

0

dz′f(z′)

∫ ρ(y∗)2−z

0

dz′′f(z′′) +

∫ ρ(y∗)2−z

z

dz′f(z′)

∫ ρ(y∗)2−z′

0

dz′′f(z′′)

))
.

We then get (see also Figure E.2)

C̃(y∗, z) =
γ2c2γ(n− 1)2

d̄(y∗, z)

(
1{

z<
ρ(y∗)2

2

} ∫ ρ(y∗)2−z

0

dz′(z′)γ−1

∫ ρ(y∗)2−z

0

dz′′(z′′)γ−1

+1{
z>

ρ(y∗)2

2

}
(∫ z

0

dz′(z′)γ−1

∫ ρ(y∗)2−z

0

dz′′(z′′)γ−1

+

∫ ρ(y∗)2−z

z

dz′(z′)γ−1

∫ ρ(y∗)2−z′

0

dz′′(z′′)γ−1

))

=
γc2γ(n− 1)2

d̄(y∗, z)

(
1{

z<
ρ(y∗)2

2

} ∫ ρ(y∗)2−z

0

dz′(z′)γ−1
(
ρ(y∗)2 − z

)γ
+1{

z>
ρ(y∗)2

2

}
(∫ z

0

dz′(z′)γ−1
(
ρ(y∗)2 − z

)γ
+

∫ ρ(y∗)2−z

z

dz′(z′)γ−1
(
ρ(y∗)2 − z′

)γ))

=
γc2γ(n− 1)2

d̄(y∗, z)

(
1{

z<
ρ(y∗)2

2

} 1
γ

(
ρ(y∗)2 − z

)2γ
+1{

z>
ρ(y∗)2

2

}
(
1

γ
zγ
(
ρ(y∗)2 − z

)γ
+

∫ ρ(y∗)2−z

z

dz′(z′)γ−1
(
ρ(y∗)2 − z′

)γ))

=
c2γ(n− 1)2

d̄(y∗, z)

(
1{

z<
ρ(y∗)2

2

} (ρ(y∗)2 − z
)2γ

+ 1{
z>

ρ(y∗)2

2

} (zγ (ρ(y∗)2 − z
)γ

+ γJ(z)
))

,

(E.6)

where we have denoted by

J(z) ≡
∫ ρ(y∗)2−z

z

dz′(z′)γ−1
(
ρ(y∗)2 − z′

)γ
.

Using the fact that d̄(y, z) ≡ (n− 1)cγ (ρyy∗ − z)γ this can be written as

C̃(y∗, z) =
1

(ρ(y∗)2 − z)2γ

(
1{

z<
ρ(y∗)2

2

} (ρ(y∗)2 − z
)2γ

+ 1{
z>

ρ(y∗)2

2

} (zγ (ρ(y∗)2 − z
)γ

+ γJ(z)
))

.

(E.7)
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Figure E.2. The area of integration in Equation (E.6) for the case of z <
ρ(y∗)2

2 (left panel) and for the case of
z >

ρ(y∗)2

2 (right panel).

Hence we get

C(k) =
1

P (k)

∫
dzf(z)δ

(
k − d̄(y∗, z)

)
C̃(y∗, z)

=
1

P (k)

∫
dzγcγzγ−1δ

(
z −

(
ρ(y∗)2 −

(
k

(n− 1)cγ

) 1
γ

))
1

γk

(
k

(n− 1)cγ

) 1
γ

C̃(y∗, z)

=
1

P (k)
γcγ

(
ρ(y∗)2 −

(
k

(n− 1)cγ

) 1
γ

)γ−1
1

γk

(
k

(n− 1)cγ

) 1
γ

C̃

(
y∗, ρ(y∗)2 −

(
k

(n− 1)cγ

) 1
γ

)

= C̃

(
y∗, ρ(y∗)2 −

(
k

(n− 1)cγ

) 1
γ

)
.

Inserting Equation (E.7) this gives

C(k) = 1{
k<(n−1)

(
ρ(y∗)2c

2

)γ} + 1{
k>(n−1)

(
ρ(y∗)2c

2

)γ}((n− 1)cγ

k

+ γ

(
(n− 1)cγ

k

)2

J

(
ρ(y∗)2 −

(
k

(n− 1)cγ

) 1
γ

))

= 1{
k<(n−1)

(
ρ(y∗)2c

2

)γ} + 1{
k>(n−1)

(
ρ(y∗)2c

2

)γ}((n− 1)cγ

k

+ γ

(
(n− 1)cγ

k

)2 ∫ (
k

(n−1)cγ

) 1
γ

ρ(y∗)2−
(

k
(n−1)cγ

) 1
γ
dz′(z′)γ−1

(
ρ(y∗)2 − z′

)γ .

□

Figure E.1 shows the results from numerical simulations compared with the theoretical prediction
of Equation (E.5). The figure further illustrates that the model can generate two-node and three-node
degree correlations, such as a decreasing average nearest neighbor connectivity, knn(d), indicating a
disassortative network, as well as a decreasing clustering degree distribution, C(d), with the degree
d.

E.2. Heterogeneous Technology Spillovers

In this section we allow for heterogeneity among firms in terms of their technological abilities and
the spillovers they can generate (Griffith et al. 2003). We assume that the technologies embodied
in a firm i ∈ N = {1, . . . , n} can be represented as an N -dimensional vector hi in the technology
space HN = {0, 1}N , which consists of all binary sequences with elements in {0, 1} of length N . The
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number of such sequences is 2N . The technology vector hi, with components hik ∈ {0, 1}, indicates
whether firm i knows idea k ∈ {1, . . . ,N} or not. We introduce a spillover function f :HN ×HN → R
capturing the potential technology transfer between any pairs of firms (cf. Equation (12). A possible
specification is one in which f(hi,hj) = 1{⟨hi,hj⟩>τ}, where ⟨·, ·⟩ denotes the usual scalar product in
Rn, so that ⟨hi,hj⟩ counts the number of technologies known to both i and j, and f(hi,hj) is one
iff i and j have at least τ > 0 technologies in common. This is an instance of a random intersection
graph (Deijfen and Kets 2009) (see also Supplementary Appendix B).15

Given the spillover function f(hi,hj), the marginal cost of production of a firm i becomes (cf.
Equation (C.1) in Supplementary Appendix C)

ci = c̄− αei − β
n∑
j=1

aijf(hi,hj)ej ,

and profits of firm i (from Equation (C.2) in Supplementary Appendix C) are given by

πi = (a− c̄)qi − q2i − bqi
∑
j ̸=i

qj + αqiei + βqi

n∑
j=1

aijf(hi,hj)ej − γe2i − ζdi.

