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B Supplementary Appendix

The supplementary appendix provides explicit proofs for some of the results claimed in the main

part of the paper.

B.1 Proofs of Propositions

Proof of Proposition 1. Let T’ = (I, ® ﬁ/,lq)’, then in light of (8) and (10) we have
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Next observe that the Moore-Penrose generalized inverse of F) is, as is readily checked, given by
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where A = (I+TT")~'&;1(I1+ I'T")~!. Consequently,
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which proves the claim. O
Proof of Proposition 2. Let R =1, — pyWy1 —--- — p W,. If € ~ N(0,0%1L,), under the stated

assumptions, u ~ N(0,9,) and y ~ N(X3,Q,), where Q, = 0?R7'R’~!. The log-likelihood

function is given by
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where § = [p’, 3, 0?%]'. The first-order derivatives of the log-likelihood function (B.1) are
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Evaluated at the true parameter value, the mean of the second-order derivatives of the log-likelihood

function (B.1) are
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Observe that when p = 0, R = I, and 5>-R = —W,.. Evaluated at the restricted ML estimator 5,
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Then, the LM test statistic is given by
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which proves the claim. O
Proof of Proposition 5. Let R =1, —pyW; —--- —p Wyand S =1, — MWy —--- = AW, If

e ~ N(0,0°L,), under the stated assumptions, y ~ N(S~'p,, 2,), where p,, = X3+ 7| W, X~,

and Q, = S—19,S'~!. The log-likelihood function is given by
InL(0) = — 2 In(2) — i | det(€2,)] — 1( S (y—S" ) (B.2)

where 8 = [p/, X', ~},- - Vs B',0?)". The first-order derivatives of the log-likelihood function (B.2)
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Evaluated at the true parameter value, the mean of the second-order derivatives of the log-likelihood

function (B.2) are
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Observe that when A= p=0,S =R =1, and %R =—-W, forr =1, ---,q. Evaluated at the

restricted ML estimator 5, we have %
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Let V and @ be defined as in (8), then using results on the generalized inverse of partitioned
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matrices given in, e.g., Trenkler and Schipp (1993), we have
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observing that Aj;—A AL, Aoy = 5 4®. By Proposition 1 we have V'@V = (LV)/(L®L')~(LV),

which proves the claim. O

Proof of Proposition 4. Under the maintained assumptions, E[n~/?X'u] = 0, cov[n~/?X'u] =
n~'X’'Q, X = O(1), which implies n~*/2X'u = O,(1). Furthermore, as (n~!X'X)~ = O(1), we
have n'/2(8 — B) = (n"1X'X)~'n"1/2Xu = O,(1). Let A be some n x n matrix whose row and

column sums are uniformly bounded in absolute value by some finite constant. Then,

WAL = n'WAu—n"'WAX(B-8)— (8-0)n'X'Au+ (8- 8)n 'X'AX (B - 8)

"' Au +0,(1)

since by standard argumentation n™'X’Au = 0,(1) and n7!X’AX = O(1). Next observe that

n'E[u’Au] = n~1tr[A€,] is bounded by a finite constant under the maintained assumptions, and

covn~ '’ Au] = n~22tr[C?] + n 2 Z cZ[E(ei/o)* — 3]
with C = [¢;;] = 0?R’"'AR™!. Since the elements of C and C? are uniformly bounded in
absolute value under the maintained assumptions we have cov[n~'u’Au] = o(1), and hence by

Chebychev’s inequality n~'t’Au = n~'E[u’Au] + 0,(1). Using this result with A = W, shows

that n= VU = n=1uU 4 0,(1), and using this result with A = I shows that 5> = 52+ 0,(1). Hence,



under the maintained assumptions, (n~*®UV)~1—(n~1@UV)~1 = o (1) and (n1®UV)~1 = O, (1).
Consequently, n™'Z2(q) = n~'u (®YY) "' u¥ + v, where v,, = 0,(1). Let a = ¢}, /Cy and observe
that n =1V (®YY)~1ut > a > 0. Since v, = 0,(1), there exists an n. such that P(|v,| > a/2) <e

for all n > n.. Consequently for all n > n.,

Pr(Z2(q) <7v) = Pr(p”(@"Y)'uY +nv, <v)
< Pr(na+ nv, <7)

