
A Robust Test for Network Generated Dependence∗

Xiaodong Liu† Ingmar R. Prucha‡

April 25, 2018

Abstract

The paper introduces a robust testing procedure for network generated cross sectional de-

pendence in the endogenous variables, exogenous variables and/or disturbances. Empirical

researchers often face situations where they are unsure about how to model the proximity be-

tween cross sectional units in a network. The tests considered provide the empirical researcher

an important degree of robustness in such situations. They generalize the Moran (1950) I test

for dependence in spatial networks. The asymptotic properties of the tests are established

under general conditions. The paper also discusses the use of the test statistics in situations

where the network topology is endogenous.
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1 Introduction

The paper introduces a robust test for network generated cross sectional dependence, and derives

the statistical properties of the test. Empirical researchers often face situations where they are

unsure about how to model the proximity between cross sectional units in a network. The test

considered in this paper is aimed at providing to the empirical researcher an important degree of

robustness in such situations.

As remarked by Kolaczyk (2009), “... during the decade surrounding the turn of the 21st century

network-centric analysis ... has reached new levels of prevalence and sophistication”. Applications

range widely from physical and mathematical sciences to social sciences and humanities. The

importance of network dependencies has, in particular, been recognized early in the regional science,

urban economics and geography literature. The focus of this literature is on spatial networks. An

important class of spatial network models was introduced by Cliff and Ord (1973, 1981), where,

as a formal modeling device, weight matrices are used to capture the existence and directional

importance of links in a spatial network. It is important to note that in the Cliff-Ord type models

the weights are only viewed as related to a measure of proximity between units, but not necessarily to

the geographic location of the units.1 Thus by extending the notion of proximity from geographical

proximity to economic proximity, technological proximity, social proximity, etc., these models are

useful for a much wider class of applications with cross sectional interactions. This includes social

interaction models as discussed in, e.g., Bramoullé, Djebbari and Fortin (2009), Lee, Liu and Lin

(2010), Liu and Lee (2010), and Kuersteiner and Prucha (2015). For instance, a simple social

interaction model can be specified as

yi = λ
∑n
j=1 wijyj + βxi + γ

∑n
j=1 wijxj + ui and ui = εi + ρ

∑n
j=1 wijεj , (1)

where yi, xi and εi represent, respectively, the outcome, observed exogenous characteristic, and un-

observed individual heterogeneity of cross sectional unit i. The weight wij captures social proximity

1This is in contrast to the literature on spatial random fields where units are indexed by location; see, e.g., Conley
(1999) and Jenish and Prucha (2009, 2012) for contributions to the spatial econometrics literature.
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of i and j in the network. Suppose wij = n−1i if i and j are friends and wij = 0 otherwise, where

ni denotes the number of friends of i. Then, using the terminology in Manski (1993),
∑n
j=1 wijyj

is the average outcome of i’s friends with the coeffi cient λ representing the endogenous peer effect,∑n
j=1 wijxj is the average of the observable characteristics of i’s friends with the coeffi cient γ rep-

resenting the contextual effect, and
∑n
j=1 wijεj is the average of the unobservable characteristics

of i’s friends with the coeffi cient ρ representing the correlated effect. Of course, the above model

also covers the simple group-average model as a special case with wij = (ng − 1)−1 if i and j

belong to the same group of size ng and wij = 0 otherwise; compare, e.g., Lee (2007), Davezies,

D’Haultfoeuille and Fougère, (2009), and Carrell, Sacerdote and West (2013).

In the spatial network literature one of the most widely used tests for cross sectional dependence

is the Moran (1950) I test. This test statistic is formulated in terms of a normalized quadratic

form of the variables to be tested for spatial dependence. Moran’s original formulation assumed

that the variables are observed and based the quadratic form on a weight matrix with zero or one

elements, depending on whether or not two units were considered neighbors. Cliff and Ord (1973,

1981) considered testing for spatial dependence in the disturbance process of a classical linear

regression model, and generalized the test statistic to a quadratic form of ordinary least squares

residuals, allowing for general weight matrices.2 They derived the finite sample moments of the test

statistic under the assumption of normality. Burridge (1980) showed that the Moran I test can

be interpreted as a Lagrange Multiplier (LM) test if the disturbance process under the alternative

hypothesis is either a spatial autoregressive or spatial moving average process of order one. He

also discusses its close conceptual connection to the Durbin-Watson test statistic in the time series

literature. King (1980, 1981) demonstrated that the Moran I test is a Locally Best Invariant test,

when the alternative is one-sided, and the errors come from an elliptical distribution. A more

detailed discussion of optimality properties of the Moran I test is given in Hillier and Martellosio

(2018), including a discussion of conditions under which the Moran I test is a Uniformly Most

Powerful Invariant test. Kelejian and Prucha (2001) introduced a central limit theorem (CLT) for

linear-quadratic forms, and used that result to establish the limiting distribution of the Moran I test
2Of course, in the absence of regressors this setup included the original Moran I test statistic as a special case.
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statistic as N(0, 1) under a fairly general set of assumptions. They allowed for heteroskedasticity,

which facilitates, among other things, applications to models with limited dependent variables, and

they introduced necessary modifications for the Moran I test statistic to accommodate endogenous

regressors. Pinkse (1998, 2004) also considered Moran I flavored tests, including applications to

discrete choice models.

Anselin (1988), Anselin and Rey (1991) and Anselin, Bera, Florax and Yoon (1996) considered

LM and modified LM tests for spatial autoregressive model with spatially autoregressive distur-

bances, and provide extensive Monte Carlo results on their small sample properties. Baltagi and Li

(2000), Baltagi, Song and Koh (2003), and Baltagi, Song Jung and Koh (2007) derived LM test for

first order spatial panel data models, and also analyzed their small sample behavior based on an

extensive Monte Carlo study.3 For cross sectional data Born and Breitung (2011) considered LM

tests for first order spatial dependence in the dependent variable and the disturbances, allowing for

unknown heteroskedasticity. Baltagi and Yang (2013) considered small sample improved LM tests,

and Yang (2015) provided a bootstrap refinement. Robinson and Rossi (2014) introduced improved

LM tests based on an Edgeworth expansion.4

One problem in using the Moran I and available LM tests for spatial models is that researchers

are often unsure about how to specify the weight matrix employed by the test. Take a spatial

network as an example, the weight wij could be a binary indicator variable depending on whether

or not i and j are neighbors, or wij could be specified as the inverse of the geographical distance

between i and j, etc. Researchers may consequently adopt a sequential testing procedure based

on different specifications of the weight matrix. The sequential testing procedure, however, raises

issues regarding the overall significance level of the test. Motivated by this problem we define in

this paper a single test statistic, which in its simplest form is defined as a weighted inner product of

a vector of quadratic forms, with each quadratic form corresponding to a different weight matrix.

