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Abstract

In this paper, we extend the GMM estimator in Lee (2007) to estimate SAR models with

endogenous regressors. We propose a new set of quadratic moment conditions exploiting the

correlation of the spatially lagged dependent variable with the disturbance term of the main

regression equation and with the endogenous regressor. The proposed GMM estimator is more

e¢ cient than the IV-based linear estimators in the literature, and computationally simpler

than the ML estimator. With carefully constructed quadratic moment equations, the GMM

estimator can be asymptotically as e¢ cient as the ML estimator under normality. Monte Carlo

experiments show that the proposed GMM estimator performs well in �nite samples.
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1 Introduction

In recent years, spatial econometric models play a vital role in empirical research on regional and

urban economics. By expanding the notion of space from geographic space to �economic� space

and �social� space, these models can be used to study cross-sectional interactions in much wider

applications including education (e.g. Lin, 2010; Sacerdote, 2011; Carrell et al., 2013), crime (e.g.

Patacchini and Zenou, 2012; Lindquist and Zenou, 2014), industrial organization (e.g. König et al.,

2014), �nance (e.g. Denbee et al., 2014), etc.

Among spatial econometric models, the spatial autoregressive (SAR) model introduced by Cli¤

and Ord (1973, 1981) has received the most attention. In this model, the cross-sectional dependence

is modeled as the weighted average outcome of neighboring units, typically referred to as the spatially

lagged dependent variable. As the spatially lagged dependent variable is endogenous, likelihood-

and moment-based methods have been proposed to estimate the SAR model (e.g. Kelejian and

Prucha, 1998; Lee, 2004; Lee, 2007; Lee and Liu, 2010). In particular, for the SAR model with

exogenous regressors, Lee (2007) proposes a generalized method of moments (GMM) estimator that

combines linear moment conditions, with the (estimated) mean of the spatially lagged dependent

variable as the instrumental variable (IV), and quadratic moment conditions based on the covariance

structure of the spatially lagged dependent variable and the model disturbance term. The GMM

estimator improves estimation e¢ ciency of IV-based linear estimators in Kelejian and Prucha (1998)

and is computationally simple relative to the maximum likelihood (ML) estimator in Lee (2004).

Furthermore, Lin and Lee (2010) show that a sub-class of the GMM estimators is consistent in the

presence of an unknown form of heteroskedasticity in model disturbances, and thus more robust

relative to the ML estimator.

For SAR models with endogenous regressors, Liu (2012) and Liu and Lee (2013) consider, re-

spectively, the limited information maximum likelihood (LIML) and two stage least squares (2SLS)

estimators, in the presence of many potential IVs. Liu and Lee (2013) also propose a criterion based

on the approximate mean square error of the 2SLS estimator to select the optimal set of IVs. The

SAR model with endogenous regressors can be considered as an equation in a system of simultaneous

equations. For the full information estimation of the system, Kelejian and Prucha (2004) propose a

three stage least squares (3SLS) estimator and, in a recent paper, Yang and Lee (2014) consider the

quasi-maximum likelihood (QML) approach. The QML estimator is asymptotically more e¢ cient
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than the 3SLS estimator under normality but can be computationally di¢ cult to implement. The

existing estimators for the SAR model with endogenous regressors are summarized in Table 1.

Table 1: Existing Estimators for SAR Models with Endogenous Regressors
single-equation estimator system estimator

IV-based linear estimator Liu and Lee (2013) Kelejian and Prucha (2004)
likelihood-based estimator Liu (2012) Yang and Lee (2014)

In this paper, we extend the GMM estimator in Lee (2007) to estimate SAR models with endoge-

nous regressors. We propose a new set of quadratic moment equations exploiting (i) the covariance

structure of the spatially lagged dependent variable and the disturbance term of the main regres-

sion equation and (ii) the covariance structure of the spatially lagged dependent variable and the

endogenous regressor. We establish the identi�cation, consistency and asymptotic normality of the

proposed GMM estimator. The GMM estimator is more e¢ cient than the 2SLS and 3SLS esti-

mators, and computationally simpler than the ML estimator. With carefully constructed quadratic

moment equations, the GMM estimator can be asymptotically as e¢ cient as the ML estimator under

normality. We also conduct a limited Monte Carlo experiment to show that the proposed GMM

estimator performs well in �nite samples.

The rest of the paper is organized as follows. In Section 2, we introduce the SAR model with

endogenous regressors. In Section 3, we de�ne the GMM estimator and discuss the identi�cation

of model parameters. In Section 4, we study the asymptotic properties of the GMM estimator and

discuss the optimal moment conditions to use. Section 5 reports Monte Carlo experiment results.

Section 6 brie�y concludes. The proofs are collected in the appendix.

Throughout the paper, we adopt the following notation. For an n�n matrix A = [aij ]i;j=1;��� ;n,

let A(s) = A+A0, vecD(A) = (a11; � � � ; ann)0, and diag(A) = diag(a11; � � � ; ann). The row (or col-

umn) sums ofA are uniformly bounded in absolute value ifmaxi=1;��� ;n
Pn

j=1 jaij j (ormaxj=1;��� ;n
Pn

i=1 jaij j)

is bounded.

2 Model

Consider a SAR model with an endogenous regressor1 given by

y1 = �0Wy1 + �0y2 +X1�0 + u1; (1)

1 In this paper, we focus on the model with a single endogenous regressor for exposition purpose. The model and
proposed estimator can be easily generalized to accommodate any �xed number of endogenous regressors.
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where y1 is an n� 1 vector of observations on the dependent variable,W is an n� n nonstochastic

spatial weights matrix with a zero diagonal, y2 is an n� 1 vector of observations on an endogenous

regressor, X1 is an n � K1 matrix of observations on K1 nonstochastic exogenous regressors, and

u1 is an n � 1 vector of i.i.d. innovations.2 Wy1 is usually referred to as the spatially lagged

dependent variable. Let X = [X1;X2], where X2 is an n � K2 matrix of observations on K2

excluded nonstochastic exogenous variables. The reduced form of the endogenous regressor y2 is

assumed to be

y2 = X
0 + u2; (2)

where u2 is an n � 1 vector of i.i.d. innovations. Let �0 = (�00;

0
0)
0, with �0 = (�0; �0;�

0
0)
0,

denote the vector of true parameter values in the data generating process (DGP). The following

regularity conditions are common in the literature of SAR models (see, e.g., Lee, 2007; Kelejian and

Prucha, 2010).

Assumption 1 Let u1;i and u2;i denote, respectively, the i-th elements of u1 and u2. (i) (u1;i; u2;i)0 �

i:i:d:(0;�), where

� =

264 �21 �12

�12 �22

375 :
(ii) Ejuk;iul;iur;ius;ij1+� is bounded for k; l; r; s = 1; 2 and some small constant � > 0.

Assumption 2 (i) The elements of X are uniformly bounded constants. (ii) X has full column rank

KX = K1 +K2. (iii) limn!1 n
�1X0X exists and is nonsingular.

Assumption 3 (i) All diagonal elements of the spatial weights matrixW are zero. (ii) �0 2 (��; �)

with 0 < �; � � c� <1. (iii) S(�) = In � �W is nonsingular for all � 2 (��; �). (iv) The row and

column sums of W and S(�0)�1 are uniformly bounded in absolute value.

Assumption 4 �0 is in the interior of a compact parameter space �.
2y1;y2;u1;u2;X;W are allowed to depend on the sample size n, i.e., to formulate triangular arrays as in Kelejian

and Prucha (2010). Nevertheless, we suppress the subscript n to simplify the notation.
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3 GMM Estimation

3.1 Estimator

Let S = S(�0) = In � �0W and G =WS�1. Under Assumption 3, model (1) has a reduced form

y1 = S
�1X1�0 + �0S

�1X
0 + S
�1u1 + �0S

�1u2; (3)

which implies that

Wy1 = GX1�0 + �0GX
0 +Gu1 + �0Gu2: (4)

As Wy1 and y2 are endogenous, consistent estimation of (1) requires IVs for Wy1 and y2. From

(4), the deterministic part of Wy1 is a linear combination of the columns in GX = [GX1;GX2].