The optimal effort levels are given by ei = α
2γ qi = τqi. Inserting into profits and denoting by

ηi = a− c̄i, ν = 1− τα+ τ2γ, ρ = τβ and λ = b yields

πi = ηqi − νq2i − λqi
∑
j ̸=i

qj + ρqi

n∑
j=1

aijf(hi,hj)qj − ζdi.

We can then obtain a potential function (see Proposition 1) given by

Φ(q,G,h) =
n∑
i=1

((a− c̄)qi − νq2i )−
λ

2

n∑
i=1

qi
∑
j ̸=i

qj +
n∑
i=1

qi

n∑
j=1

aijf(hi,hj)qj − ζm.

The stationary distribution (see Theorem 1) is given by

µϑ(q,G,h) =
eϑΦ(q,G,h)∑

h′∈HN

∑
G′∈Gn

∫
eϑΦ(s,G′,h′)ds

.

The probability of observing a network G ∈ Gn, given an R&D effort distribution q ∈ [0, q]n and
technology portfolios h ∈ HN is determined by the conditional distribution

µϑ(G|q,h) =
∏
i<j

eϑaij(ρf(hi,hj)qiqj−ζ)

1 + eϑ(ρf(hi,hj)qiqj−ζ)
, (E.8)

which is equivalent to the probability of observing an inhomogeneous random graph with link
probability

pϑ(qi,hi, qj ,hj) ≡
eϑ(ρf(hi,hj)qiqj−ζ)

1 + eϑ(ρf(hi,hj)qiqj−ζ)
. (E.9)

In the following we consider a particularly simple specification in which each firm i is assigned a
technology k ∈ {1, . . . ,N} uniformly at random so that hik = 1 and hil = 0 for all l ̸= k. Moreover,
let f(hi,hj) = 1{⟨hi,hj⟩≥1}, that is, firms i an j can only benefit from a collaboration if they have
a technology in common. For this model we can derive analytically various network statistics of
interest, as the following proposition illustrates.

15. There is a variety of other functional forms that can be incorporated in our model. For example, a simple choice
for the function f could be f(hi,hj) = a|hi ∩ hj |, where a ∈ R+ and |hi ∩ hj | = h⊤

i hj =
∑N

k=1 hikhjk denotes the
common knowledge of i and j. Alternative specifications for similarity can be found in Liben-Nowell and Kleinberg (2007)
and Bloom et al. (2013); Jaffe (1989). Alternatively, following Berliant and Fujita (2008, 2009), a possible parametric
specification for f would be f(hi,hj) = |hi ∩ hj |κd(hi,hj)

1−κ
2 for some κ ∈ (0, 1). The distance is the product of the

total number of ideas known by agent i but not by j times the total number of ideas known by j but not by i, i.e.,
d(hi,hj) = |hi\hj | × |hj\hi| = |hi ∩ hc

j | × |hc
i ∩ hj | =

∑N
k=1 hik(1− hjk)

∑N
k=1(1− hik)hjk, where u = (1, . . . , 1)⊤

and hc
i = u− hi. Other functional forms have been suggested in the literature (see e.g., Baum et al. 2009; Nooteboom

et al. 2007), such as f(hi,hj) = a1|hi ∩ hj | − a2|hi ∩ hj |2, with constants a1, a2 ≥ 0.
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Proposition E.4. Assume that each firm i is assigned a technology k ∈ {1, . . . ,N} uniformly at
random and let f(hi,hj) = 1{⟨hi,hj⟩≥1}.

(i) The degree distribution is given by

P (k) =

(
n

k

)(
1

N

)k(
1− 1

N

)n−k
.

(ii) The average nearest neighbor degree distribution is given by

knn(k) =
k(1− 1

N )(1 + n 1
N − (n+ 1)

(
1
N

)n
)

1
N (1 + n− k)

, (E.10)

and for large n the average nearest neighbor degree distribution, knn(k), grows linearly as O(k).

(iii) The clustering coefficient is given by C(k) = 1.

Proof of Proposition E.4. We first prove part (i) of the proposition. If technologies are assigned
uniformly at random then

P
(
⟨hi,hj⟩ ≥ 1| qi = q, qj = q′

)
=

1

N
1{ρqq′>ζ}.

Due to symmetry, the firms’ quantities in the stationary state when ϑ→ ∞ are identical and given
by q∗. In the case of ρ(q∗)2 > ζ > 0 we then we have that

P (aij = 1) =
1

N
,

and the degree distribution is given by

P (k) = P (d1(G) = k) =

(
n

k

)(
1

N

)k(
1− 1

N

)n−k
.

We next give proof of part (ii) of the proposition. The average nearest neighbor degree distribution
is then given by

knn(k) =
n∑

k′=1

k′P
(
d2(G) = k′ − 1

∣∣a12 = 1, d1(G) = k
)

where

P
(
d2(G) = k′ − 1

∣∣a12 = 1, d1(G) = k
)
=

P (d2(G) = k′ − 1, d1(G) = k|a12 = 1)

P (k)

=
1

P (k)

(
1

N

)k′−1(
1− 1

N

)n−k′+1

×
(

1

N

)k−1(
1− 1

N

)n−k+1

=
P (k′ − 1)P (k − 1)

P (k)
.

We then get

knn(k) =
n∑

k′=1

k′P
(
d2(G) = k′ − 1

∣∣a12 = 1, d1(G) = k
)

=
n∑

k′=1

k′
P (k′ − 1)P (k − 1)

P (k)

=
k(1− 1

N )(1 + n 1
N − (n+ 1)

(
1
N

)n
)

1
N (1 + n− k)

= O(k),
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Figure E.3. (Left panel) Illustration of the matrix with elements 1{⟨hi,hj⟩>0} (with ones indicated with white
squares and zeros indicated with black squares) for n = 100 firms and N = 10 technologies. (Right panel) The
average nearest neighbor degree distribution, knn(d), for the same parameters. The dashed line represents the
solution from Equation (E.10) while the circles correspond to a numerical simulation.

as n→ ∞. That is, the average nearest neighbor degree knn(k) is asymptotically linearly increasing
with the degree k, and thus we have an assortative network.

Finally, we give proof of part (iii) of the proposition. The clustering coefficient is simply given
by C(k) = P (a23 = 1|a12 = 1, a23 = 1, d1(G) = k) = 1. This is because if firm 1 is connected to firm
2 then they must have the same technology. Similarly, if firm 1 is connected to firm 3 then they
also must have the same technology. Due to transitivity, firms 2 and 3 then must have the same
technology and thus must be connected.