3Pesaran (2004), Pesaran, Ulla and Yagamata (2008) and Baltagi, Feng and Kao (2012) also considered LM
flavored tests for cross sectional dependence for panel data. Those tests are based on sample correlations and not
specifically geared towards network generated dependence.

4Of course, there is also a large literature on ML and GMM estimation of Cliff-Ord type spatial models, which
allows for likelihood ratio and Wald-type testing of the significance of spatial autoregressive parameters. Robinson and
Rossi (2015) introduced an alternative test based on the biased OLS estimator for a first order spatial autoregressive
model, using Edgeworth expansions and the bootstrap to appropriately adjust the size of the test.
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In this sense the test statistic combines a set of Moran I tests into a single test.

Our generalizations of the Moran I test differentiates between two uses. The first generalization

is geared towards testing for cross sectional dependence in the disturbance process. We refer

to the corresponding test statistic as the I2u test statistic. The second generalization is geared

towards testing for cross sectional dependence in the dependent variable, which may be due to the

dependence on the outcomes, observed exogenous characteristics, and/or unobserved characteristics

of other units in the network. We refer to the corresponding test statistic as the I2y test statistic.

We establish the limiting distributions of the test statistics and the rejection regions of the tests for

a given significance level under fairly general assumptions, which should make the test useful in a

wide range of empirical research. We also show that if the data generating process (DGP) under the

alternative hypothesis is of the form of a higher order spatial autoregressive and/or spatial moving

average process, then the generalized Moran I test statistics can be viewed as LM test statistics.

Since our test statistics contain the Moran I test statistic as a special case, this result generalizes

the findings of Burridge (1980).

Although the generalized Moran I test can be interpreted as a LM test if the model under the

alternative hypothesis has a certain specification, the validity and implementation of the Moran I

test does not rely on a specific model under the alternative hypothesis. By its construction the

generalized Moran I test should be useful for detecting network generated dependence in wide range

of situations. This includes, as we elaborate later in this paper, situations where weight matrix

representing the network topology is misspecified and/or endogenous.

The paper also generalizes Lieberman’s (1994) Laplace approximation of the moments of ratios of

quadratic forms to those of ratios of linear-quadratic forms over quadratic forms. This generalization

is then used to develop certain small sample standardized versions of the generalized Moran I test

statistics.

The paper is organized as follows: In Section 2 we introduce and give an intuitive motivation

for the generalized Moran I test statistics within a simplified setup. We also develop small sample

standardized versions of those test statistics. In Section 3 we consider a generalized setup, which

allows for both endogeneity and unknown heteroskedasticity, and we establish the limiting distrib-
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ution of our generalized Moran I test statistics for this setup. In Section 4 we report on a Monte

Carlo Study, which explores the small sample properties of our test statistics.5 This includes results

on the properties of the test statistics in situations where the network topology is endogenous. The

Monte Carlo results are encouraging and suggest that the generalized Moran I tests perform well

in a wide range of situations. Concluding remarks are given in the Section 5. All technical details

are relegated to an appendix, and a supplementary appendix, which will be made available online.

Throughout the paper we adopt the following notation. For a square matrix A, let A = (A+A′)/2.

2 Test Statistics and Motivation

In the following we introduce and provide motivations for two generalizations of the Moran I test

statistic. For simplicity of exposition we assume in this section that under the null hypothesis the

data are generated by a classical linear regression model. This setup will be generalized in the

subsequent sections. The two generalizations of the Moran I test statistic will be referred to as

the I2u(q) test statistic and the I2y (q) test statistic, respectively. The first test statistic is geared

towards testing for cross sectional dependence in the unobserved disturbance process, while the

second is geared towards testing for cross sectional dependence in the observed dependent variable.

The Moran I test statistic is covered as a special case in that the statistics are such that I2 = I2u(1).

The test statistics are first motivated by considering a situation where the researcher is unsure

about which weight matrix in a set of weight matrices would best represent the structure of the

network under the alternative. We then provide a more formal motivation for the I2u(q) and I2y (q)

test statistics by showing that both test statistics can be derived as LM test statistics within the

context of Cliff-Ord type spatial processes.

5This study expands on some early small sample results given in Drukker and Prucha (2013).
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2.1 The I2u(q) Test Statistic

Towards giving an intuitive introduction to the I2u(q) test statistic, suppose a set of cross sectional

data is generated by the linear regression model6

y = Xβ + u, (2)

where y = [y1, · · · , yn]′ is an n×1 vector of observations on the dependent variable, X = [xik] is an

n×Kx matrix of observations on Kx nonstochastic exogenous variables, and u = [u1, · · · , un]′ is an

n× 1 vector of regression disturbances, which for the moment are assumed to be distributed with

mean zero and variance σ2.7 The researcher wants to test the hypothesis that the disturbances are

cross sectionally uncorrelated, i.e.,

Hu
0 : cov(u) = σ2In,

against the alternative Hu
1 that the disturbances are cross sectionally correlated.

As discussed, Cliff and Ord (1973, 1981) introduced an important class of models for spatial

networks. Towards motivating our test statistic we follow that literature and keep track of links

between cross sectional units in a network by an n× n weight matrix W = [wij ], with its elements

accounting for the relative directional strength of the links. If no direct link exists between units

i and j we have wij = 0. Furthermore, in this literature W is typically normalized by setting

wii = 0. Clearly under Hu
0 we then have E(u

′Wu) = σ2tr(W) = 0, while under Hu
1 we generally

have E(u′Wu) = tr[WE(uu′)] 6= 0. This motivates the following standard Moran I test statistic

for testing that the disturbance process in (2) satisfies Hu
0 :

I = ũ′Wũ

[2σ̃4tr(W
2
)]1/2

(3)

where ũ = y−Xβ̃ with β̃ = (X′X)−1X′y denotes the ordinary least squares (OLS) residuals, and

σ̃2 = n−1ũ′ũ is the corresponding estimator for σ2. Kelejian and Prucha (2001) establish under a

6Although we do not indicate this explicitly in our notation, here and in the following all variables are allowed to
depend on the sample size, i.e., are allowed to formulate triangular arrays.