Therefore, GX can be used as an IV matrix forWy1.
3 From (2), X can be used as an IV matrix

for y2. In general, let Q be an n � KQ matrix of IVs such that E(Q0u1) = E(Q0u2) = 0. Let

u1(�) = S(�)y1 � �y2 � X1� and u2(
) = y2 � X
, where � = (�; �;�0)0. The linear moment

function for the GMM estimation is given by

g1(�) = (I2 
Q)0u(�);

where 
 denotes the Kronecker product, u(�) = [u1(�)0;u2(
)0]0, and � = (�0;
0)0.4

Besides the linear moment functions, Lee (2007) proposes to use quadratic moment functions

based on the covariance structure of the spatially lagged dependent variable and model disturbances

to improve estimation e¢ ciency. We generalize this idea to SAR models with endogenous regressors.

Substitution of (2) into (1) leads to a �pseudo�reduced form

y1 = �0Wy1 + �0X
0 +X1�0 + u1 + �0u2. (5)

By exploiting the covariance structure of the spatially lagged dependent variable Wy1 and the

3The IV matrix GX is not feasible as G involves the unknown parameter �0. Under Assumption 3, GX =
WX + �0W2X + �20W

3X + � � � . Therefore, we can use the leading order terms WX;W2X;W3X of the series
expansion as feasible IVs for Wy.

4 In practice, we could use two di¤erent IV matrices Q1 and Q2 to construct linear moment functions Q0
1u1(�) and

Q0
2u2(
). The GMM estimator with g1(�) is (asymptotically) no less e¢ cient than that with Q0

1u1(�) and Q
0
2u2(
)

if Q includes all linearly independent columns of Q1 and Q2.
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disturbances of (5), we propose the following quadratic moment functions

g2(�) = [g2;11(�)
0;g2;12(�)

0;g2;21(�)
0;g2;22(
)

0]0

with

g2;11(�) = [�01u1(�); � � � ;�0mu1(�)]0u1(�)

g2;12(�) = [�01u1(�); � � � ;�0mu1(�)]0u2(
)

g2;21(�) = [�01u2(
); � � � ;�0mu2(
)]0u1(�)

g2;22(
) = [�01u2(
); � � � ;�0mu2(
)]0u2(
)

where �j is an n � n constant matrix with tr(�j) = 0 for j = 1; � � � ;m.5 Possible candidates for

�j areW,W2 � n�1tr(W2)In, etc.6 These quadratic moment functions are based on the moment

conditions that E(u01�ju1) = E(u
0
1�ju2) = E(u

0
2�ju1) = E(u

0
2�ju2) = 0 for j = 1; � � � ;m.

Let

g(�) = [g1(�)
0;g2(�)

0]0; (6)

and 
 = Var[g(�0)]. The following assumption is from Lee (2007).

Assumption 5 (i) The elements of Q are uniformly bounded constants. (ii) �j is an n�n constant

matrix with tr(�j) = 0 for j = 1; � � � ;m. The row and column sums of �j are uniformly bounded

in absolute value. (iii) limn!1 n
�1
 exists and is nonsingular.

Combining both linear and quadratic moment functions, the GMM estimator of �0 is given by

e�gmm = argmin�2� g(�)0F0Fg(�); (7)

for some matrix F such that limn!1F exists and has full row rank greater than or equal to dim(�).

In the GMM literature, F0F is known as the GMM weighting matrix. For instance, one can use the

identity matrix as the weighting matrix to implement the GMM. The asymptotic e¢ ciency of the

5 In practice, we could use di¤erent sets of weighting matrices f�11;jgm11
j=1 , f�12;jg

m12
j=1 , f�21;jg

m21
j=1 and f�22;jg

m22
j=1

for the quadratic moment functions g2;11(�), g2;12(�), g2;21(�) and g2;22(�) respectively. The quadratic moment func-
tions g2(�) are (asymptotically) no less e¢ cient than that with f�11;jgm11

j=1 , f�12;jg
m12
j=1 , f�21;jg

m21
j=1 and f�22;jg

m22
j=1

if f�1; : : : ;�mg = f�11;jgm11
j=1 [ f�12;jg

m12
j=1 [ f�21;jg

m21
j=1 [ f�22;jg

m22
j=1 .

6We discuss the optimal Q and � in Section 4.2.
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GMM estimator depends on the choice of the weighting matrix as discussed in Section 4.1.

3.2 Identi�cation

For �0 to be identi�ed through the moment functions g(�), limn!1 n
�1E[g(�)] = 0 needs to have

a unique solution at � = �0 (Hansen, 1982). As S(�)S�1 = In + (�0 � �)G, it follows from (2) and

(3) that

u1(�) = d1(�) + [In + (�0 � �)G]u1 + [(�0 � �)In + �0(�0 � �)G]u2

and

u2(
) = d2(
) + u2;

where d1(�) = [GX1�0 + �0GX
0;X
0;X1](�0 � �) and d2(
) = X(
0 � 
).

For the linear moment functions, we have

lim
n!1

n�1E[Q0u1(�)] = lim
n!1

n�1Q0d1(�) = lim
n!1

n�1Q0[GX1�0 + �0GX
0;X
0;X1](�0 � �)

and

lim
n!1

n�1E[Q0u2(
)] = lim
n!1

n�1Q0d2(
) = lim
n!1

n�1Q0X(
0 � 
)

Therefore, limn!1 n
�1E[g1(�)] = 0 has a unique solution at � = �0, ifQ0[GX1�0+�0GX
0;X
0;X1]

and Q0X have full column rank for large enough n. This su¢ cient rank condition implies the neces-

sary rank condition that [GX1�0 + �0GX
0;X
0;X1] and X have full column rank and the rank

of Q is at least maxfdim(�);KXg, for large enough n.

Suppose [X
0;X1] has full column rank for large enough n.7 The necessary rank condition

for identi�cation does not hold if GX1�0 + �0GX
0 and [X
0;X1] are asymptotically linearly

dependent.8 GX1�0 + �0GX
0 and [X
0;X1] are linearly dependent if there exist a constant

scalar c1 and a K1 � 1 constant vector c2 such that GX1�0 + �0GX
0 = c1X
0 + X1c2, which

implies that

d1(�) = [(�0 � �)c1 + (�0 � �)]X
0 +X1[(�0 � �)c2 + (�0 � �)]:

Hence, the solutions of the linear moment equations limn!1 n
�1E[Q0u1(�)] = 0 are characterized

7As X
0 = X1
10 +X2
20, a necessary condition for (X
0;X1) to have full column rank is 
20 6= 0.
8A necessary condition for GX1�0 + �0GX
0 and [X
0;X1] to be asymptotically linearly independent is

(�0;�
0
0)
0 6= 0.
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by

� = �0 + (�0 � �)c1 and � = �0 + (�0 � �)c2 (8)

as long as Q0[X
0;X1] has full column rank for large enough n. In this case, �0 and �0 can be

identi�ed if and only if �0 can be identi�ed from the quadratic moment equations.

Given (8), we have

E[u1(�)
0�ju1(�)] = (�0 � �)(�21 + �0�12)tr(�

(s)
j G)

+(�0 � �)2[(�21 + 2�0�12 + �20�22)tr(G0�jG)� c1(�12 + �0�22)tr(�
(s)
j G)]

and

E[u1(�)
0�ju2(
)] = (�0 � �)(�12 + �0�22)tr(�0jG)

E[u2(
)
0�ju1(�)] = (�0 � �)(�12 + �0�22)tr(�jG)

for j = 1; � � � ;m. If (�21 + �0�12) limn!1 n
�1tr(�

(s)
j G) 6= 0 for some j 2 f1; � � � ;mg, the quadratic

moment equation

lim
n!1

n�1E[u1(�)
0�ju1(�)] = 0

has two roots � = �0 and

� = �0 +
(�21 + �0�12)

(�21 + 2�0�12 + �
2
0�

2
2) limn!1[tr(G0�jG)=tr(�

(s)
j G)]� c1(�12 + �0�22)

:

As (�21 + 2�0�12 + �
2
0�

2
2) > 0, if limn!1[tr(G

0�jG)=tr(�
(s)
j G)] 6= limn!1[tr(G

0�kG)=tr(�
(s)
k G)]

for some j 6= k, the moment equations

lim
n!1

n�1E[u1(�)
0�ju1(�)] = 0 and lim

n!1
n�1E[u1(�)

0�ku1(�)] = 0

have a unique common root � = �0. On the other hand, if (�12 + �0�
2
2) limn!1 n

�1tr(�0jG) 6= 0

for some j 2 f1; � � � ;mg, the quadratic moment equation

lim
n!1

n�1E[u1(�)
0�ju2(
)] = 0
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has a unique root � = �0; and if (�12+�0�
2
2) limn!1 n

�1tr(�jG) 6= 0 for some j 2 f1; � � � ;mg, the

quadratic moment equation

lim
n!1

n�1E[u2(
)
0�ju1(�)] = 0

has a unique root � = �0. To wrap up, the su¢ cient identi�cation condition of �0 is summarized in

the following assumption.