□

An illustration of the average nearest neighbor degree knn(k) can be seen in Figure E.3. Different
to Figure E.1 this specification gives rise to positive degree correlations between a node and its
neighbors in the network, a feature that is characteristic for many real-world networks (cf. König
2016).

Appendix F: Data

In the following we provide a detailed description of the data used for our empirical analysis in
Section 3.

To get a comprehensive picture of alliances we use data on interfirm R&D collaborations
stemming from two sources which have been widely used in the literature (Schilling 2009). The
first is the Cooperative Agreements and Technology Indicators (CATI) database (Hagedoorn 2002).
The database only records agreements for which a combined innovative activity or an exchange
of technology is at least part of the agreement. Moreover, only agreements that have at least two
industrial partners are included in the database, thus agreements involving only universities or
government labs, or one company with a university or lab, are disregarded. The second is the
Thomson Securities Data Company (SDC) alliance database. SDC collects data from the U.S.
Securities and Exchange Commission (SEC) filings (and their international counterparts), trade
publications, wires, and news sources. We include only alliances from SDC which are classified
explicitly as research and development collaborations. A comparative analysis of these two databases
(and other alternative databases) can be found in Schilling (2009).

We merged the CATI database with the Thomson SDC alliance database. For the matching of
firms across datasets, we adopted the name-matching algorithm developed as part of the NBER
patent data project (Trajtenberg et al. 2009). We could match 21% of the firms appearing in both
databases. Considering only firms without missing observations on R&D expenditures and industry
classifications (see also Appendix F.2 below on how we obtained balance sheet and R&D expenditures
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Table F.1. The 20 largest sectors at the 2-digit SIC level.

Sector 2-dig SIC # firms % of tot. Rank

Chemical and Allied Products 28 524 30.15 1
Electronic and Other Electric Equipment 36 283 16.28 2
Instruments and Related Products 38 195 11.22 3
Business Services 73 193 11.10 4
Industrial Machinery and Equipment 35 172 9.90 5
Transportation Equipment 37 81 4.66 6
Engineering and Management Services 87 46 2.65 7
Primary Metal Industries 33 34 1.96 8
Food and Kindred Products 20 29 1.67 9
Communications 48 24 1.38 10
Electric Gas and Sanitary Services 49 17 0.98 11
Health Services 80 16 0.92 12
Miscellaneous Manufacturing Industries 39 12 0.69 13
Nonclassifiable Establishments 99 11 0.63 14
Fabricated Metal Products 34 11 0.63 15
Petroleum and Coal Products 29 11 0.63 16
Rubber and Miscellaneous Plastics Products 30 10 0.58 17
Heavy Construction other than Building 16 10 0.58 18
Paper and Allied Products 26 9 0.52 19
Textile Mill Products 22 9 0.52 20

Table F.2. The 20 largest sectors at the 3-digit SIC level.

Sector 3-dig SIC # firms % of tot. Rank

Drugs 283 410 23.59 1
Computer and Data Processing Services 737 184 10.59 2
Electronic Components and Accessories 367 144 8.29 3
Medical Instruments and Supplies 384 97 5.58 4
Computer and Office Equipment 357 70 4.03 5
Measuring and Controlling Devices 382 69 3.97 6
Motor Vehicles and Equipment 371 64 3.68 7
Communications Equipment 366 56 3.22 8
Special Industry Machinery 355 38 2.19 9
Research and Testing Services 873 35 2.01 10
Chemicals & Allied Products 280 26 1.50 11
Misc. Electrical Equipment and Supplies 369 25 1.44 12
Plastics Materials and Synthetic 282 25 1.44 13
General Industrial Machinery 356 23 1.32 14
Electrical Industrial Apparatus 362 16 0.92 15
Blast Furnace and Basic Steel Products 331 15 0.86 16
Aircraft and Parts 372 14 0.81 17
Metalworking Machinery 354 14 0.81 18
Agricultural Chemicals 287 14 0.81 19
Medical and Dental Laboratories 807 13 0.75 20

information), it gives us a sample of 1, 738 firms and a total of 632 collaborations in the year 2006.
The average degree of the firms in this sample is 0.73 with a standard deviation of 2.06, and the
maximum degree is 25 attained by Pfizer Inc.

Tables F.1 and F.2 show, respectively, 20 largest sectors at the 2-digit and 3-digit SIC levels.
The largest sector at the SIC-28 level is chemical and allied products, with 524 firms (30.15 % of
the total), followed by the sector of electronic and other electric equipment, with 283 firms (16.28
% of the total). At the 3-digit SIC level the largest sector is the drugs development sector, with 410
firms (23.59 % of the total), and the second largest sector is computer and data processing services
with 184 firms (10.59% of the total).
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Figure F.1 shows the degree distribution, P (d), the average nearest neighbor connectivity, knn(d),
the clustering degree distribution, C(d),16 and the component size distribution, P (s), across different
levels of sectoral aggregation, considering all firms in all sectors, firms in the SIC-28 sector only,
or firms in the SIC-283 sector only. The degree distribution, P (d), decays as a power law across
all datasets considered. The clustering degree distribution, C(d), is also decreasing with increasing
degrees d across all datasets. These networks tend to be moderately clustered. The average clustering
coefficient considering all firms is C = 0.074, for the firms in the SIC-28 sector it is c = 0.043 and
for the firms in the SIC-283 sector it is C = 0.038967. Further, the component size distribution,
P (s), indicates a large connected component (see also Figure 2) with smaller components decaying
as a power law. This pattern is also consistent across datasets. The largest connected component
comprises 21.20% of all firms across sectors, 24, 07% of all firms in the SIC-28 sector, and 29.91%
of all firms in the SIC-283 sector. While the level or sectoral aggregation does not matter much for
the degree distribution, the clustering degree distribution and the component size distribution, a
different pattern can be observed for the average nearest neighbor connectivity, knn(d). While the
average nearest neighbor connectivity knn(d) is decreasing with the increasing degree for the firms
restricted to the SIC-28 or SIC-283 sectors, this monotonicity behavior is less pronounced when
considering all firms across sectors. This pattern can also be observed in the assortativity coefficient,
which is γ = −0.031399 for all firms, γ = −0.25322 restricting the sample to firms in the SIC-28
sector, and γ = −0.27464 for the firms in the SIC-283 sector. That is, while the network is weakly
disassortative considering all firms, it becomes strongly disassortative when considering only a single
sector. This observation is even more extreme when we consider all firms in the collaboration network
without dropping those for which R&D expenditures are missing. In this case we find γ = 0.03343
for all firms, γ = −0.11703 restricting the sample to firms in the SIC-28 sector, and γ = −0.14886
for the firms in the SIC-283 sector. The explanation for this observation can be easily given when
considering the extension of our model introduced in Section 2.6 and Appendix E.2. There we
showed that when the spillovers from collaborations depend on the technological characteristics of
the firms involved in a collaboration, and firms from different sectors have different characteristics,
then the emerging network of cross-industry collaborations can be assortative, while the network of
intra-industry collaborations is disassortative.