= Pr(na+nv, <~v,|vn| < a/2) +Pr(na+nv, <7, v, > a/2)
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Now let n, be such that n,a/2 > ~, then, for all n > max(n.,n,), Pr(na/2 < ) = 0 and thus

Pr(Z2(q) < v) < &, which proves that lim,, ., Pr(Z2(q) <) = 0 for any v > 0 as claimed. O

Proof of Proposition 5. Under the alternative hypothesis, 1 = y — XB =d+ MxS!'u. Under
the maintained assumptions, n VX = n_lﬁX + 0,(1) and n‘lﬁx = O(1) by argumentation as
used in the proof of Proposition 4. Let A be some n x n matrix whose row and column sums are

uniformly bounded in absolute value by some finite constant. Then,

nIWAG = n 'dAd+2n ' dAMS lu+n WS T My AM S u
= np'dAd+2n"'d’AMxS 'u

+n WS TTAS T u+ (S TIX) (T XY X) T (n T XYAX) (I XY X) T (T XS T )
+(n MSTIX) (T IX/X) T (XY AS T ) + (n 'S TAX) (XY X) T (XIS T M)

= n'dAd +n 'S TTAS Tu + 0,(1).

since n A’ AM xS~ 'u = 0,(1), n7'X'S™'u = 0,(1), n ' X’AS "u = 0,(1) by argumentation as

used in the proof of Proposition 4, and (n~!X’X)~! = O(1). Under the maintained assumptions,



n~'d’Ad = O(1). Let B=8""AS™ !, and observe that n~'E[u'Bu] = n~'tr(BQ,) = O(1) under

the maintained assumptions, and
cov[n'u'Bu] = n"?2tr[C?] + n 2 ch (ei/0)* — 3

with C = [¢;;] = ¢?R’"!BR L. Since the elements of C and C? are uniformly bounded in absolute
value under the maintained assumptions we have cov[n~'u’Bu] = o(1), and hence by Chebychev’s
inequality n~'0’At = n~'d’Ad +n"'tr(BQ,) +0,(1). Using this result with A = W, shows that
I VA n‘lﬁU + 0,(1), and using this result with A =1I,, shows that 52 =02+ op(1). Hence,
under the maintained assumptions, n='LV = n~tp + op(1), (n_lL:I\)L’)_1 —(n71®)7! = 0,(1),
and (n_lL‘i’L')_1 = Op(1). Consequently, n™'Z2(q) = n~' /()" 'y + v, where vy, = 0,(1). The

rest of the proof follows by the same argument as that in the proof of Proposition 4. O

Proof of Proposition 6. The proposition is proven by adapting the argumentation of Lieberman

(1994). In the following let k =p+ g and ¢ = ¢, + - - - + ¢;. It is readily checked that

E wAu+ a’u\? /uBu+bu\? / / OFM (ty, ty, t1 + -+ +t1) gt gt
u’Su u’'Su othot} ' g

ta,ty=0

Observe that

OFM (ta,ty, t1 + -+ ty)

= M®(0,0,t1 4 - - - + tg) exp[h(0,0,t1 + - - - + t5)],

oL ot =0
where
OFM (ty, ty, ty + -+t
M® (0,0,t; +---+1t) = ( bplt + ) M(0,0,t + - + tg),
8ta8tb ta,tp=0
h(0,0,t1 4+ ---+tx) = log M(0,0,t; +--- +tg).



Observe that

Oh(0,0,t1 + -+~ + 1)  E{u’Suexp|(t; +--- 4 t;)u’'Sul}

ot = T E{ew[h - Ft)wSa)

hi(0,0,t + -+ 1) =

since S is positive definite. Thus, over the range of integration (—oo, 0]*, the function h(0,0,¢;+- - -+
tr) attains its maximum at the boundary point ¢; = - -+ = ¢, = 0. Using the Laplace approximation

of integrals (see, e.g., Olver, 1997) yields

0 0 ok
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0 0
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R

M®)(0,0,0) exp[h(0,0,0)]/TIF_, (0,0, 0)

with h;(0,0,¢1 + -+ - +tg) = Oh(0,0,t1 + - - - + tx)/0t;. Next observe that

M 0,0,0) = | LHOON Lt M(0,0,0) = B [(w/ Au + a'u)? (u'Bu + bu)7]
i Atk ot -
h(0,0,0) = 0,
[ OM(0,0,t) + -+t
h(0,0,0) = 0,0, +--- + 1) M(0,0,0) = Eu'Su,
L ot ty=--=tp=0
and thus

u’Su
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B.2 Derivation of Laplace Approximated Moments