Assumption 6 limn!1 n
�1Q0X and limn!1 n

�1Q0[X
0;X1] both have full column rank, and at

least one of the following conditions is satis�ed. (i) limn!1 n
�1Q0[GX1�0 + �0GX
0;X
0;X1]

has full column rank. (ii) (�21 + �0�12) limn!1 n
�1tr(�

(s)
j G) 6= 0 for some j 2 f1; � � � ;mg, and

limn!1 n
�1[tr(�

(s)
1 G); � � � ; tr(�

(s)
m G)]0 is linearly independent of limn!1 n

�1[tr(G0�1G); � � � ; tr(G0�mG)]
0.

(iii) (�12 + �0�
2
2) limn!1 n

�1tr(�jG) 6= 0 or (�12 + �0�
2
2) limn!1 n

�1tr(�0jG) 6= 0 for some

j 2 f1; � � � ;mg.

4 Asymptotic Properties

4.1 Consistency and Asymptotic Normality

The GMM estimator de�ned in (7) falls into the class of Z-estimators (see Newey and McFadden,

1994). Therefore, to establish the consistency and asymptotic normality, it su¢ ces to show that the

GMM estimator satis�es the su¢ cient conditions for Z-estimators to be consistent and asymptotically

normally distributed when properly normalized and centered. A similar argument has been adopted

by Lee (2007) to establish the asymptotic normality of the GMM estimator for the SAR model with

exogenous regressors.

Let �r;s = E(u
r
1;iu

s
2;i) for r + s = 3; 4. By Lemmas B.1 and B.2 in the Appendix, we have


 = Var[g(�0)] =

264 
11 
12


012 
22

375 (9)

with 
11 = Var[g1(�0)] = �
 (Q0Q),


12 = E[g1(�0)g2(�0)
0] =

264 �3;0 �2;1 �2;1 �1;2

�2;1 �1;2 �1;2 �0;3

375
 (Q0!)

9



and


22 = Var[g2(�0)]

=

266666664

�4;0 � 3�41 �3;1 � 3�21�12 �3;1 � 3�21�12 �2;2 � �21�22 � 2�212
� �2;2 � �21�22 � 2�212 �2;2 � �21�22 � 2�212 �1;3 � 3�12�22
� � �2;2 � �21�22 � 2�212 �1;3 � 3�12�22
� � � �0;4 � 3�42

377777775

 (!0!)

+

266666664

�41 �21�12 �21�12 �212

� �212 �21�
2
2 �12�

2
2

� � �212 �12�
2
2

� � � �42

377777775

�1 +

266666664

�41 �21�12 �21�12 �212

� �21�
2
2 �212 �12�

2
2

� � �21�
2
2 �12�

2
2

� � � �42

377777775

�2;

where ! = [vecD(�1); � � � ; vecD(�m)] and

�1 =

266664
tr(�1�1) � � � tr(�1�m)

...
. . .

...

tr(�m�1) � � � tr(�m�m)

377775 and �2 =

266664
tr(�01�1) � � � tr(�01�m)

...
. . .

...

tr(�0m�1) � � � tr(�0m�m)

377775 :

Let

D = �E[ @
@�0

g(�0)] = [D
0
1;D

0
2]
0; (10)

where

D1 = �E[
@

@�0
g1(�0)] =

264 Q0(GX1�0 + �0GX
0) Q0X
0 Q0X1 0

0 0 0 Q0X

375
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and

D2 = �E[
@

@�0
g2(�0)] =

266666666666666666666666666664

(�21 + �0�12)tr(�
(s)
1 G) 01�(KX+K1+1)

...
...

(�21 + �0�12)tr(�
(s)
m G) 01�(KX+K1+1)

(�12 + �0�
2
2)tr(�

0
1G) 01�(KX+K1+1)

...
...

(�12 + �0�
2
2)tr(�

0
mG) 01�(KX+K1+1)

(�12 + �0�
2
2)tr(�1G) 01�(KX+K1+1)

...
...

(�12 + �0�
2
2)tr(�mG) 01�(KX+K1+1)

0m�1 0m�(KX+K1+1)

377777777777777777777777777775

:

The following proposition establishes the consistency and asymptotic normality of the GMM esti-

mator.

Proposition 1 Suppose Assumptions 1-6 hold. Then e�gmm de�ned in (7) is a consistent estimator

of �0 and has the following asymptotic distribution

p
n(e�gmm � �0) d! N(0;AsyVar(e�gmm))

where

AsyVar(e�gmm) = lim
n!1

[(n�1D)0F0F(n�1D)]
�1
(n�1D)0F0F(n�1
)F0F(n�1D)[(n�1D)0F0F(n�1D)]

�1

with 
 and D de�ned in (9) and (10) respectively.

Close inspection of AsyVar(e�gmm) reveals that the optimal F0F is (n�1
)�1 by the gener-

alized Schwarz inequality. The following proposition establishes the consistency and asymptotic

normality of the GMM estimator with the estimated optimal weighting matrix. It also suggests a

over-identifying restrictions (OIR) test based on the proposed GMM estimator.

Proposition 2 Suppose Assumptions 1-6 hold and n�1 b
 is a consistent estimator of n�1
 de�ned

in (9). Then, b�gmm = argmin�2� g(�)0 b
�1g(�) (11)
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is a consistent estimator of �0 and

p
n(b�gmm � �0) d! N(0; [ lim

n!1
n�1D0
�1D]

�1
);

where D is de�ned in (10). Furthermore

g(b�gmm)0 b
�1g(b�gmm) d! �2dim(g)�dim(�):

4.2 Asymptotic E¢ ciency

When only the linear moment function g1(�0) is used for the GMM estimation, the GMM estimator

de�ned in (11) reduces to the generalized spatial 3SLS in Kelejian and Prucha (2004) because

b�3SLS = argming1(�)0 b
�111 g1(�) = argminu(�)0(b��1
P)u(�) = [Z0(b��1
P)Z]�1Z0(b��1
P)y;
where P = Q(Q0Q)�1Q0, y = (y01;y

0
2)
0,

Z =

264 Wy1 y2 X1 0

0 0 0 X

375 ;
and b� is a consistent estimator of �. It follows from Proposition 2 that

p
n(b�3SLS � �0) d! N(0; [ lim

n!1
n�1D0

1

�1
11 D1]

�1
):

As

D0
�1D�D0
1


�1
11 D1 = (D2 �
012
�111 D1)

0(
22 �
012
�111 
12)�1(D2 �
012
�111 D1);

which is positive semi-de�nite, the proposed GMM estimator is asymptotically more e¢ cient than

the 3SLS estimator.

The asymptotic e¢ ciency of the proposed GMM estimator depends on the choices of Q and

�1; � � � ;�m. Following Lee (2007), our discussion on the asymptotic e¢ ciency focuses on two cases:

(i) u = (u01;u
0
2)
0 � N(0;� 
 In), and (ii) �j has a zero diagonal for all j = 1; � � � ;m. Let P be

a subset of all ��s satisfying Assumption 5 such that diag(�) = 0 for all � 2 P. The sub-class of

12



quadratic moment functions using � 2 P is of a particular interest because these quadratic moment

functions could be robust against unknown form of heteroskedasticity as shown in Lin and Lee

(2010).

Let

g�(�) = [g�1(�)
0;g�2(�)

0]0; (12)

where g�1(�) = (I2 
Q�)0u(�) and

g�2(�) = [u1(�)
0��u1(�);u1(�)

0��u2(
);u2(
)
0��u1(�);u2(
)

0��u2(
)]
0:

In cases (i) and (ii),


� = Var[g�(�0)] =

264 �
 (Q�0Q�) 0

0 
�22

375 (13)

where


�22 =

266666664

�41 �21�12 �21�12 �212

� �212 �21�
2
2 �12�

2
2

� � �212 �12�
2
2

� � � �42

377777775

 tr(����) +

266666664

�41 �21�12 �21�12 �212

� �21�
2
2 �212 �12�

2
2

� � �21�
2
2 �12�

2
2

� � � �42

377777775

 tr(��0��):

The following proposition gives the infeasible best GMM (BGMM) estimator

e�bgmm = argmin�2� g�(�)0
��1g�(�) (14)

with the optimal Q� and �� in cases (i) and (ii) respectively.