7The assumption of homoskedasticity will be relaxed later on.
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fairly general set of regularity conditions that under Hu
0 we have I

d→ N(0, 1), and thus I2 d→ χ2(1).

We emphasize that the weights given to respective links in W are generally considered to be

reflective of some measure of proximity between units, but do not depend on an explicit indexing of

units by location. By extending the notion of proximity from geographical proximity to economic

proximity, technological proximity, social proximity, etc., the Moran I test statistic becomes useful

for testing for dependence not only within the context of spatial networks, but for a much wider

class of networks.

The above introduction of the Moran I test statistic was intuitive and did not specify a particular

form for the disturbance process. Now suppose that, under the alternative hypothesis Hu
1 , the

disturbance process is either a first-order spatial autoregressive, i.e., u = ρWu+ ε, or a first-order

spatial moving-average process, i.e., u = ε + ρWε, where ε = [ε1, · · · , εn]′ is an n × 1 vector of

independent zero mean innovations. Burridge (1980) provided a formal motivation for the Moran

I test by establishing that for both forms of the disturbance process I2 is identical to the LM test

statistic based on a Gaussian likelihood for testing ρ = 0.

One practical problem with the Moran I test statistic is that empirical researchers are often

unsure about the specification ofW. Thus it is of interest to consider a generalized Moran I test for

situations where the researcher is not sure whether W1,W2, · · · , or Wq or some linear combination

of those matrices properly model the network topology. Towards introducing such a generalization,

let

ṼU =


ũ′W1ũ

...

ũ′Wqũ

 and Φ̃UU =


2σ̃4tr(W1W1) · · · 2σ̃4tr(W1Wq)

...
. . .

...

2σ̃4tr(WqW1) · · · 2σ̃4tr(WqWq)

 .

The matrix n−1Φ̃UU will be seen to be a consistent estimator for the variance-covariance (VC)

matrix of the limiting distribution of n−1/2ṼU . The researcher could now test Hu
0 using the test

statistic:

I2u(q) = ṼU ′(Φ̃UU )−1ṼU . (4)

The above statistic generalizes the (squared) Moran I test statistic. It may be viewed as
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combining q Moran I tests in a way that controls the significance level of the overall test. As such

it represents an attractive alternative to q sequential Moran I tests. Of course, for q = 1 the I2u(q)

test delivers the Moran I test as a special case.

In the following we will show that under the above assumptions (and some further regularity

conditions), we have I2u(q)
d→ χ2(q) assuming that Hu

0 is true. We note that this result remains

true even if X includes the spatial lags of some exogenous variables.

2.2 The I2y (q) Test Statistic

In the following we introduce the I2y (q) test statistic. This statistic is a further generalization of the

Moran I test statistic. It is geared towards situations where the researcher is interested in testing

for network generated dependence in the dependent variable y. Such dependence could stem from

spillovers or interactions in the dependent variable, exogenous variables and/or the disturbances

between cross-sectional units.

Towards motivating the I2y (q) test statistic, suppose again that a set of cross sectional data is

generated by the linear regression model (2). However, we assume now that the researcher wants

to test the more general hypotheses that (i) the mean of the dependent variable of the i-th unit

only depends on exogenous variables specific to the i-th unit, and thus is not affected by changes

in the exogenous variables of the other units, and (ii) the dependent variable is uncorrelated across

units. That is, the researcher wants to test

Hy
0 : E(y) = Xβ and cov(y) = σ2In, (5)

where X = [xik] is a non-stochastic matrix with ∂xik/∂xjl = 0 for i 6= j (i.e. X does not include

spatial lags), against the alternative Hy
1 that H

y
0 is false.

8

Towards motivating the I2y (q) test statistic, assume furthermore for a moment that under the
8The linear dependence of E(yi) on xi1, . . . , xiK is only maintained for ease of exposition, and the assumption

could be extended to allow for E(yi) to depend nonlinearly on xi1, . . . , xiK .
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alternative hypothesis the set of cross sectional data is generated by

y = λWy +Xβ +WXγ + u. (6)

Clearly, model (6) allows for potential network generated dependence in the endogenous and ex-

ogenous variables via the spatial lags Wy and WX, in addition to potential network generated

dependence via the disturbance process. The reduced form of model (6) is given by

y = (In − λW)−1Xβ + (In − λW)−1WXγ + (In − λW)−1u. (7)

The null hypothesis Hy
0 specified in (5) will typically only hold if H

u
0 : cov(u) = σ2In holds.

Clearly, if Hu
0 holds, then a test for H

y
0 is equivalent to a test for λ = 0 and γ = 0. Observe that

under Hy
0 we have y −Xβ = u and E[(y −Xβ)′Wy] = σ2tr(W) = 0 and E[(y −Xβ)′WX] = 0.

On the other hand, under Hy
1 we have y−Xβ = λW(In−λW)−1Xβ+(In−λW)−1WXγ+(In−

λW)−1u and thus E[(y −Xβ)′Wy] 6= 0 and E[(y −Xβ)′WX] 6= 0 if either λ 6= 0 or γ 6= 0. This

suggests that in constructing a test statistic for Hy
0 we should also consider u′Wy and u′WX in

addition to u′Wu.