F.1. Mergers and Acquisitions

Some firms might be acquired by other firms due to mergers and acquisitions (M&A) over time, and
this will impact the R&D collaboration network (Hanaki et al. 2010).

To get a comprehensive picture of the M&A activities of the firms in our dataset, we use two
extensive data sources to obtain information about M&As. The first is the Thomson Reuters’
Securities Data Company (SDC) M&A database, which has historically been the most widely used
database for empirical research in the field of M&As. Data in SDC dates back to 1965 with slightly
more complete coverage of deals starting in the early 1980s. The second database with information
about M&As is Bureau van Dijk’s (BvD) Zephyr database, which is a recent alternative to the SDC
M&As database. The history of deals recorded in Zephyr goes back to 1997. In 1997 and 1998 only
European deals are recorded, while international deals are included starting from 1999. According to
Huyghebaert and Luypaert (2010), Zephyr “covers deals of smaller value and has a better coverage
of European transactions”. A comparison and more detailed discussion of the two databases can be
found in Bollaert and Delanghe (2015) and Bena et al. (2008).

We merged the SDC and Zephyr databases (with the aforementioned name-matching algorithm;
see also Trajtenberg et al. (2009)) to obtain information on M&As of 116, 641 unique firms. Using the
same name-matching algorithm we could identify 43.08% of the firms in the combined CATI-SDC
alliance database that also appear in the combined SDC-Zephyr M&As database. We then account
for the M&A activities of these matched firms when constructing the R&D collaboration network
by assuming that an acquiring firm in a M&A inherits all the R&D collaborations of the target firm,
and we remove the target firm form from the network.

16. See Supplementary Appendix E for a discussion of these network statistics.
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Figure F.1. The degree distribution, P (d), the average nearest neighbor connectivity, knn(d), the clustering
degree distribution, C(d), and the component size distribution, P (s).

F.2. Balance Sheet Statements, R&D and Productivity

The combined CATI-SDC alliance database provides the names of each firm in an alliance, but it
does not contain information about the firms’ output levels or R&D expenses. We therefore matched
the firms’ names in the combined CATI-SDC database with the firms’ names in Standard & Poor’s
Compustat U.S. and Global fundamentals annual databases and Bureau van Dijk (BvD)’s Orbis
database, to obtain information about their balance sheets and income statements.

Compustat North America is a database of U.S. and Canadian active and inactive publicly held
companies extracted from company filings. It provides more than 300 annual and 100 quarterly
income statements, balance sheets, and statements of cash flows. Compustat Global is a database of
non-U.S. and non-Canadian companies and contains market information on more than 33,900 active
and inactive publicly held companies with annual data history from 1987. The Compustat databases
cover 99% of the world’s total market capitalization with annual company data history available back
to 1950. The databases contain only firms listed on the stock market, so it typically excludes smaller
private firms, but this is inevitable if one is going to use market value data. Nevertheless, R&D is
concentrated in publicly listed firms, and it thus covers most of the R&D activities in the economy
(Bloom et al. 2013).

The Orbis database is owned by Bureau van Dijk (BvD). It is a commercial dataset, which
contains administrative data on 130 million firms worldwide. Orbis is an umbrella product that
provides firm level data covering over 120 countries, both developed and emerging, since 2005. The
financial and balance-sheet information in Orbis comes from business registers collected by the
local Chambers of Commerce to fulfill legal and administrative requirements and are relayed to
BvD via over 40 different information providers. Different from Compustat, Orbis contains not only
information about publicly listed firms, but provides also information about private firms.17

For the matching of firms across datasets we adopted the name-matching algorithm developed
as part of the NBER patent data project (Trajtenberg et al. 2009). We could match 25.53% of
the firms in the combined CATI-SDC database with the combined Compustat-Orbis database. For

17. For a detailed comparison and further discussion of the Compustat and Orbis databases see Dai (2012), Bloom
et al. (2013) and Papadopoulos (2012).
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Figure F.2. The profits distribution (top left panel), the R&D expenditures distribution (top right panel), the
R&D stocks distribution (bottom left panel), and the patent stock distribution (bottom right panel). Dashed lines
indicate a power law fit.

the matched firms we obtained their sales, R&D expenditures, sales, employment, primary industry
codes, and location. U.S. dollar translation rates for foreign currencies have been taken directly from
the Compustat yearly averaged exchange rates. We adjusted for inflation using the consumer price
index of the Bureau of Labor Statistics (BLS), averaged annually, with 1983 as the base year. From
a firm’s sales and employment, we then computed its labor productivity as sales relative to the
number of employees. We then dropped all firms with missing information on R&D expenditures
and industry codes. This pruning procedure left us with a subsample of 1, 738 firms, on which the
empirical analysis in Section 3 is based.

The empirical profits distribution, the R&D expenditures distribution, the R&D stocks
distribution and the patent stock distribution are shown in Figure F.2. All distributions are highly
skewed, indicating a large degree of inequality (indicated with a power law fit) in firms’ sizes,
R&D expenditures, productivity (R&D stocks), and patent stocks. Moreover, Figure F.3 shows a
correlation scatter plot for sales, productivity, R&D expenditures, and patent stocks. All are highly
correlated, with a Spearman correlation coefficient between sales and R&D expenditures of ϱ = 0.69
between sales and productivity of ϱ = 0.54, and sales and the number of patents of ϱ = 0.53. The
correlation between R&D expenditure and productivity is ϱ = 0.29 and R&D expenditures and the
number of patents is ϱ = 0.56. Finally, the correlation between productivity and the number of
patents is ϱ = 0.22.

F.3. Geographic Location and Distance

Table F.3 shows the 25 countries with the largest numbers of firms. The dominant role of the U.S.
with 854 firms making up 49.14% of the total number of firms is clearly visible. The second largest
country is Japan with 338 firms. The U.S. and Japan then together account for 68.59%, that is,
more than two-thirds of all firms in the data.