Corresponding to the partitioning of 5>V = [5,2VY/,5,2VX’ 5.2VU’ consider the following

partitioning of p; = Ep, [3;2{7] and ®; = E;, [3;4{7{\7']:

i w7 a) @)
pr=| pf | Pr=| @fY &fF ofU
p B e ap

The elements of 5, VY, 5, 2VX, and 5, 2VU corresponding to W, are given by

With Ay’r = (MXWr + W;Mx)/Q, ayyr = MXw,«X,B, a;m = 1\/[)(‘7VTX]€7 Au,r = MXwTMx,
and S = (n—K,) 'My. By Lemma A.1 in Kelejian and Prucha (2010) we have for any conformably

symmetric matrices A and B and vectors a and b:

E(W/Au+ a’'u) = o2tr(A)
E[(WAu+ a’u)(u'Bu + b'u)] = 26*tr(AB) + o2a’b

+ [W) - 304] veen (A) veep(B) + u® [a'vec (B) + b'vecp (A)] + ottr(A)tr(B)
Using Proposition 6 and observing furthermore that E(u’Su) = o2 it is then readily seen that

IJ:{ = [tr(WrMX)] 3 ll’i( = 07 ”’g = [tr(WTMX)}

r=1,-.q r=1,,q”
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and

YY
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uu
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[tr(W,Mx W, My + W.MxW,My) + 028’ X'W/ Mx W, X33
+(o™* W = 3)vecp (W. My ) vecn (W' My) + 0~ [8'X'W’. M x vecp (W, Mx)

+IB/X/W/SMXV6CD(W;MX)] + tI‘(WTMx)tI‘(WSMx)} sl g

[U‘Q,B/X'W’TMXWSX + U_4u(3)vecD(W’TMX)MXWSX} ) ,

r,s=1, ,q
[Qtr(WrMstMx) + (074/1,(4) - 3)VeCD (W;Mx)VQCD(MXwSMx)
+0_4M(B)B’X’W;MxvecD (MxW My) + tr(WTMX)tr(WSMX)] ,

rs=1,0,q

= [J_2X/W;MXWSX] r,s=1,-,q°

= [074M(S)X’W;Mxvec[)(MXWSMX) ,

ris=1,,q

= [2tr(WTMXWSMx) + (0'_4/1(4) - 3)V€CD(waer)/VeCD(wasMx)

+tr(W7-MX)tr(WsMx)]T’S:LH. ,q-

Note that p; does not depend on any unknown parameters, and hence pi;, = p;. The estimator

for @L is obtained by replacing 3 by the OLS estimator and o2 by 52 or 8121, and @ and p by

n~tY " ad and nt Y] U, respectively.

Remark B.1. Cliff and Ord (1981) gives results on the exact mean and variance (and higher

moments) of ratios of quadratic forms under normality.

Drukker and Prucha (2013) also give

results on the covariance of ratios of quadratic forms under normality. We now can use those

results to check on the approximation error for the Laplace approximation when the disturbances

are normally distributed. In particular, for spatial weight matrices W, and W, let

/
PR . uAu
and Q, =0, WW,i=

/
PR . uA,u
QT =0 u/ V‘/ 7.'[1 = u < 7/ y
u'Su

v uw'Su’

where A, = MxW, My, A, = MxW,Mx and S = (n — K,)"'Mx. Provided u ~ N(0,0%1,) it
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follows from Drukker and Prucha (2013) that

E[(WA,u)?(u'Asu)?
BlQrQy = Tl S

for p,g = 0,1. Let E; denote the Laplace approximation of the expected value, then in light of

Proposition 6,

Er [Q/] _ E(u'Su) _1

ElQ] ~ BEwSw
EL [QTQS] o E [(ulsu)Q] o n— -1 __ ’17,71
EQ.Q] [EWSuw)) L2 = Ke) ™ =14 0(n7)

observing that E(u’Su) = ¢? and E [(u/Su)?] = 20*tr(S?) + o*tr(S) = [2(n — K,) ' + 1]o*.
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