In line with our motivation of the I2u(q) test statistic, suppose again that the empirical researcher

is not sure whether the weight matrices W1,W2, · · · , or Wq or some linear combination of those

matrices properly model the network topology. Let û = y − Xβ̂ with β̂ = (X′X)−1X′y denote

the residuals of the restricted OLS estimator, and let σ̂2 = n−1û′û denote the corresponding

estimator for σ2. Let V̂Y = [û′W1y, · · · , û′Wqy]
′, V̂X = [û′W1X, · · · , û′WqX]

′, and V̂U =

[û′W1û, · · · , û′Wqû]
′, and define

V̂ =


V̂Y

V̂X

V̂U

 and Φ̂ =


Φ̂Y Y Φ̂Y X Φ̂Y U

(Φ̂Y X)′ Φ̂XX 0

(Φ̂Y U )′ 0 Φ̂UU

 , (8)
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where

Φ̂Y Y = [2σ̂4tr(WrWs) + σ̂
2β̂
′
X′W′

rMXWsXβ̂]r,s=1,··· ,q,

Φ̂Y X = [σ̂2β̂
′
X′W′

rMXWsX]r,s=1,··· ,q,

Φ̂Y U = [2σ̂4tr(WrWs)]r,s=1,··· ,q,

Φ̂XX = [σ̂2X′W′
rMXWsX]r,s=1,··· ,q,

Φ̂UU = [2σ̂4tr(WrWs)]r,s=1,··· ,q,

with MX = In −X(X
′
X)
−1

X′. Under certain regularity conditions, n−1Φ̂ can be shown to be a

consistent estimator for the limiting VC matrix of n−1/2V̂.

As y = Xβ̂ + û, û′Wry = û′WrXβ̂ + û′Wrû for r = 1, · · · , q, and, consequently, n−1Φ̂ is

singular. To avoid the singularity problem of the VC matrix, we formulate the test statistic for Hy
0

as

I2y (q) = (LV̂)′(LΦ̂L′)−1(LV̂). (9)

where L is a selector matrix of rank (Kx+1)q, consisting of rows of a conformable identity matrix,

that ensures LΦ̂L′ is nonsingular. The selector matrix L is not unique. To fix ideas, we consider

the selector matrix

L =

 0q×q IKxq 0q×q

0q×q 0q×Kxq Iq

 . (10)

The following proposition shows that the test statistic defined in (9) with the selector matrix given

by (10) is numerically equivalent to a test statistic based on V̂ and a generalized inverse of Φ̂.

Proposition 1. Let L be a selector matrix given by (10). Then,

I2y (q) = (LV̂)′(LΦ̂L′)−1(LV̂) = V̂′Φ̂+V̂,

where Φ̂+ denotes the Moore-Penrose generalized inverse of Φ̂.

The selector matrix (10) eliminates û′W1y, · · · , û′Wqy from V̂. Alternatively we could elimi-
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nate û′W1xk, · · · , û′Wqxk, where xk denotes the k-th column of X, or û′W1û, · · · , û′Wqû from

V̂, which yields the same numerical value for I2y (q). In the following we will show that under the

above assumptions (and some further regularity conditions), and assuming that Hy
0 is true, we have

I2y (q)
d→ χ2(rank(L)).

Remark 1. Pötscher (1985) encountered a similar problem using LM tests for the orders of time

series ARMA models. He defined his LM test statistic in terms of the linearly dependent score

vector and a generalized inverse of its VC matrix. Proposition 1 shows that our test statistic for

Hy
0 is in line with the LM test statistic in Pötscher (1985).

Remark 2. The selector matrix L given by (10) has rank (Kx + 1)q. The test statistic I2y (q)

defined in (9) can be generalized by considering some general selector matrix L of rank less than

(Kx + 1)q. Thus, our test will be applicable to a wide range of hypotheses. For example, suppose

a researcher wants to test for the absence of spillovers in the dependent variable, the disturbances,

and a subset of the exogenous variables X? = XL′?, where L? is a selector matrix consisting of rows

of the identity matrix IKx
. That is, under the alternative hypothesis, the set of cross sectional data

is assumed to be generated by y = λWy+Xβ+WX?γ?+u. Then, the researcher would consider

a test statistic defined in (9) with L = diag(Iq, Iq ⊗ L?, Iq).

Remark 3. In this subsection, V̂U and Φ̂UU appearing in the I2y (q) test statistic are defined in

the same way as ṼU and Φ̃UU appearing in the I2u(q) test statistic. However, we emphasize that,

as shown below, for more general models, where some of the regressors under the null hypothesis

are endogenous, the VC matrices for ṼU and V̂U employed respectively by the I2u(q) and I2y (q)

test statistics could be different.

2.3 Equivalence of the Generalized Moran I Tests and LM Tests

The above motivations for the I2u(q) and I2y (q) test statistics are intuitive. In this subsection we

also provide a more formal motivation by showing that both test statistics can be established as

LM test statistics within the context of Cliff-Ord type spatial processes. We continue utilizing the

notation defined above. In particular, we assume that under the null hypotheses Hu
0 and H

y
0 the
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data are generated by the linear regression model (2) with u ∼ N(0, σ2In).

First, suppose that under the alternative hypothesis the data are generated by a linear regression

model, where the disturbances follow a spatial autoregressive process of order q, for short, a SAR(q)

process, i.e.,

y = Xβ + u, u =
∑q
r=1 ρrWru+ ε, (11)

with ε ∼ N(0, σ2In). The regressor matrix X and the weight matrices W1, · · · ,Wq are assumed

to be nonstochastic, X is assumed to have full column rank, and In −
∑q
r=1 ρrWr is assumed to

be nonsingular. Clearly under this setup the null hypothesis Hu
0 : cov(u) = σ2In is equivalent to

Hy
0 : E(y) = Xβ and cov(y) = σ2In, and can be formulated equivalently as H0 : ρ = 0, where

ρ = [ρ1, · · · , ρq]′. The following proposition establishes the equivalence of the I2u(q) and LM test

for model (11).

Proposition 2. Suppose the above stated assumptions hold for model (11) and Φ̃UU is nonsingular.

Let LMu denote the LM test statistic for H0 : ρ = 0. Then LMu = I2u(q).

Next, suppose that under the alternative hypothesis the data generating process is more general,

and modeled as a SAR(q) process in y and u, and with spatial lags in X, i.e.,

y =
∑q
r=1 λrWry +Xβ +

∑q
r=1 WrXγr + u, u =

∑q
r=1 ρrWru+ ε. (12)

We continue to maintain the assumptions stated above, and furthermore assume that In−
∑q
r=1 λrWr

is nonsingular. Under this setup the null hypothesis, Hy
0 : E(y) = Xβ and cov(y) = σ2In, can

be formulated equivalently as H0 : λ = 0,ρ = 0,γ1 = · · · = γq = 0, where λ = [λ1, · · · , λq]′ and

ρ = [ρ1, · · · , ρq]′. The following proposition establishes the equivalence of the I2y (q) and LM test

for model (12).