Proposition 3 Suppose Assumptions 1-6 hold. Let G =WS�1.

(i) Suppose u � N(0;� 
 In). The BGMM estimator de�ned in (14) with Q� = [GX;X] and

�� = G� n�1tr(G)In is the most e¢ cient one in the class of GMM estimators de�ned in (7).

(ii) Without the normality assumption on u, the BGMM estimator de�ned in (14) with Q� =

[GX;X] and �� = G�diag(G) is the most e¢ cient one in the sub-class of GMM estimators de�ned

in (7) with �j 2 P for all j = 1; � � � ;m.

Under normality, the model can be e¢ ciently estimated by the ML estimator. To get some

13



intuition of the optimalQ� and �� in case (i), we compare the linear and quadratic moment functions

utilized by the GMM estimator with the �rst order partial derivatives of the log likelihood function.

Let G(�) = WS(�)�1, where S(�) = In � �W. The log likelihood function based on the joint

normal distribution of y = (y01;y
0
2)
0 is9

L(�;�) = �n ln(2�)� 1
2
ln j�
 Inj+ ln jS(�)j �

1

2
u(�)0(�
 In)�1u(�) (15)

with the �rst order partial derivatives

@

@�
L(�; b�) = [(�X
 +X1�)

0G(�)0;01�n]
0(b�
 In)�1u(�)

+
b�22
jb�ju1(�)0[G(�)� n�1tr(G(�))In]u1(�)� b�212

jb�ju2(
)0[G(�)� n�1tr(G(�))In]u1(�)
+�

b�22
jb�ju1(�)0[G(�)� n�1tr(G(�))In]u2(
)� �b�12jb�ju2(
)0[G(�)� n�1tr(G(�))In]u2(
)

and

@

@�
L(�; b�) = [
0X0;01�n](b�
 In)�1u(�)

@

@�
L(�; b�) = [X0

1;0K1�n](
b�
 In)�1u(�)

@

@

L(�; b�) = [0KX�n;X

0](b�
 In)�1u(�)
where b� is the ML estimator for � given by

b� =
264 b�21 b�12b�12 b�22

375 = n�1
264 u1(�)

0u1(�) u1(�)
0u2(
)

u1(�)
0u2(
) u2(
)

0u2(
)

375 :
Close inspection reveals the similarity between the ML and BGMM estimators under normality,

as the �rst order partial derivatives of the log likelihood function can be considered as linear com-

binations of the moment functions Q�(�)0u1(�), Q�(�)0u2(
), u1(�)0��(�)u1(�), u1(�)0��(�)u2(
),

u2(
)
0��(�)u1(�), and u2(
)0��(�)u2(
) withQ�(�) = [G(�)X;X] and��(�) = G(�)�n�1tr(G(�))In.

The optimal Q� and �� are not feasible as G involves the unknown parameter �0. Suppose

there exists a
p
n-consistent preliminary estimator b� for �0 (say, the 2SLS estimator with IV matrix

9The detailed derivation of the log likelihood function and its partial derivatives can be found in Appendix A.
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Q = [WX;X]). Then, the feasible optimal bQ� and b�� can obtained by replacing �0 in Q� and ��

by b�. Furthermore, suppose b�21; b�12; b�22 are consistent preliminary estimators for �21; �12; �22. Then,
n�1 b
� is a consistent estimator of n�1
� de�ned in (13) with the unknown parameters �; �21; �12; �22
in 
� replaced by b�; b�21; b�12; b�22. Then, the feasible BGMM estimator is given by

b�bgmm = argmin�2� bg�(�)0 b
��1bg�(�); (16)

where bg�(�) is obtained by replacing Q� and �� in g�(�) with bQ� and b��. Following a similar
argument in the proof of Proposition 3 in Lee (2007), the feasible BGMM estimator b�bgmm can be

shown to have the same limiting distribution as its infeasible counterpart e�bgmm.
Proposition 4 Suppose Assumptions 1-6 hold, b� is a pn-consistent estimator of �0, and b� is a

consistent estimator of �. The feasible BGMM estimator b�bgmm de�ned in (16) is asymptotically

equivalent to the corresponding infeasible BGMM estimator e�bgmm.
Under Assumption 3, G =WS�1 =W + �0W

2 + �20W
3 + � � � . Thus, G can be approximated

by the leading order terms of the series expansion, i.e. W;W2;W3; � � � . Therefore, a convenient

alternative to the BGMM estimator under normality for empirical researchers would be the GMM

estimator with Q = [WX; � � � ;WmX;X] and �1 = W;�2 = W2 � n�1tr(W2)In; � � � ;�m =

Wm � n�1tr(Wm)In, for some �xed m.

5 Monte Carlo Experiments

We conduct a small Monte Carlo simulation experiment to study the �nite sample performance of

the proposed GMM estimator based on the following model

y1 = �0Wy1 + �0y2 + �0x1 + u1

y2 = 
0x2 + u2:

In the DGP, we set �0 = 0:6 and 
0 = 1, and generate x1, x2 and u = (u
0
1;u

0
2)
0 as x1 � N(0; In),

x2 � N(0; In), and u � N(0;�
 In), where

� =

264 1 �12

�12 1

375 :
15



We conduct 1000 replications in the simulation experiment for di¤erent speci�cations with n 2

f245; 490g, �12 2 f0:1; 0:5; 0:9g, and (�0; �0) 2 f(0:5; 0:5); (0:2; 0:2)g. From the reduce form equation

(4), E(Wy1) = Gx1�0 + �0Gx2
0. Therefore, �0 = �0 = 0:5 corresponds to the case that the IVs

based on E(Wy1) are informative and �0 = �0 = 0:2 corresponds to the case that the IVs based

on E(Wy1) are less informative. LetW0 denote the spatial weights matrix for the study of crimes

across 49 districts in Columbus, Ohio, in Anselin (1988). For n = 245, we setW = I5
W0, and for

n = 490, we setW = I10
W0. Let bG =W(In�b�W)�1, where b� is the 2SLS estimator of �0 using
the IV matrix Q = [WX;W2X;X], where X = [x1;x2]. Let bQ = [ bGX;X]. In the experiment, we
consider the following estimators.

(a) The 2SLS estimator of equation (1) with the linear moment function bQ0u1(�).

(b) The 3SLS estimator of equations (1) and (2) with the linear moment function (I2 
 bQ)0u(�).
(c) The single-equation GMM (GMM-1) estimator of equation (1) with the linear moment functionbQ0u1(�) and the quadratic moment function u1(�)0[ bG� n�1tr( bG)In]u1(�).
(d) The system GMM (GMM-2) estimator of equations (1) and (2) with the linear moment function

(I2 
 bQ)0u(�) and the quadratic moment functions u1(�)0[ bG� n�1tr( bG)In]u1(�), u1(�)0[ bG�
n�1tr( bG)In]u2(
), u2(
)0[ bG� n�1tr( bG)In]u1(�), and u2(
)0[ bG� n�1tr( bG)In]u2(
).

Although the 2SLS estimator and the single-equation GMM estimator only use �limited informa-

tion�in equation (1) and thus may not be as e¢ cient as their counterparts (i.e. the 3SLS estimator

and the system GMM estimator respectively) that use �full information�in the whole system, these

estimators require weaker assumptions on the reduced form equation (2) and thus may be desirable

under certain circumstances. The estimation results are reported in Tables 2-5. We report the

mean and standard deviation (SD) of the empirical distributions of the estimates. To facilitate the

comparison of di¤erent estimators, we also report their root mean square errors (RMSE). The main

observations from the experiment are summarized as follows.

[Insert Tables 2-5 here]

(i) The 2SLS and 3SLS estimators of �0 are upwards biased with large SDs when the IVs forWy1

are less informative. For example, when n = 245 and �12 = 0:1, the 2SLS and 3SLS estimates

of �0 reported in Table 4 are upwards biased by about 10%. The biases and SDs reduce as

sample size increases. The 3SLS estimators of �0 and �0 perform better as �12 increases.
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(ii) The single-equation GMM (GMM-1) estimator of �0 is upwards biased when the IVs forWy1

are less informative. When n = 245 and �12 = 0:1, the GMM-1 estimates of �0 reported in

Table 4 are upwards biased by about 6%. The bias reduces as sample size increases. The

GMM-1 estimator of �0 reduces the SD of the 2SLS estimator. The SD reduction is more

signi�cant when the IVs forWy1 are less informative. In Table 2, when �12 = 0:1, the GMM-

1 estimator reduces the SD of the 2SLS estimator by about 60%. In Table 4, when �12 = 0:1,

the GMM-1 estimator reduces the SD of the 2SLS estimator by about 65%.