In order to determine the precise locations of the firms in our data we have further added the
longitude and latitude coordinates associated with the city of residence of each firm. Among the
matched cities in our dataset 93.67% could be geo-localized using ArcGIS (see e.g., Dell 2009) and
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Figure F.3. Correlation scatter plot for sales, productivity, R&D expenditures and the patent stocks.

Table F.3. The 25 countries with the largest numbers
of firms.

Name Code # firms % of tot. Rank

United States USA 854 49.14 1
Japan JPN 338 19.45 2
United Kingdom GBR 93 5.35 3
Canada CAN 62 3.57 4
Australia AUS 50 2.88 5
Germany DEU 48 2.76 6
Taiwan TWN 45 2.59 7
France FRA 35 2.01 8
Switzerland CHE 34 1.96 9
Sweden SWE 31 1.78 10
India IND 21 1.21 11
Finland FIN 16 0.92 12
Netherlands NLD 14 0.81 13
Iceland ISL 13 0.75 14
Slovakia SVK 13 0.75 15
Denmark DNK 12 0.69 16
Belgium BEL 11 0.63 17
Italy ITA 11 0.63 18
Israel ISR 10 0.58 19
Morocco MAR 9 0.52 20
Norway NOR 8 0.46 21
China CHN 7 0.40 22
Singapore SGP 7 0.40 23
Spain ESP 4 0.23 24
Hong Kong HKG 4 0.23 25

the Google Maps Geocoding API.18 We then used Vincenty’s algorithm to compute the distances
between pairs of geo-localized firms (Vincenty 1975). The mean distance between collaborating firms
is 5, 227 km. The distance distribution, P (d), across collaborating firms is shown in Figure F.5, while

18. See https://developers.google.com/maps/documentation/geocoding/intro.

https://developers.google.com/maps/documentation/geocoding/intro
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Figure F.4. The locations (at the city level) and collaborations of the firms in the combined CATI-SDC database.
Link colors scale with the collaboration distance.

Figure F.4 shows the locations (at the city level) and collaborations of the firms in the database.
The distance distribution, P (d), is heavily skewed. We find that R&D collaborations tend to be
more likely between firms that are close, showing that geography matters for R&D collaborations
and spillovers, in line with previous empirical studies (Lychagin et al. 2016).

F.4. Technological Similarity

The technological proximity fkij = fkji, k ∈ {J,M} (see Equation (12)), between firms i and j is
measured with two alternative metrics. The first, fJij , is based on Jaffe (1989). Let Pi represents
the patent portfolio of firm i, where, for each firm i, Pi is a vector whose k-th component, Pik,
counts the number of patents firm i has in technology category k divided by the total number of
technologies attributed to the firm (see also Bloom et al. 2013). The technological proximity of firm
i and j is then given by

fJij =
P⊤
i Pj√

P⊤
i Pi

√
P⊤
j Pj

. (F.1)

We denote FJ the (n× n) matrix with elements (fJij)1≤i,j≤n.
As an alternative measure for technological similarity we also consider the Mahalanobis

technology proximity measure, fMij , introduced by Bloom et al. (2013). To construct this metric, let
N be the number of technology classes, n the number of firms, and let T be the (N ×n) patent shares
matrix with elements Tji = Pji/

∑n
k=1 Pki, for all 1≤ i≤ n and 1≤ j ≤N . Further, we construct the

(N × n) normalized patent shares matrix T̃ with elements T̃ji = Tji/
√∑N

k=1 T
2
ki, and the (n×N)

normalized patent shares matrix across firms is defined by X̃ with elements X̃ik = Tki/
√∑N

i=1 T
2
ki.

Let Ω = X̃⊤X̃. Then the (n× n) Mahalanobis technology similarity matrix FM = (fMij )1≤i,j≤n is
defined as

FM = T̃⊤ΩT̃. (F.2)

We then use either fJij or fMij as a measure for the potential technology spillovers between
collaborating firms in the profit function of Equation (12). Both measures are highly correlated.
The Spearman correlation coefficient between the Jaffe and the Mahalanobis proximity metrics is
0.92, and a correlation plot can be seen in the right panel of Figure F.5.
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Figure F.5. (Left panel) The distance distribution, P (d), across collaborating firms in the combined CATI-SDC
database. (Right panel) Correlation plot for the Jaffe (fJ
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F.5. Nestedness and Modularity

We can identify clusters – or so-called modules – of densely connected firms in the network (with only
sparser connections across clusters) using the modularity algorithm proposed by Newman (2006).
This algorithm seeks a partition of the nodes in the network into non-overlapping clusters. Such
clusters might emerge because of similarities of firms in terms of the industry in which they are
operating, technological similarity, or geographic proximity (lowering collaboration costs and thus
making certain pairs of firms more likely to be connected; see Section 3.4).

After having identified these modules, we can compute the nestedness of each module similar to
Figure 3. The top left panel in Figure F.6 shows the adjacency matrix of the R&D network where
the modules identified are indicated with different colors. The top middle and top right panels zoom
into the largest modules. The bottom left panel shows the adjacency matrices of each module (sub-
network) separately (showing only the first 10 modules with the highest modularity and size), where
a (+) indicates that the matrix is statistically significantly nested at the 5% level (Anderson et al.
2008).19 The solid red line indicates the isocline (that is, a curve that divides the ones from the zeros
of a perfectly nested matrix of the same size and connectivity). The bottom right panel shows the
nestedness coefficients, Cn, of these 10 modules (sorted by Cn). We observe that all modules are
highly nested and that 7 out of the 10 modules considered are also significantly nested. The same
information but for the largest connected component (see Figure 2) is shown in Figure F.7, where a
similarly high level of nestedness can be observed.

Appendix G: Bayesian MCMC Estimation Procedure

In this section we provide the details for the implementation of the Bayesian MCMC estimation
algorithm. We divide the parameter vector θ and unobserved latent variables z into blocks and

19. Statistical significance is computed via comparison to a null model generated from 100 random networks with the
same link density as the original network.
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Figure F.6. The top left panel shows the adjacency matrix of the R&D network where the modules identified
are indicated with different colors. The top middle and top right panels zoom into the largest modules. The
bottom left panel shows the adjacency matrices (with ones indicated with black squares and zeros indicated
with white squares) of each module (subnetwork) separately (showing only the first 10 modules with the highest
modularity and size), where a (+) indicates that the matrix is statistically significantly nested at the 5% level
(Anderson et al. 2008). The solid red line indicates the isocline (that is, a curve that divides the ones from the
zeros of a perfectly nested matrix of the same size and connectivity). The bottom right panel shows the nestedness
coefficients, Cn, of these 10 modules (sorted by Cn). Figures have been created using the BiMat Matlab library
(https://bimat.github.io/).

assign the prior distributions as follows:

zi ∼ N (0, σ2z), for i = 1, . . . , n,

ρ ∼ N (0, σ2ρ),

λ ∼ N (0, σ2λ),

δ ∼ N (0,Σδ),

κ ∼ N (0, σ2κ),

γ ∼ N (0,Σγ),

ϑ ∼ N (0, σ2ϑ),

σ2z ∼ IG
(ϖ1

2
,
ϖ2

2

)
.