Proposition 3. Suppose the above stated assumptions hold for model (12) and LΦ̂L′, with L defined

in (10), is nonsingular. Let LMy denote the LM test statistic for H0 : λ = 0,ρ = 0,γ1 = · · · =

γq = 0. Then LMy = I2y (q).

Remark 4. As shown in their proofs, Propositions 2 and 3 continue to hold if the disturbance
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process of models (11) and (12) is specified as a spatial moving average process of order q, or more

generally, as a spatial autoregressive moving-average process of order (q, q), for short, a spatial

ARMA(q, q) process, where u =
∑q
r=1 ρrWru+ε+

∑q
r=q+1 ρrWrε and q = q+q. We note further

that a generalized version of Proposition 3 also holds if we allow for different orders of spatial lags

with different weight matrices for y, X and u in model (12).

Remark 5. Although the above propositions establish that the I2u(q) and I2y (q) test statistics

coincide with the LM test statistics when under the alternative the data generating process is

defined by models (11) and (12), respectively, we emphasize that the validity and implementation

of the generalized Moran I tests do not require the assumption of a specific data generating process

under the alternative hypothesis.

2.4 Consistency of the Generalized Moran I Tests

We maintain the following assumption regarding the weight matrices W1, · · · ,Wq considered by

the researcher to capture the proximity of cross sectional units in a network.

Assumption 1. W1, · · · ,Wq are n×n nonstochastic weight matrices with zero diagonals and with

their row and column sums bounded in absolute value, uniformly in n, by some finite constant.

This boundedness assumption is quite standard in the literature, and satisfied for normalized

weight matrices, which are typically used in empirical work; see, e.g., Kelejian and Prucha (2010)

for further discussions. Next, suppose that under the alternative hypothesis the data are generated

by (11), where the elements of ε are i.i.d. (0, σ2) innovations with finite (4 + δ)-th moments for

some δ > 0 and the weight matrices W1, · · · ,Wq satisfy Assumption 1. Observe that, in model

(11), E(u) = 0 and Ωu = cov(u) = σ2R−1R′−1, where R = In −
∑q
r=1 ρrWr. Assume that the

row and column sums of R−1 are uniformly bounded in absolute value, and let σ2 = Eσ̃2 + o(1) =

n−1tr(Ωu) with 0 < cσ ≤ σ2 ≤ Cσ < ∞ for some constants cσ and Cσ. Assume further that

the elements of X are uniformly bounded, and limn→∞ n−1X′X is finite and nonsingular. Let

µU = [tr(W1Ωu), · · · , tr(WqΩu)]
′ denote the mean of ṼU , and letΦUU = [2σ4tr(WrWs)]r,s=1,··· ,q

denote the non-stochastic counter part of Φ̃UU . Observe that under the alternative hypothesis

14



in general µU 6= 0. More specifically, suppose that under the alternative hypothesis 0 < cµ ≤

n−1
∣∣µU ∣∣ ≤ Cµ < ∞, and 0 < cφ ≤ n−1λmin(Φ

UU ) ≤ n−1λmax(Φ
UU ) ≤ Cφ < ∞ for some

constants cµ, Cµ, cφ and Cφ, where λmin(ΦUU ) and λmax(ΦUU ) denote the smallest and largest

eigenvalues of ΦUU . The following proposition establishes the consistency of the I2u(q) test statistic

defined in (4).

Proposition 4. Suppose that the data are generated by model (11) and the above stated assumptions

hold. Then, under the alternative hypothesis, we have limn→∞ Pr(I2u(q) ≤ γ) = 0 for any γ > 0.

Now, suppose that under the alternative hypothesis the data are generated by (12). We

continue to maintain the assumptions stated above, and furthermore assume that S = In −∑q
r=1 λrWr is nonsingular and the row and column sums of S−1 are uniformly bounded in ab-

solute value. Let d = Eû = MXS−1(Xβ +
∑q
r=1 WrXγr) and let σ

2 = Eσ̂2 + o(1) = n−1d′d +

n−1tr(S′−1S−1Ωu), with 0 < cσ ≤ σ2 ≤ Cσ < ∞ for some constants cσ and Cσ. Let µ =

[µX′,µU ′]′ and Φ = diag(ΦXX ,ΦUU ) where µX = [d′W1X, · · · ,d′WqX]
′ and µU = [d′W1d +

tr(S′−1W1S
−1Ωu), · · · ,d′Wqd + tr(S

′−1WqS
−1Ωu)]

′ denote in essence the means of V̂X and

V̂U , and ΦXX = [σ2X′W′
rMXWsX]r,s=1,··· ,q and ΦUU = [2σ4tr(WrWs)]r,s=1,··· ,q denote the

non-stochastic counter parts of Φ̂XX and Φ̂UU , respectively. Observe that under the alternative

hypothesis in general µ 6= 0. More specifically, suppose that under the alternative hypothesis

0 < cµ ≤ n−1
∣∣µ∣∣ ≤ Cµ < ∞, and 0 < cφ ≤ n−1λmin(Φ) ≤ n−1λmax(Φ) ≤ Cφ < ∞ for some con-

stants cµ, Cµ, cφ and Cφ, where λmin(Φ) and λmax(Φ) denote the smallest and largest eigenvalues

of Φ. The following proposition establishes the consistency of the I2y (q) test statistic defined in (9).

Proposition 5. Suppose that the data are generated by model (12) and the above stated assumptions

hold. Then, under the alternative hypothesis, we have limn→∞ Pr(I2y (q) ≤ γ) = 0 for any γ > 0.

2.5 Standardization Using Laplace Approximation

Cliff and Ord (1973, 1981) derived the exact mean and variance of the Moran I test statistic un-

der normality, and introduced a corresponding small sample standardized version of that statistic.

In the following we introduce an approximately standardized version of the I2y (q) test statistic,
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which is developed without assuming that the disturbances are normally distributed. An approxi-

mately standardized version of the I2u(q) test statistic is implicitly defined as a special case. Our

approximately standardized version of the I2y (q) test statistic is based on a Laplace approximation.