(iii) The system GMM (GMM-2) estimator of �0 is upwards biased when the sample size is moderate

(n = 245) and the IVs forWy1 are less informative. The bias reduces as �12 increases. When

n = 490, the GMM-2 estimator is essentially unbiased even if the IVs are weak. The GMM-2

estimators of �0 and �0 have smaller SDs than the corresponding GMM-1 estimators. The

reduction in the SD is more signi�cant when the endogeneity problem is more severe (i.e. �12 is

larger) and/or the IVs forWy1 are less informative. For example, in Table 3, when �12 = 0:9,

the GMM-2 estimator of �0 reduces the SD of the GMM-1 estimator by about 42%. In Table

5, when �12 = 0:9, the GMM-2 estimator of �0 reduces the SD of the GMM-1 estimator by

about 75%. In both cases, the GMM-2 estimator of �0 reduces the SD of the corresponding

GMM-1 estimator by about 56%.

6 Conclusion

In this paper, we propose a general GMM framework for the estimation of SAR models with en-

dogenous regressors. We introduce a new set of quadratic moment conditions to construct the

GMM estimator, based on the correlation structure of the spatially lagged dependent variable with

the model disturbance term and with the endogenous regressor. We establish the consistency and

asymptotic normality of the proposed GMM estimator and discuss the optimal choice of moment

conditions. We also conduct a Monte Carlo experiment to show the GMM estimator works well in

�nite samples.

The proposed GMM estimator utilizes correlation across equations (1) and (2) to construct mo-

ment equations and thus can be considered as a �full information� estimator. If we only use the

moment equations based on u1(�), i.e., the residual function of equation (1), the proposed GMM

estimator becomes a single-equation GMM estimator. Although the single-equation GMM estimator

may not be as e¢ cient as the �full information�GMM estimator, the single-equation GMM estima-
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tor requires weaker assumptions on the reduced form equation (2) and thus may be desirable under

certain circumstances. The Monte Carlo experiment shows that the �full information�GMM esti-

mator improves the e¢ ciency of the single-equation GMM estimator when the endogeneity problem

is severe and/or the IVs for the spatially lagged dependent variable are weak.
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A Likelihood Function of the SAR Model with Endogenous Regressors

Let

�y(�) =

264 S�1(�)(�X
 +X1�)

X


375 and R(�; �) =

264 S�1(�) �S�1(�)

0 In

375 ;
where S(�) = In � �W. From the reduced form equations (2) and (3), y = (y01;y

0
2)
0 = �y(�0) +

R(�0; �0)u where u = (u01;u
0
2)
0. Under normality, u � N(0;� 
 In), and thus y � N(�y;R(� 


In)R
0), where �y = �y(�0) and R = R(�0; �0). Hence, the log likelihood function of (1) and (2) is

given by

L(�;�) = �n ln(2�)� 1
2
ln jR(�; �)(�
 In)R(�; �)0j

�1
2
[y � �y(�)]0[R(�; �)(�
 In)R(�; �)0]�1[y � �y(�)]:

As u(�) = R�1(�; �)[y��y(�)] and jR�1(�; �)j = jS(�)j. Then, the log likelihood function can be

written as

L(�;�) = �n ln(2�)� 1
2
ln j(�
 In)j+ ln jS(�)j �

1

2
u(�)0(�
 In)�1u(�):

The �rst order partial derivatives of the log likelihood function are

@

@�
L(�;�) = �tr(G(�)) + [y01W0;0](�
 In)�1u(�)

@

@�
L(�;�) = [y02;0](�
 In)�1u(�)

@

@�
L(�;�) = [X0

1;0](�
 In)�1u(�)

@

@

L(�;�) = [0;X0](�
 In)�1u(�)

and
@

@(�
 In)�1
L(�;�) =

1

2
(�
 In)�

1

2
u(�)u(�)0; (17)

where G(�) = WS(�)�1. Since Wy1 = G(�)(u1(�) + �u2(
)) + G(�)(�X
 + X1�) and y2 =
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X
 + u2(
), then

@

@�
L(�;�) = �tr(G(�)) + [(�X
 +X1�)

0G(�)0;0]0(�
 In)�1u(�) (18)

+[(u1(�) + �u2(
))
0G(�)0;0]0(�
 In)�1u(�)

and
@

@�
L(�;�) = [
0X0;0](�
 In)�1u(�) + [u2(
)0;0](�
 In)�1u(�): (19)

From (17), the ML estimator for � is given by

b� =
264 b�21 b�12b�12 b�22

375 = n�1
264 u1(�)

0u1(�) u1(�)
0u2(
)

u1(�)
0u2(
) u2(
)

0u2(
)

375 :
Substitution of b� into (18) and (19) gives

@

@�
L(�; b�) = [(�X
 +X1�)

0G(�)0;0]0(b�
 In)�1u(�)
+
b�22
jb�ju1(�)0[G(�)� n�1tr(G(�))In]u1(�)� b�212

jb�ju2(
)0[G(�)� n�1tr(G(�))In]u1(�)
+�

b�22
jb�ju1(�)0[G(�)� n�1tr(G(�))In]u2(
)� �b�12jb�ju2(
)0[G(�)� n�1tr(G(�))In]u2(
)

and
@

@�
L(�; b�) = [
0X0;0](b�
 In)�1u(�):

B Lemmas

For ease of reference, we list some useful results without proofs. Lemmas B.1-B.6 can be found (or

are straightforward extensions of the lemmas) in Lee (2007). Lemma B.7 is a special case of Lemma

3 in Yang and Lee (2014). Lemmas B.8 and B.9 are from Breusch et al. (1999).
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Lemma B.1 Let A and B be n� n nonstochastic matrices such that tr(A) = tr(B) = 0. Then,

(i) E(u01Au1u
0
1Bu1) = (�4;0 � 3�41)vecD(A)0vecD(B) + �41tr(AB(s))

(ii) E(u01Au1u
0
1Bu2) = (�3;1 � 3�21�12)vecD(A)vecD(B) + �21�12tr(AB(s))

(iii) E(u01Au1u
0
2Bu2) = (�2;2 � �21�22 � 2�212)vecD(A)0vecD(B) + �212tr(AB(s))

(iv) E(u01Au2u
0
1Bu2) = (�2;2 � �21�22 � 2�212)vecD(A)0vecD(B) + �21�22tr(AB0) + �212tr(AB)

(v) E(u01Au2u
0
2Bu2) = (�1;3 � 3�12�22)vecD(A)0vecD(B) + �12�22tr(AB(s))

(vi) E(u02Au2u
0
2Bu2) = (�0;4 � 3�42)vecD(A)0vecD(B) + �42tr(AB(s))

Lemma B.2 Let A be an n�n nonstochastic matrix and c be an n�1 nonstochastic vector. Then,

(i) E(u01Au1u
0
1c) = �3;0vecD(A)

0c

(ii) E(u01Au1u
0
2c) = E(u01Au2u

0
1c) = �2;1vecD(A)

0c

(iii) E(u01Au2u
0
2c) = E(u02Au2u

0
1c) = �1;2vecD(A)

0c

(iv) E(u02Au2u
0
2c) = �0;3vecD(A)

0c:

Lemma B.3 Let A be an n�n nonstochastic matrix with row and columns sums uniformly bounded

in absolute value. Then, (i) n�1u01Au1 = Op(1), n�1u01Au2 = Op(1); and (ii) n�1[u01Au1 �

E(u01Au1)] = op(1), n
�1[u01Au2 � E(u01Au2)] = op(1).

Lemma B.4 Let A be an n�n nonstochastic matrix with row and columns sums uniformly bounded

in absolute value. Let c be an n � 1 nonstochastic vector with uniformly bounded elements. Then,

n�1=2c0Aur = Op(1) and n�1c0Aur = op(1). Furthermore, if limn!1 n
�1c0AA0c exists and is

positive de�nite, then n�1=2c0Aur
d! N(0; �2r limn!1 n

�1c0AA0c), for r = 1; 2.