We consider the normal (N ) and inverse gamma (IG) conjugate priors, which are widely used
in the Bayesian literature (Koop et al. 2007). The hyperparameters are chosen to make the prior
distributions relatively flat and cover a wide range of the parameter space, i.e., we set σ2ρ = σ2λ = 10,
Σδ = 10I130, Σγ = 100I4, σ2ϑ = 10, ϖ1 = 2.2, and ϖ2 = 0.1, where In denotes the identity matrix of
dimension n.

Given the priors specified above and the composite likelihood discussed in Section 3.3, we can
derive the joint posterior distribution for the parameter θ. The MCMC sampling procedure combines
Gibbs sampling and the Metropolis-Hastings (M-H) algorithm. It consists of the following steps:

https://bimat.github.io/
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Figure F.7. The top left panel shows the adjacency matrix of the largest connected component of the R&D
network (see Fig. 2) where the modules identified are indicated with different colors. The top middle and top right
panels zoom into the largest modules. The bottom left panel shows the adjacency matrices (with ones indicated
with black squares and zeros indicated with white squares) of each module (subnetwork) separately (showing only
the first 10 modules with the highest modularity and size), where a (+) indicates that the matrix is statistically
significantly nested at the 5% level (Anderson et al. 2008). The solid red line indicates the isocline (that is, a
curve that divides the ones from the zeros of a perfectly nested matrix of the same size and connectivity). The
bottom right panel shows the nestedness coefficients, Cn, of these 10 modules (sorted by Cn). Figures have been
created using the BiMat Matlab library (https://bimat.github.io/).

1. Draw the latent variable zi using the M-H algorithm based on f(zi|y,G,θ, z−i), for i = 1, . . . , n.
2. Draw ρ using the M-H algorithm based on f(ρ|y,G, θ\ρ, z).
3. Draw λ using the M-H algorithm based on f(λ|y,G, θ\λ, z).
4. Draw δ using the M-H algorithm based on f(δ|y,G, θ\δ, z).
5. Draw κ using the M-H algorithm based on f(κ|y,G, θ\κ, z).
6. Draw γ using the M-H algorithm based on f(γ|y,G, θ\γ, z).
7. Draw ϑ using the M-H algorithm based on f(ϑ|y,G, θ\ϑ, z).
8. Draw σ2z from the conjugate inverse gamma distribution, IG

(
ϖ1+n

2 ,
ϖ2+

∑n
i=1 zi

2

)
.

Appendix H: Monte Carlo Simulation

We estimate the empirical model using a Bayesian MCMC algorithm based on the composite
likelihood function discussed in Section 3.3. In order to demonstrate the performance of this
estimation approach, we conduct a Monte Carlo simulation study to show that the true parameter
values can be obtained with this method even for small samples.

H.1. Absence of Latent Variables

We first consider the case ignoring unobserved heterogeneity where we do not include the latent
variables. We generate an artificial R&D network (G) and effort data (y) from the data generating

https://bimat.github.io/
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Table H.1. MCMC simulation results.

Parameter True Value Model (A) Model (B) Model (C)
µϑ(G|y)µϑ(y|G) µϑ(G|y) µϑ(y|G)

Profits
ρ 0.0400 0.0403 (0.0027) 0.0398 (0.0041) 0.0392 (0.0049)
λ 0.0200 0.0201 (0.0010) 0.0202 (0.0011)
δ 1.0000 0.9983 (0.0192) 1.0040 (0.0271)

Linking Cost
γ0 1.0000 1.0385 (0.3093) 0.9947 (0.0567)
γ1 2.5000 2.5762 (0.3366) 2.5096 (0.1744)

Noise
ϑ 1.5000 1.4802 (0.1509) 1.5000† 1.5122 (0.0271)

Ave. Degree 4.6245
Sample Size 200

Notes: This simulation study performs 300 repetitions and the values reported in this table
are the mean and standard deviation (in parenthesis) of parameter estimates calculated across
repetitions. For each repetition, we estimate the parameters using Bayesian MCMC sampling
with 50,000 iterations and drop the first 10,000 iterations during a burn-in phase. † We fix ϑ
at its true value because it is not identified in Model (B).

process (DGP) based on the stationary distribution of Equation (5) with the potential function
Φ(y,G) given by Equation (15). We set the network sizes (n) to 200 and the number of Monte Carlo
simulations to 300. In the DGP, we capture individual exogenous heterogeneity in the effort process
by ηi = δxi, where the variable xi is generated from a log-normal distribution, i.e., ln(x)∼N (1.5, 0.5).
The coefficient δ is set to one.

The symmetric competition matrix B = (bij)1≤i,j≤n (cf. Equation (12) in Section 3.2) is
generated exogenously with each component bij ∈ {0, 1} drawn from a Bernoulli distribution
with linking probability 0.25. The linking cost for each potential link, aij ∈ {0, 1}, in the R&D
collaboration network matrix, A = (aij)1≤i,j≤n, is captured by ζij = γ0 + γ1wij , where wij =
|xi − xj |. The parameters are set to γ = (γ0, γ1) = (1.0, 2.5). The true values of the spillover
(complementarity) effect ρ and the substitutability effect λ are set to 0.04 and 0.02 respectively.
We set the noise parameter ϑ to 1.5, which is close to our empirical estimate, and set fij = 1 for all
i, j. The average network degree of the simulated R&D network is 4.6245.

We implement the Bayesian MCMC estimation with 50,000 iterations and drop the first 10,000
iterations during a burn-in phase. The simulation results are summarized in Table H.1 in which
the values reported are the mean and standard deviation (in parenthesis) of parameter estimates
calculated across repetitions. Table H.1 shows that our proposed Bayesian MCMC estimation based
on the composite likelihood µϑ(G|y)µϑ(y|G) in Model (A) recovers all true parameters. As discussed
in Section 3.3, when the latent variables (z) are absent, the spillover effect ρ and the market
competition effect λ can be identified and thus be consistently estimated from the conditional
likelihood µϑ(y|G) alone. The simulation result in Model (C) confirms this argument. For Model
(B), we estimate parameters in the linking cost function based on the conditional likelihood µϑ(G|y).
Because Model (B) alone does not identify the noise parameter ϑ, we fix it at its true value, and the
simulation result shows that other parameters are correctly estimated. We also note an efficiency
gain in estimating ρ using the composite likelihood.