As in the previous section, let û denote the OLS residuals and σ̂2u = (n−Kx)
−1û′û denote the

unbiased estimator for σ2. Now consider σ̂−2u V̂ = [σ̂−2u V̂Y ′, σ̂−2u V̂X′, σ̂−2u V̂U ′]′ and let

µL = EL[σ̂
−2
u V̂] and ΦL = EL[σ̂

−4
u V̂V̂′] (13)

denote the Laplace approximations of E[σ̂−2u V̂] and E[σ̂−4u V̂V̂′]. Furthermore, let µ̂L and Φ̂L

denote estimators for µL andΦL. Our approximately standardized version of the I2y (q) test statistic,

which was given in (9), is then defined as

I2y,S(q) =
[
L(σ̂−2u V̂ − µ̂L)

]′ [
L(Φ̂L − µ̂Lµ̂

′
L)L

′
]−1 [

L(σ̂−2u V̂ − µ̂L)
]
. (14)

The explicit expressions for µL and ΦL and their corresponding estimators µ̂L and Φ̂L are given

in Supplementary Appendix B.2.

In the following we give a brief outline of the derivation of µL and ΦL. Let W be generic for

the weight matrices W1, · · · ,Wq, then it is readily seen that generic elements of σ̂
−2
u V̂Y , σ̂−2u V̂X ,

and σ̂−2u V̂U are, respectively, given by

σ̂−2u y′W′û =
u′Ayu+ a′yu

u′Su
, σ̂−2u x′kW

′û =
a′ku

u′Su
, σ̂−2u û′W′û =

u′Auu

u′Su
(15)

with Ay = (MXW +W′MX)/2, ay = MXWXβ, ak = MXWxk, Au = MXWMX , and S =

(n−Kx)
−1MX . From (15) we see that each element of σ̂

−2
u V̂ can be expressed as a ratio of a linear,

quadratic or linear-quadratic form over a quadratic form in u. To obtain the Laplace approximation

of the moments of σ̂−2u V̂, we extend Theorem 1 in Lieberman (1994) and introduce a proposition

on the Laplace approximation of the moments of ratios of linear-quadratic forms over quadratic

forms.9

9Lieberman (1994, Theorem 1) derived expressions for the Laplace approximation of the moments of ratios of
quadratic forms. More specifically, Lieberman’s theorem is obtained as a special case of Proposition 6 corresponding

16



Proposition 6. Let u be an n × 1 random vector, let A, B and S be symmetric nonstochastic

n × n matrices with S positive definite, and let a, b be nonstochastic n × 1 vectors. Assuming

the existence of the joint moment generating function for u′Au + a′u, u′Bu + b′u and u′Su,

M(ta, tb, t) = E exp [ta(u
′Au+ a′u) + tb(u

′Bu+ b′u) + tu′Su] and the subsequent expectations,

we have the following Laplace approximation:

E

[(
u′Au+ a′u

u′Su

)p(
u′Bu+ b′u

u′Su

)q]
' E [(u

′Au+ a′u)p(u′Bu+ b′u)q]

[E(u′Su)]
p+q . (16)

For nonnegative integers p and q, with p + q = 1. Proposition 6 delivers an approximation of

the mean, and with p+ q = 2 an approximation of the second moments of ratios of linear-quadratic

forms over quadratic forms. Thus, using Proposition 6, together with Lemma A.1 in Kelejian and

Prucha (2010), we can obtain the explicit expressions for µL and ΦL. The proof of Proposition

6 and a detailed derivation of the Laplace approximated moments are given in a Supplementary

Appendix, which will be made available online.

3 Test Statistics in General Settings

In the following we generalize the underlying setup for the generalized Moran I test statistics. In

the previous sections we assumed that the regressor matrixX is nonstochastic. The previous section

also assumes that the disturbances are homoskedastic. Those assumptions allowed for an intuitive

motivation of our generalization of the Moran I test statistic. However, those assumptions may

not be appropriate for certain applications. Thus in the following we expand the I2u(q) and I2y (q)

tests to situations where the regressors are allowed to be endogenous under the null hypothesis,

and where the disturbances are allowed to be heteroskedastic.

to a = 0 and q = 0.
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3.1 The I2u(q) Test Statistic

We first consider an extension of the I2u(q) test statistic, and suppose that the data are generated

by the following linear regression model:

y = Zθ + u (17)

where y = [y1, · · · , yn]′ is an n × 1 vector of observations on the dependent variable, Z = [zik] is

a n ×K matrix of observations on K regressors, u = [u1, · · · , un]′ is a n × 1 vector of regression

disturbances, and θ is a K × 1 vector of parameters.

In contrast to model (2), in the above model we allow for the regressors to be correlated with

the disturbances, i.e., we allow for E(u|Z) 6= 0. For example, the regressor matrix could be of the

form Z = [Wy,X,WX,Yo,WYo] where Yo is a matrix of “outside” endogenous variables. Of

course, the above setup contains model (2) as a special case.

We also assume the availability of an instrumental variable (IV) matrixH for which E(u|H) = 0.

For example, if X = [X,Xo] denotes the set of all exogenous variables in the underlying system

that generates the endogenous variables [y,Yo] in (17), then, H could be a subset of the linearly

independent columns of X,WX,W2X, · · · .

Now suppose the researcher wants to test the hypothesis that the disturbances are cross section-

ally uncorrelated, i.e., Hu
0 : cov(u) is diagonal, against the alternative H

u
1 that the disturbances

are cross sectionally correlated. To formally derive the properties of our test statistic we assume

furthermore that under Hu
0 the following conditions hold.

Assumption 2. Suppose there are G endogenous variables in model (17).

(i) Let ε be a (Gn) × 1 vector of i.i.d. (0, 1) innovations with finite (2 + δ)-th moments for some

δ > 0. Let Ξ = [Ξ1, · · · ,ΞG] where Ξ1, · · · ,ΞG are n × n nonstochastic diagonal matrices with

uniformly bounded diagonal elements. Then, u = Ξε.

(ii) The elements of the instrument matrix H are nonstochastic and uniformly bounded. Further-

more, plimn→∞n
−1H′Z is finite with full column rank, and limn→∞ n−1H′H is finite and nonsin-

gular.
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(iii) n−1Z′WrZ = Op(1) and n−1Z′Wru = n−1E(Z′Wru) + op(1) with n−1E(Z′Wru) = O(1) for

r = 1, · · · , q.