Lemma B.5 Suppose n�1[�(�) � �0(�)] = op(1) uniformly in � 2 �, where �0(�) is uniquely

identi�ed at �0. De�ne b� = argmin�2� �(�) and b�� = argmin�2� ��(�). If n�1[�(�) � ��(�)] =
op(1) uniformly in � 2 � then both b� and b�� are consistent estimators of �0. Furthermore, assume
that 1

n
@2

@�@�0�(�) converges uniformly to a matrix which is nonsingular at �0 and
1p
n

@
@�0�(�) =

Op(1). If 1n [
@2

@�@�0�
�(�)� @2

@�@�0�(�)] = op(1) and
1p
n
[ @@�0�

�(�)� @
@�0�(�)] = op(1) uniformly in �,

then
p
n(b� � �0)�pn(b�� � �0) = op(1).
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Lemma B.6 Let A and B be n� n nonstochastic matrices with row and columns sums uniformly

bounded in absolute value, c1 and c2 be n�1 nonstochastic vectors with uniformly bounded elements.

G� is either G, G � n�1tr(G)In or G � diag(G), and bG� is obtained by replacing �0 in G� by

its
p
n-consistent estimator b�. Suppose Assumption 3 holds. Then, n�1c01( bG� � G)c2 = op(1),

n�1=2c01(
bG� �G)Aur = op(1), n�1u0rA0( bG� �G)Bus = op(1), and n�1=2u0r( bG� �G)us = op(1),

for r; s = 1; 2.

Lemma B.7 LetAr;s be an n�n nonstochastic matrix with row and column sums uniformly bounded

in absolute value for r; s = 1; 2. Let c1 and c2 be n�1 nonstochastic vectors with uniformly bounded

elements. Let �2 = Var(�), where � =
P2

r=1 c
0
rur +

P2
s=1

P2
r=1(u

0
sAr;sur � E[u0sAr;sur]). Suppose

�2 = O(n) and n�1�2 is bounded away from zero. Then, ��1� d! N(0; 1).

Lemma B.8 Consider the set of moment conditions g(�) = [g1(�)
0;g2(�)

0]0 with E[g(�0)] = 0.

De�ne Di = �E[ @@�0gi(�)] and 
ij = E[gi(�)gj(�)
0] for i; j = 1; 2. The following statements are

equivalent (i) g2 is redundant given g1; (ii) D2 = 
21

�1
11 D1 and (iii) there exists a matrix A such

that D2 = 
21A and D1 = 
11A.

Lemma B.9 Consider the set of moment conditions g(�) = [g1(�)0;g2(�)0;g3(�)0]0 with E[g(�0)] =

0. Then (g02;g
0
3)
0 is redundant given g1 if and only if g2 is redundant given g1 and g3 is redundant

given g1.

C Proofs

Proof of Proposition 1: To prove consistency, �rst we need to show the uniform convergence of

n�2g(�)0F0Fg(�) in probability. For some typical row Fi� of F

Fi�g(�) = f1;i�Q
0u1(�) + f2;i�Q

0u2(
) + u1(�)
0

0@ mX
j=1

f1;ij�j

1Au1(�) + u1(�)0
0@ mX
j=1

f2;ij�j

1Au2(
)
+u2(
)

0

0@ mX
j=1

f3;ij�j

1Au1(�) + u2(
)0
0@ mX
j=1

f4;ij�j

1Au2(
)
where Fi� = (f1;i�; f2;i�; f1;i1; � � � ; f1;im; � � � ; f4;i1; � � � ; f4;im) and f1;i� and f2;i� are row sub-vectors. As

u1(�) = d1(�)+ r1(�), where d1(�) = (�0� �)G(�0X
0+X1�0)+ (�0��)X
0+X1(�0��) and

23



r1(�) = u1 + (�0 � �)(Gu1 + �0Gu2) + (�0 � �)u2, we have

u1(�)
0

0@ mX
j=1

f1;ij�j

1Au1(�) = d1(�)0
0@ mX
j=1

f1;ij�j

1Ad1(�) + l1(�) + q1(�)
where l1(�) = d1(�)0

�Pm
j=1 f1;ij�

(s)
j

�
r1(�) and q1(�) = r1(�)0

�Pm
j=1 f1;ij�j

�
r1(�). It follows by

Lemmas B.3 and B.4 that n�1l1(�) = op(1) and n�1q1(�) � n�1E[q1(�)] = op(1) uniformly in �,

where

E[q1(�)] = (�0 � �)[�21 + �12(2�0 � �) + �22�0(�0 � �)]
mX
j=1

f1;ijtr(G�
(s)
j )

+(�0 � �)2(�22�20 + 2�12�0 + �21)
mX
j=1

f1;ijtr(G
0�jG):

Hence, n�1u1(�)0
�Pm

j=1 f1;ij�j

�
u1(�) � n�1E[u1(�)0

�Pm
j=1 f1;ij�j

�
u1(�)] = op(1) uniformly in

�, where E[u1(�)0
�Pm

j=1 f1;ij�j

�
u1(�)] = d1(�)

0
�Pm

j=1 f1;ij�j

�
d1(�) + E[q1(�)]. As u2(
) =

d2(
) + u2, where d2(
) = X(
0 � 
), we have

u1(
)
0

0@ mX
j=1

f2;ij�j

1Au2(�) = d1(
)0
0@ mX
j=1

f2;ij�j

1Ad2(�) + l2(�) + q2(�)
where l2(�) = r1(�)0

�Pm
j=1 f2;ij�j

�
d2(
)+d1(�)

0
�Pm

j=1 f2;ij�j

�
u2 and q2(�) = r1(�)0

�Pm
j=1 f2;ij�j

�
u2.

It follows by Lemmas B.3 and B.4 that n�1l2(�) = op(1) and n�1q2(�)� n�1E[q2(�)] = op(1) uni-

formly in �, where

E[q2(�)] = (�0 � �)(�12 + �22�0)
mX
j=1

f2;ijtr(G�j):

Hence, n�1u1(
)0
�Pm

j=1 f2;ij�j

�
u2(�) � n�1E[u1(
)0

�Pm
j=1 f2;ij�j

�
u2(�)] = op(1) uniformly

in �, where E[u1(
)0
�Pm

j=1 f2;ij�j

�
u2(�)] = d1(
)

0
�Pm

j=1 f2;ij�j

�
d2(�) + E[q2(�)]. Similarly,

n�1u2(
)
0
�Pm

j=1 f3;ij�j

�
u1(�)�n�1E[u2(
)0

�Pm
j=1 f3;ij�j

�
u1(�)] = op(1), n�1u2(
)0

�Pm
j=1 f4;ij�j

�
u2(
)�

n�1E[u2(
)
0
�Pm

j=1 f4;ij�j

�
u2(
)] = op(1), n�1f1;i�Q0u1(�) � n�1E[f1;i�Q0u1(�)] = op(1), and

n�1f2;i�Q
0u2(
)�n�1E[f2;i�Q0u2(
)] = op(1) uniformly in �. Therefore, n�1Fg(�)�n�1FE[g(�)] =

op(1) uniformly in �, and hence, n�2g(�)0F0Fg(�) converges in probability to a well de�ned limit

uniformly in �. As g(�) is a quadratic function of �, n�1FE[g(�)] is uniformly equicontinuous on

� by Assumption 4. The identi�cation condition and the uniform equicontinuity of n�1FE[g(�)]
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imply that the identi�cation uniqueness condition for n�2E[g(�)0]F0FE[g(�)] must be satis�ed. The

consistency of b� follows by Theorem 15.1 of Peracchi (2001).

For the asymptotic normality of e�gmm, by the mean value theorem,
p
n(e�gmm � �0) = � �n�1 @

@�
g(e�gmm)0F0n�1F @

@�0
g(�)

��1
n�1

@

@�
g(e�gmm)0F0n�1=2Fg(�0)

where � = te�gmm + (1� t)�0 for some t 2 [0; 1] and

� @

@�0
g(�) =

2666666666666666666666666666666666666666664

Q0Wy1 Q0y2 Q0X1 0

0 0 0 Q0X

u1(�)
0�
(s)
1 Wy1 u1(�)

0�
(s)
1 y2 u1(�)

0�
(s)
1 X1 0

...
...

...
...

u1(�)
0�
(s)
m Wy1 u1(�)

0�
(s)
m y2 u1(�)

0�
(s)
m X1 0

u2(
)
0�01Wy1 u2(
)

0�01y2 u2(
)
0�01X1 u1(�)

0�1X

...
...