H.2. Presence of Latent Variables

We next consider the case with the latent variables (incorporating unobserved heterogeneity). We
follow the DGP described in Section H.1 and add the latent variable into ηi and ζij , i.e., ηi = δxi+κzi
and ζij = γ0 + γ1wij − zi − zj , where the latent variable zi is generated from a normal distribution
N (0, 1) and the true value of κ is set to one. We further change γ0 from 1.0 to 2.0. Based on this
DGP, the average network degree of the simulated R&D network is 6.758.

The simulation results are shown in Table H.2. From Model (B), we see that this estimation
approach can successfully recover the true model parameters when considering the true DGP
model (with unobserved heterogeneity). Moreover, similar to the pattern that we observe in the
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Table H.2. MCMC simulation results.

Parameter True Value Model (A) Model (B)
W/o Latent Variable With Latent Variable

Profits
ρ 0.0400 0.0576 (0.0074) 0.0428 (0.0030)
λ 0.0200 0.0143 (0.0022) 0.0195 (0.0012)
δ 1.0000 0.8916 (0.0596) 0.9859 (0.0246)
κ 1.0000 0.9294 (0.1424)

Linking Cost
γ0 2.0000 2.0144 (0.3399) 1.9496 (0.2572)
γ1 2.5000 3.4318 (0.5049) 2.6555 (0.2835)

Noise/Uncertainty
ϑ 1.5000 0.8916 (0.0596) 1.4383 (0.1427)
σ2z 1.0000 1.1399 (0.2444)

Ave. Degree 6.7580
Sample Size 200

Notes: This simulation study performs 300 repetitions and the values reported in this
table are the mean and standard deviation (in parenthesis) of parameter estimates
calculated across repetitions. For each repetition, we estimate the parameters using
Bayesian MCMC sampling with 50,000 iterations and drop the first 10,000 iterations
during a burn-in phase.

empirical study, the estimated coefficient of complementarity effect ρ will be upward biased when
the unobserved latent variables are ignored in Model (A).

Appendix I: Robustness Checks and Additional Goodness-of-Fit Statistics

In the following Section I.1 we provide additional estimation results illustrating the robustness of
the estimates reported in Section 3.4 in the main text. Moreover, in Section I.2 we provide an
alternative illustration of the goodness-of-fit of our estimated model complementing the discussion
in Section 3.5 in the main text.

I.1. Robustness Checks

First, in Table I.1 we use value-added per employee as an alternative measure of a firm’s productivity.
We note, however, that since many firms have missing information on value-added or employment,
when using value-added per employee to measure productivity the sample size reduces by 25% (from
1,738 to 1,291 firms). Nevertheless, even with this smaller sample, we find that the estimation results
remain qualitatively unchanged.

Second, in Table I.2 we use different depreciation rates (10% and 20%) to calculate the R&D
capital stock. We find the estimation results are qualitatively similar.

Third, in Tables I.3 and I.4 we take into account heterogeneous technology spillovers among
collaborating firms. In specifying heterogeneous technology spillovers, R&D collaborations are
weighted by two alternative technology proximity measures. More precisely, in Table I.3 we use
weights fij based on the technological proximity measure introduced by Jaffe (1989), and in Table I.4
we use weights fij based on the Mahalanobis technological proximity metric (see Bloom et al. 2013,
and Supplementary Appendix F.4 for more details). We find that the estimated spillover coefficient
based on the Jaffe weights (ρ̂ = 0.0250 in Table I.3) is larger than the one based on the Mahalanobis
weights (ρ̂ = 0.0125 in Table I.4), and both are larger than the homogeneous spillover coefficient
(ρ̂ = 0.0099 in Table 3). This is because the average of the Jaffe weights is lower than the average of
the Mahalanobis weights. Furthermore, both weights are less than one (see Supplementary Appendix
F.4). Next, observe that fij = 1 in the benchmark specification in Table 3. In contrast, in Table I.3
fij is based on Jaffe’s measure, while in Table I.4 fij is based on the Mahalanobis measure. Taking
these observations together we find that the magnitude of the combined spillover effect, ρfij , remains
comparable under these three different specifications.
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Table I.1. Estimation results with value-added per employee as an additional
productivity measure.

Model (A) Model (B)

Profits
R&D Spillover (ρ) 0.019*** (0.001) 0.019*** (0.001)
Substitutability (λ) 6.18e-5** (3.11e-5) 9.21e-5*** (3.34e-5)
Productivity
R&D Capital Stock (δ1) 0.832*** (0.003) 0.808*** (0.009)
Value Added per Employee (δ2) 0.025*** (0.009)

Sector Dummies Yes Yes

Linking Cost
Constant (γ0) 6.716*** (0.224) 6.820*** (0.213 )
Same Sector (γ1) -1.073*** (0.072) -1.069*** (0.066 )
Same Country (γ2) -0.393*** (0.056) -0.399*** (0.060 )
Diff-in-R&D Capital Stock (γ3) -0.077*** (0.015) -0.089*** (0.031 )
Diff-in-Value Added per Emp. (γ4) -0.071*** (0.014 )

Noise
Noise in Decisions (ϑ) 1.849*** (0.064) 1.853*** (0.062)

Sample Size (n) 1,291

Notes: The dependent variables are log-R&D expenditures and (presence or absence of)
R&D collaborations between firms. A firm’s productivity is measured by its one-year
lagged log R&D capital stock (Model A) or together with the one-year lagged log value-
added per employee (Model B). We estimate two models with 50,000 MCMC draws where
the first 10,000 draws are dropped during a burn-in phase, and every 10th of the remaining
draws are kept to calculate the posterior mean (as point estimates) and posterior standard
deviation (shown in parenthesis). The asterisks ∗∗∗(∗∗,∗) indicate that a parameter’s 99%
(95%, 90%) highest posterior density range does not cover zero (Kruschke 2015).

Table I.2. Estimation results with a firm’s productivity measured by log R&D capital stock
defined at different depreciation rates (10%, 15% and 20%).