Assumption 2 (i) is formulated fairly generally, to cover a wide range of data generating

processes. For example, for G > 1 model (17) may represent one structural or partially reduced

form equation of a simultaneous system of G equations, see, e.g., Kelejian and Prucha (2004) and

Cohen-Cole, Liu and Zenou (2017) for simultaneous systems with network spillovers. The g-th

n × 1 subvector of ε may then be viewed as the vector of innovations entering the g-th equation.

Assumption 2 (ii) is in line with much of the literature on GMM estimation of Cliff-Ord type spatial

models. Assumption 2 (iii) is, e.g., satisfied if the data are generated by a simultaneous system as

considered in the above references.

The 2SLS estimator for θ is given by θ̃ = (Z̃′Z̃)−1Z̃′y, where Z̃ = H(H′H)−1H′Z. Under

the above assumption, it is readily seen that θ̃ is a n1/2-consistent estimator for θ. Let ṼU =

[ũ′W1ũ, · · · ,ũ′Wqũ]
′ and

Φ̃UU = [2tr(WrΣ̃WsΣ̃) + 4ũ
′Wr(Z− Z̃)(Z̃′Z̃)−1Z̃′Σ̃Z̃(Z̃′Z̃)−1(Z− Z̃)′Wsũ]r,s=1,··· ,q (18)

where ũ = [ũ1, · · · , ũn]′ = y − Zθ̃ and Σ̃ = diag(ũ2i ). Then, the generalized I2u(q) statistic is given

by

I2u(q) = ṼU ′(Φ̃UU )−1ṼU . (19)

Theorem 1. Suppose the null hypothesis Hu
0 and Assumptions 1 and 2 hold. Then n

−1Φ̃UU −

n−1ΦUU = op(1), where ΦUU is defined in (A.1) of the appendix. Furthermore, provided the

smallest eigenvalues of n−1ΦUU are bounded away from zero,

I2u(q) = ṼU ′(Φ̃UU )−1ṼU d→ χ2(q).

For q = 1 the above theorem contains results given in Kelejian and Prucha (2001) regarding the

asymptotic distribution of the Moran I test statistic as a special case. For q ≥ 1 and exogenous

regressors, i.e., Z = X, the theorem delivers results given in Robinson (2008) as a special case. For
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Z = X it is readily seen that plimn−1Z′Wsũ = 0. Consequently in this case the expression for the

estimator for ΦUU can be simplified to Φ̃UU = [2tr(WrΣ̃WsΣ̃)]. If additionally the disturbances

are homoskedastic, we have Φ̃UU = [2σ̃4tr(WrWs)]. The square of the classical Moran I test

statistic is now readily seen to be given by I2u(1). As an important by-product of the above

theorem we thus see that the standard Moran I test statistic implicitly assumes that all regressors

are exogenous. The expressions in (18) and (19) provide the adjustments needed for the test statistic

to converge to a standard limiting distribution in case the model contains endogenous regressors.

3.2 The I2y (q) Test Statistic

Now suppose we want to test for the absence of network generated cross sectional dependence in the

dependent variable. As discussed above, such dependence could stem from spillovers or interactions

between cross-sectional units in the dependent variable, the regressors and/or the disturbances.

More specifically, suppose the researcher wants to test (i) that the mean of the dependent variable

of the i-th unit only depends on exogenous variables specific to the i-th unit, and thus is not affected

by changes in the exogenous variables of the other units, and (ii) that the dependent variable is

uncorrelated across units. More compactly, suppose the researcher wants to test the following

hypothesis for the linear regression model (17):

Hy
0 : E(y) = Xβ and cov(y) is diagonal, (20)

where X = [xik] is a non-stochastic matrix with ∂xik/∂xjl = 0 for i 6= j (i.e. X does not include

spatial lags), against the alternative Hy
1 that H

y
0 is false. Recall that in this section the regressors Z

are allowed to be endogenous. To complete our specification we assume that under Hy
0 the reduced

form for Z is given by

Z = XΠ+E (21)

where E = [eik] is a matrix of reduced form disturbances with zero means. Of course, this implies

that β = Πθ in (20).

Our generalization of the I2y (q) given below necessitates that we are able to estimate the cor-
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relation structure between the disturbances u and E. Thus the setup assumes that we are able

to observe X. Consequently we assume in the following that the instrumental variable matrix H

equals X. We maintain that the following additional conditions hold under the null hypothesis.

Assumption 3. Suppose there are G endogenous variables in model (17).

(i) Let ε be a (Gn)×1 vector of i.i.d. (0, 1) innovations with finite (2+δ)-th moments for some δ > 0,

and let ek denote the k-th column of E = Z−XΠ. Let Ξ = [Ξ1, · · · ,ΞG] and Ψk = [Ψ1k, · · · ,ΨGk],

where Ξ1, · · · ,ΞG and Ψ1k, · · · ,ΨGk are n × n nonstochastic diagonal matrices with uniformly

bounded diagonal elements. Then, u = Ξε and ek = Ψkε.

(ii) The matrix of exogenous regressors X = [xik] is nonstochastic with uniformly bounded elements

and ∂xik/∂xjl = 0 for i 6= j. Furthermore, plimn→∞n
−1X′Z is finite with full column rank, and

limn→∞ n−1X′X is finite and nonsingular.

The above assumption is in essence an expansion of Assumption 2, and a discussion similar to

that given in the context of Assumption 2 also applies to the above assumption.

The 2SLS estimator for the parameters θ of model (17) is given by θ̂ = (Ẑ′Z)−1Ẑ′y, where

Ẑ = X(X′X)−1X′Z. Let Σ̂ = diag(û2i ), Σ̂k = diag(ûiε̂ik), and Σ̂kl = diag(̂εik ε̂il), where ûi is the

i-th element of û = y − Zθ̂ and ε̂ik is the (i, k)-th element of Ê = Z− Ẑ. Let

V̂ =


V̂Y

V̂Z

V̂U

 and Φ̂ =


Φ̂Y Y Φ̂Y Z Φ̂Y U

(Φ̂Y Z)′ Φ̂ZZ Φ̂ZU

(Φ̂Y U )′ (Φ̂ZU )′ Φ̂UU

 , (22)

where

V̂Y = [û′W1y, · · · , û′Wqy]
′, V̂Z = [û′W1Z, · · · ,û′WqZ]