...
...

u2(
)
0�0mWy1 u2(
)

0�0my2 u2(
)
0�0mX1 u1(�)

0�mX

u2(
)
0�1Wy1 u2(
)

0�1y2 u2(
)
0�1X1 u1(�)

0�01X

...
...

...
...

u2(
)
0�mWy1 u2(
)

0�my2 u2(
)
0�mX1 u1(�)

0�0mX

0 0 0 u2(
)
0�
(s)
1 X

...
...

...
...

0 0 0 u2(
)
0�
(s)
m X

3777777777777777777777777777777777777777775

:

Using Lemmas B.3 and B.4, it follows by a similar argument in the proof of Proposition 1 in Lee

(2007) that �n�1 @
@�0g(

b�)�n�1D = op(1) and �n�1 @
@�0g(�)�n

�1D = op(1) with D given by (10).

By Lemma B.7 and the Cramer-Wald device, we have n�1=2Fg(�0)
d! N(0; limn!1 n

�1F
F0) with


 given by (9). The desired result follows.

Proof of Proposition 2: Note that

n�1g(�)0 b
�1g(�) = n�1g(�)0
�1g(�) + n�1g(�)0(b
�1 �
�1)g(�):
With F = (n�1
)�1=2, uniform convergence of n�1g(�)0
�1g(�) in probability follows by a similar
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argument in the proof of Proposition 1. On the other hand,




n�1g(�)0(b
�1 �
�1)g(�)


 � �n�1kg(�)k�2 


(n�1 b
)�1 � (n�1
)�1



where k � k is the Euclidean norm for vectors and matrices. By a similar argument in the proof of

Proposition 1, we have n�1g(�)�n�1E[g(�)] = op(1) and n�1E[g(�)] = O(1) uniformly in �, which

in turn implies that n�1kg(�)k = Op(1) uniformly in �. Therefore,



n�1g(�)0(b
�1 �
�1)g(�)


 =

op(1) uniformly in �. The consistency of b�gmm follows.

For the asymptotic normality of
p
n(b�gmm � �0), note that from the proof of Proposition 1 we

have �n�1 @
@�0g(

b�gmm) � n�1D = op(1), since b�gmm is consistent. Let � = tb�gmm + (1 � t)�0 for
some t 2 [0; 1], then by the mean value theorem,

p
n(b�gmm � �0)

= �
�
n�1

@

@�
g(b�gmm)0(n�1 b
)�1n�1 @

@�0
g(b�)��1 n�1 @

@�
g(b�gmm)0(n�1 b
)�1n�1=2g(�0)

=
h
n�1D0 �n�1
��1 n�1Di�1 n�1D0 �n�1
��1 n�1=2g(�0) + op(1)

which concludes the �rst part of the proof, since in the proof of Proposition 1 it is established that

n�1=2g(�0) converges in distribution.

For the overidenti�cation test, by the mean value theorem, for some t 2 [0; 1] and � = tb�gmm +
(1� t)�0

n�1=2g(b�gmm) = n�1=2g(�0) + n
�1=2 @

@�0
g(�)(b�gmm � �0)

= n�1=2g(�0)� n�1D
p
n(b�gmm � �0) + op(1)

= An�1=2g(�0) + op(1)

where A = Idim(g) � n�1D
h
n�1D0 �n�1
��1 n�1Di�1 n�1D0 �n�1
��1. Therefore

g(b�gmm)0 b
�1g(b�gmm) = n�1=2g(b�gmm)0(n�1
)�1n�1=2g(b�gmm) + op(1)
= n�1=2g(�0)

0A0(n�1
)�1An�1=2g(�0) + op(1)

= [
�
n�1


��1=2
n�1=2g(�0)]

0B[
�
n�1


��1=2
n�1=2g(�0)] + op(1)
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where B = Idim(g) �
�
n�1


��1=2
n�1D

h
n�1D0 �n�1
��1 n�1Di�1 n�1D0 �n�1
��1=2. Therefore

g(b�gmm)0 b
�1g(b�gmm) d! �2tr(B);

where tr(B) = dim(g)� dim(�).

Proof of Proposition 3: To establish the asymptotic e¢ ciency, we use an argument by Breusch

et al. (1999) to show that any additional moment conditions g de�ned in (6) given g� de�ned in

(12) will be redundant. Following Breusch et al. (1999), g is redundant given g� if the asymptotic

variance of an estimator based on moment equations E[g(�)] = 0 and E[g�(�)] = 0 is the same as

an estimator based on E[g�(�)] = 0. In cases (i) and (ii),


# = E[g(�0)g
�(�0)

0] =

264 (�
Q0Q�) 0

0 
#22

375
where


#22 =

266666664

�41 �21�12 �21�12 �212

�21�12 �212 �21�
2
2 �22�12

�21�12 �21�
2
2 �212 �22�12

�212 �22�12 �22�12 �42

377777775



266664
tr(�1�

�)

...

tr(�m�
�)

377775

+

266666664

�41 �21�12 �21�12 �212

�21�12 �21�
2
2 �212 �22�12

�21�12 �212 �21�
2
2 �22�12

�212 �22�12 �22�12 �42

377777775



266664
tr(�01�

�)

...

tr(�0m�
�)

377775 :
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Let

A =
1

�21�
2
2 � �212

2666666666666666666664

�22(C�0 + �0
0) 0 0 0

0 �22
0 �22C ��12IKX

��12(C�0 + �0
0) 0 0 0

0 ��12
0 ��12C �21IKX

�22 0 0 0

�0�
2
2 0 0 0

��12 0 0 0

��0�12 0 0 0

3777777777777777777775

;

where C = [IK1 ;0]
0 and X1 = XC. Then D = 
#A, where D is de�ned in (10). Based on Lemma

B.8 g is redundant given g�. Furthermore, Lemma B.9 tells us that any subset of g is redundant

given g�.

Proof of Proposition 4: To show the desired result, we only need to show b�(�) = bg�(�)0 b
��1bg�(�)
and �(�) = g�(�)0
��1g�(�) satisfy the conditions of Lemma B.5. First, n�1[bg�1(�) � g�1(�)] =
n�1[I2 
 (bQ� �Q�)]0u(�), n�1[bg�2;rs(�)� g�2;rs(�)] = n�1ur(�)0(b�� ���)us(�),

@

@�0
g�(�) = �

2666666666666664

Q�0Wy1 Q�0y2 Q�0X1 0

0 0 0 Q�0X

u1(�)
0��(s)Wy1 u1(�)

0��(s)y2 u1(�)
0��(s)X1 0

u2(
)
0��0Wy1 u2(
)

0��0y2 u2(
)
0��0X1 u1(�)

0��X

u2(
)
0��Wy1 u2(
)

0��y2 u2(
)
0��X1 u1(�)

0��0X

0 0 0 u2(
)
0��(s)X

3777777777777775
;

and

@2

@�@�0
g�(�) =

266666666664

0

@
@�u1(�)

0�� @
@�0u1(�)

@
@�u1(�)

0�� @
@�0u2(
)

@
@�u2(
)

0�� @
@�0u1(�)

@
@�u2(
)

0�� @
@�0u2(
)

377777777775
;

where Q� = [GX;X], �� is either G� n�1tr(G)In or G� diag(G), @
@�0u1(�) = �[Wy1;y2;X1;0],

and @
@�0u2(
) = �[0;0;0;X]. By inspection of each term of the above matrices, we conclude
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n�1[bg�(�)� g�(�)] = op(1), n�1[ @@�0 bg�(�)� @
@�0g

�(�)] = op(1) and n�1[ @2

@�@�0
bg�(�)� @2

@�@�0g
�(�)] =

op(1) uniformly in � by Lemma B.6. Second, as bG �G = (b� � �0)G2 + (b� � �0)2 bGG2, we have

n�1tr(b��b��) � n�1tr(����) = op(1) and n�1tr(b��0b��) � n�1tr(��0��) = op(1). Therefore, asb� is a consistent estimator of �, we have n�1(b
 � 
�) = op(1). Hence, we can conclude that

n�1[b�(�) � �(�)] = op(1) and n�1[ @2

@�@�0
b�(�) � @2

@�@�0�(�)] = op(1) uniformly in �. Finally, since

n�1=2g�(�0) = Op(1) by a similar argument in the proof of Proposition 1 and n�1=2[bg�(�0) �
g�(�0)] = op(1) by Lemma B.6,

n�1=2[
@

@�0
b�(�0)� @

@�0
�(�0)]