10% 15% 20%

Profits
R&D Spillover (ρ) 0.019*** (0.001) 0.017*** (0.001) 0.016*** (0.001)
Substitutability (λ) 3.06e-5*** (1.14e-5) 3.78e-5*** (1.35e-5) 4.22e-5*** (1.17e-5)
Productivity (δ) 0.829*** (0.002) 0.848*** (0.002) 0.861*** (0.002)
Sector Dummies Yes Yes Yes

Linking Cost
Constant (γ0) 7.482*** (0.204) 6.843*** (0.180) 6.179*** (0.158)
Same Sector (γ1) -1.315*** (0.064) -1.194*** (0.055) -1.066*** (0.050)
Same Country (γ2) -0.424*** (0.051) -0.379*** (0.048) -0.339*** (0.042)
Diff-in-Productivity (γ3) -0.099*** (0.012) -0.090*** (0.011) -0.082*** (0.009)

Noise
Noise in Decisions (ϑ) 1.574*** (0.047) 1.736*** (0.048) 1.946*** (0.055)

Sample Size (n) 1,738

Notes: The dependent variables are log-R&D expenditures and (presence or absence of) R&D
collaborations between firms. A firm’s productivity is measured by its one-year lagged log R&D capital
stock defined at different depreciation rates (10%, 15%, and 20%). We estimate the model with 50,000
MCMC draws where the first 10,000 draws are dropped during a burn-in phase, and every 10th of the
remaining draws are kept to calculate the posterior mean (as point estimates) and posterior standard
deviation (shown in parenthesis). The asterisks ∗∗∗(∗∗,∗) indicate that a parameter’s 99% (95%, 90%)
highest posterior density range does not cover zero (Kruschke 2015).
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Table I.3. Estimation results for the case of heterogeneous technology spillovers à la
Jaffe.

Model (A) Model (B)
W/o Unobs. Heterogeneity With Unobs. Heterogeneity

Profits
R&D Spillover (ρ) 0.040*** (0.002) 0.025*** (0.002)
Substitutability (λ) 5.77e-5** (1.82e-5) 3.68e-5*** (1.38e-5)
Productivity (δ) 0.861*** (0.002) 0.860*** (0.002)
Unobs. Heterogeneity (κ) – 0.075*** (0.006)
Sector Dummies Yes Yes

Linking Cost
Constant (γ0) 6.610*** (0.229) 8.396*** (0.270)
Same Sector (γ1) -0.979*** (0.078) -1.299*** (0.091)
Same Country (γ2) -0.507*** (0.060) -0.693*** (0.084)
Diff-in-Productivity (γ3) -0.125*** (0.015) 0.015 (0.014)

Noise/Uncertainty
Noise in Decisions (ϑ) 1.375*** (0.045) 1.322*** (0.039)
Unobs. Heterogeneity (σ2z) – 1.4864*** (0.1515)

Sample Size (n) 1,738

Notes: The dependent variables are log-R&D expenditures and (presence or absence of)
R&D collaborations between firms. A firm’s productivity is measured by its one-year-lagged
log-R&D capital stock. To compute the R&D capital stock we use a perpetual inventory
method based on the firms’ R&D expenditures with a 15% depreciation rate (cf. Hall et al.
2000; Bloom et al. 2013). The parameters are given in the empirical profit function of
Equation (12). We make 50,000 MCMC draws where the first 10,000 draws are dropped
during a burn-in phase and every 10th of the remaining draws are kept to calculate the
posterior mean (as point estimates) and posterior standard deviation (shown in parenthesis).
All cases pass the convergence diagnostics provided by Geweke (1992) and Raftery et al.
(1992). The asterisks ∗∗∗(∗∗,∗) indicate that a parameter’s 99% (95%, 90%) highest posterior
density range does not cover zero (Kruschke 2015).

Table I.4. Estimation results for the case of heterogeneous technology spillovers à la
Mahalanobis.

Model (A) Model (B)
W/o Unobs. Heterogeneity With Unobs. Heterogeneity

Profits
R&D Spillover (ρ) 0.019*** (0.001) 0.013*** (0.001)
Substitutability (λ) 4.08e-5** (1.43e-5) 7.05e-5*** (1.38e-5)
Productivity (δ) 0.860*** (0.002) 0.863*** (0.002)
Unobs. Heterogeneity (κ) – 0.105*** (0.015)
Sector Dummies Yes Yes

Linking Cost
Constant (γ0) 6.688*** (0.229) 8.143*** (0.340)
Same Sector (γ1) -1.003*** (0.081) -1.281*** (0.104)
Same Country (γ2) -0.531*** (0.062) -0.686*** (0.080)
Diff-in-Productivity (γ3) -0.127*** (0.014) 0.014 (0.014)

Noise/Uncertainty
Noise in Decisions (ϑ) 1.360*** (0.044) 1.357*** (0.047)
Unobs. Heterogeneity (σ2z) – 1.351*** (0.167)

Sample Size (n) 1,738

Notes: The dependent variables are log-R&D expenditures and (presence or absence of)
R&D collaborations between firms. A firm’s productivity is measured by its one-year-lagged
log-R&D capital stock. To compute the R&D capital stock we use a perpetual inventory
method based on the firms’ R&D expenditures with a 15% depreciation rate (cf. Hall et al.
2000; Bloom et al. 2013). The parameters are given in the empirical profit function of
Equation (12). We make 50,000 MCMC draws where the first 10,000 draws are dropped
during a burn-in phase and every 10th of the remaining draws are kept to calculate the
posterior mean (as point estimates) and posterior standard deviation (shown in parenthesis).
All cases pass the convergence diagnostics provided by Geweke (1992) and Raftery et al.
(1992). The asterisks ∗∗∗(∗∗,∗) indicate that a parameter’s 99% (95%, 90%) highest posterior
density range does not cover zero (Kruschke 2015).
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I.2. Goodness-of-fit

In the following we provide an additional illustration for the goodness-of-fit of our model. In Figure
I.1 we compare observed links in the R&D network with the simulated links for the largest 150 firms
in our sample. The left panel shows the observed network, and the middle panel shows the simulated
links that show up in more than half of the 100 simulated networks. The right panel shows the
difference between the simulated and observed networks, with yellow links indicating a match and
violet links indicating a mismatch between the left and middle panels. We find that the simulated
networks closely resemble the actual network. This illustrates that our model fits the data well also
at the level of individual R&D collaborations.

Actual Simulated Difference
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Figure I.1. The left panel shows the observed links of the largest 150 firms. Firm names are indicated along the
circular plot. The middle panel shows the simulated links that show up in more than half of the 100 simulated
networks. The right panel shows the difference between the simulated and observed networks, with yellow links
indicating a match and violet links indicating a mismatch between the left and middle panels. Figures are created
using the Schemaball library (https://github.com/okomarov/schemaball).
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