= 2
@

@�
bg�(�0)0 b
�1n�1=2[bg�(�0)� g�(�0)] + 2[ @

@�
bg�(�0)0 b
�1 � @

@�
g�(�0)

0
�1]n�1=2g�(�0)

= op(1):

The desired result follows.
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Table 2: 2SLS, 3SLS and GMM Estimation (𝑛 = 245) 
 𝜆0 = 0.6 𝜙0 = 0.5 𝛽0 = 0.5 𝛾0 = 1 

𝜎12 = 0.1     
2SLS 0.601(0.128)[0.128] 0.497(0.068)[0.068] 0.496(0.066)[0.066] - 
3SLS 0.601(0.126)[0.126] 0.497(0.068)[0.068] 0.496(0.066)[0.066] 0.999(0.066)[0.066] 
GMM-1 0.602(0.052)[0.052] 0.499(0.066)[0.066] 0.498(0.065)[0.065] - 
GMM-2 0.607(0.051)[0.051] 0.497(0.067)[0.068] 0.498(0.065)[0.065] 0.999(0.066)[0.066] 
𝜎12 = 0.5     
2SLS 0.601(0.138)[0.138] 0.496(0.068)[0.068] 0.495(0.066)[0.066] - 
3SLS 0.602(0.111)[0.111] 0.496(0.068)[0.068] 0.498(0.057)[0.057] 1.000(0.066)[0.066] 
GMM-1 0.602(0.046)[0.046] 0.501(0.066)[0.066] 0.498(0.065)[0.065] - 
GMM-2 0.604(0.045)[0.045] 0.495(0.068)[0.068] 0.499(0.057)[0.057] 0.999(0.066)[0.066] 
𝜎12 = 0.9     
2SLS 0.601(0.170)[0.170] 0.495(0.070)[0.070] 0.494(0.067)[0.067] - 
3SLS 0.603(0.059)[0.059] 0.497(0.068)[0.068] 0.500(0.029)[0.029] 1.001(0.066)[0.066] 
GMM-1 0.603(0.050)[0.050] 0.503(0.066)[0.066] 0.498(0.065)[0.065] - 
GMM-2 0.601(0.023)[0.023] 0.495(0.070)[0.070] 0.500(0.028)[0.028] 0.999(0.067)[0.067] 
Mean(SD)[RMSE] 

 

 

Table 3: 2SLS, 3SLS and GMM Estimation (𝑛 = 490) 
 𝜆0 = 0.6 𝜙0 = 0.5 𝛽0 = 0.5 𝛾0 = 1 

𝜎12 = 0.1     
2SLS 0.600(0.080)[0.080] 0.497(0.047)[0.047] 0.497(0.046)[0.046] - 
3SLS 0.599(0.079)[0.079] 0.497(0.047)[0.047] 0.497(0.046)[0.046] 1.000(0.045)[0.045] 
GMM-1 0.600(0.035)[0.035] 0.498(0.047)[0.047] 0.498(0.046)[0.046] - 
GMM-2 0.602(0.034)[0.034] 0.497(0.047)[0.047] 0.498(0.045)[0.046] 1.000(0.046)[0.046] 
𝜎12 = 0.5     
2SLS 0.600(0.081)[0.081] 0.496(0.048)[0.048] 0.497(0.046)[0.046] - 
3SLS 0.600(0.068)[0.068] 0.496(0.047)[0.047] 0.499(0.040)[0.040] 0.999(0.046)[0.046] 
GMM-1 0.600(0.030)[0.030] 0.499(0.047)[0.047] 0.498(0.046)[0.046] - 
GMM-2 0.601(0.029)[0.029] 0.496(0.047)[0.048] 0.499(0.040)[0.040] 0.999(0.046)[0.046] 
𝜎12 = 0.9     
2SLS 0.601(0.082)[0.082] 0.496(0.048)[0.048] 0.496(0.046)[0.046] - 
3SLS 0.601(0.034)[0.034] 0.496(0.047)[0.048] 0.500(0.020)[0.020] 0.999(0.047)[0.047] 
GMM-1 0.600(0.026)[0.026] 0.500(0.047)[0.047] 0.498(0.045)[0.045] - 
GMM-2 0.600(0.015)[0.015] 0.494(0.048)[0.049] 0.500(0.020)[0.020] 0.997(0.048)[0.048] 
Mean(SD)[RMSE] 

 

 



Table 4: 2SLS, 3SLS and GMM Estimation (𝑛 = 245) 
 𝜆0 = 0.6 𝜙0 = 0.2 𝛽0 = 0.2 𝛾0 = 1 

𝜎12 = 0.1     
2SLS 0.667(0.464)[0.469] 0.196(0.075)[0.076] 0.194(0.070)[0.071] - 
3SLS 0.660(0.482)[0.486] 0.195(0.076)[0.076] 0.195(0.070)[0.070] 0.999(0.066)[0.066] 
GMM-1 0.637(0.163)[0.167] 0.201(0.067)[0.067] 0.198(0.066)[0.066] - 
GMM-2 0.640(0.145)[0.150] 0.199(0.068)[0.068] 0.198(0.065)[0.065] 0.999(0.066)[0.066] 
𝜎12 = 0.5     
2SLS 0.678(0.439)[0.446] 0.195(0.070)[0.070] 0.194(0.068)[0.068] - 
3SLS 0.653(0.357)[0.361] 0.195(0.069)[0.069] 0.197(0.058)[0.059] 1.000(0.066)[0.066] 
GMM-1 0.648(0.189)[0.195] 0.202(0.067)[0.067] 0.198(0.066)[0.066] - 
GMM-2 0.624(0.109)[0.112] 0.196(0.068)[0.068] 0.199(0.057)[0.057] 0.999(0.066)[0.066] 
𝜎12 = 0.9     
2SLS 0.688(0.389)[0.399] 0.194(0.070)[0.070] 0.194(0.068)[0.068] - 
3SLS 0.627(0.168)[0.170] 0.196(0.067)[0.068] 0.199(0.029)[0.029] 1.001(0.066)[0.066] 
GMM-1 0.646(0.178)[0.184] 0.204(0.067)[0.067] 0.198(0.065)[0.065] - 
GMM-2 0.608(0.052)[0.053] 0.196(0.068)[0.069] 0.200(0.029)[0.029] 0.999(0.067)[0.067] 
Mean(SD)[RMSE] 

 

 

Table 5: 2SLS, 3SLS and GMM Estimation (𝑛 = 490) 
 𝜆0 = 0.6 𝜙0 = 0.2 𝛽0 = 0.2 𝛾0 = 1 

𝜎12 = 0.1     
2SLS 0.625(0.251)[0.253] 0.195(0.047)[0.048] 0.195(0.046)[0.047] - 
3SLS 0.624(0.252)[0.253] 0.195(0.047)[0.048] 0.195(0.046)[0.046] 1.000(0.045)[0.045] 
GMM-1 0.610(0.094)[0.094] 0.198(0.047)[0.047] 0.198(0.046)[0.046] - 
GMM-2 0.610(0.071)[0.072] 0.197(0.047)[0.047] 0.198(0.045)[0.045] 1.000(0.046)[0.046] 
𝜎12 = 0.5     
2SLS 0.633(0.227)[0.230] 0.195(0.048)[0.048] 0.195(0.046)[0.047] - 
3SLS 0.620(0.195)[0.196] 0.195(0.047)[0.048] 0.197(0.040)[0.040] 0.999(0.046)[0.046] 
GMM-1 0.611(0.092)[0.092] 0.199(0.047)[0.047] 0.198(0.046)[0.046] - 
GMM-2 0.604(0.043)[0.043] 0.196(0.047)[0.047] 0.199(0.040)[0.040] 0.999(0.046)[0.046] 
𝜎12 = 0.9     
2SLS 0.628(0.280)[0.282] 0.195(0.048)[0.048] 0.194(0.047)[0.047] - 
3SLS 0.607(0.100)[0.100] 0.196(0.047)[0.048] 0.200(0.020)[0.020] 0.999(0.047)[0.047] 
GMM-1 0.612(0.097)[0.098] 0.200(0.047)[0.047] 0.198(0.046)[0.046] - 
GMM-2 0.602(0.024)[0.024] 0.195(0.048)[0.048] 0.200(0.020)[0.020] 0.997(0.047)[0.047] 
Mean(SD)[RMSE] 

 

 