′, V̂U = [û′W1û, · · · ,û′Wqû]
′,

Φ̂Y Y = [φ̂
Y Y

rs ], Φ̂Y Z = [φ̂
Y Z

rs ], Φ̂Y U = [φ̂
Y U

rs ], Φ̂ZZ = [φ̂
ZZ

rs ], Φ̂ZU = [φ̂
ZU

rs ], Φ̂UU = [φ̂
UU

rs ],
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with

φ̂
Y Y

rs = 2tr(WrΣ̂WsΣ̂) + 2
∑K
k=1 θ̂ktr(WsΣ̂WrΣ̂k +WrΣ̂WsΣ̂k)

+
∑K
k=1

∑K
l=1 θ̂kθ̂ltr(WrΣ̂kWsΣ̂l +WrΣ̂klW

′
sΣ̂)

+θ̂
′
Ẑ′W′

rMẐΣ̂MẐWsẐθ̂,

φ̂
Y Z

rs =
[
2tr(WrΣ̂WsΣ̂l) +

∑K
k=1 θ̂ktr(WrΣ̂kWsΣ̂l +WrΣ̂klW

′
sΣ̂)

]
l=1,··· ,K

+θ̂
′
Ẑ′W′

rMẐΣ̂MẐWsẐ,

φ̂
Y U

rs = 2tr(WrΣ̂WsΣ̂) + 2
∑K
k=1 θ̂ktr(WrΣ̂kWsΣ̂),

φ̂
ZZ

rs =
[
tr(WrΣ̂kWsΣ̂l +WrΣ̂klW

′
sΣ̂)

]
k,l=1,··· ,K

+ Ẑ′W′
rMẐΣ̂MẐWsẐ,

φ̂
ZU

rs =
[
2tr(WrΣ̂kWsΣ̂)

]
k=1,··· ,K

,

φ̂
UU

rs = 2tr(WrΣ̂WsΣ̂),

and MẐ = In − Ẑ(Ẑ′Ẑ)−1Ẑ′. As shown in the proof of the next theorem, n−1Φ̂ is a consistent

estimator for the VC matrix of n−1/2V̂. The generalized I2y (q) statistic is now given by

I2y (q) = (LV̂)′(LΦ̂L′)−1(LV̂), (23)

where L is a selector matrix such that LΦ̂L′ is nonsingular. We have the following result regarding

its limiting distribution:

Theorem 2. Suppose the null hypothesis Hy
0 holds and Assumptions 1 and 3 hold. Then n

−1Φ̂−

n−1Φ = op(1) where Φ is defined in (A.2) in the appendix. Furthermore, provided the smallest

eigenvalue of n−1LΦ̂L′ is bounded away from zero,

I2y (q) = (LV̂)′(LΦ̂L′)−1(LV̂)
d→ χ2(rank(L)).

The above theorem contains the results stated in Section 2 regarding the limiting distribution

of the I2y (q) under the assumptions that all regressors are exogenous and the disturbances are
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homoskedastic as a special case. Observing that in this case Z = X, θ = β, E = 0, Σ̂ = σ̂2In, and

Σ̂k = Σ̂kl = 0 the above expression for Φ̂ is readily seen to reduce to the expression for Φ̂ given in

(8).

The reason for the inclusion of the selector matrix L in the definition of the I2y (q) test statistic in

(23) is similar to that discussed in Section 2.2. Note that the elements of V̂ are linearly dependent,

since y = Zθ̂ + û. Consequently n−1Φ̂ is singular, at least in the limit. The selector matrix L

ensures that LΦ̂L′ is nonsingular.

3.3 Endogenous and Misspecified Weight Matrices

Now we revisit the simple social interaction model (1) introduced in Section 1. Given root-n

consistent estimators for the model parameters we can test for the absence of network generated

cross sectional dependence in this model (i.e. λ = γ = ρ = 0) using, e.g., a Wald test. However,

consistent estimation of (1) can be diffi cult in certain situations. For example, suppose a generic

element of the weight matrix W = [wij ] is given by

wij = f(ξij , ηij)

where ξij is a vector of observable pair-specific characteristics and ηij captures unobservable pair-

specific heterogeneity. If ηij is correlated with εi and εj , the innovations in the social interaction

model (1), the weight matrix W is endogenous. In this case, without parametric assumptions on

f(·) and the correlation structure between ηij and ε, consistent estimation of model (1) can be quite

challenging.10 The generalized Moran I test, on the other hand, is relatively easier to implement. To

be more specific, we could construct some auxiliary weight matrices, based on exogenous elements

of ξij . For example, suppose ξij,1 indicates whether individuals i and j are of the same gender, then

we could construct a weight matrix with its (i, j)-th element being ξij,1. Then, we can carry out

the generalized Moran I test with these auxiliary weight matrices. As the auxiliary weight matrices

are exogenous, the generalized Moran I test should have the proper size. However, the power of
10For some recent progress on identification and estimation of models with endogenous networks, see, e.g., Qu and

Lee (2015) and Johnsson and Moon (2016).
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the test depends on how well linear combinations of the auxiliary weight matrices approximate the

true weight matrix W. We conduct Monte Carlo simulations to investigate the power of the test

in the next section.

Second, data on social networks are often based on self-reported surveys and are subject to

substantial measurement errors. For example, in the National Longitudinal Study of Adolescent

Health (Add Health),11 students in sampled schools were asked to nominate their best friends, up

to five males and five females, from the school roster. Although friendship is typically considered

reciprocal, more than half of the friend nominations are not reciprocal in the Add Health data,

indicating a possible measurement error in the self-reported friendship information. With the

misspecified weight matrix, existing estimators (e.g. Bramoullé et al., 2009 and Lee, Liu and Lin,

2010) of (1) are likely to be inconsistent. In contrast, the generalized Moran I test is robust with

misspecified weight matrices and can be useful in such situations.

4 Monte Carlo Study

In the following we report on the results of a Monte Carlo study of the finite sample properties

of the I2u(q) and I2y (q) test statistics. Our specifications of the data generating process are geared

towards social networks. The main findings of the study are reported in Tables 1-6 below. The full

results of our Monte Carlo study are collected in an auxiliary appendix, which will be available upon

request. In that appendix we also report on results were the specification of the data generating

process is motivated by spatial networks.

In our Monte Carlo study we consider first data generating processes where the weight ma-

trices representing the network structure are exogenous, and then data generating processes with

endogenous network structures. Each Monte Carlo experiment is based on 10,000 repetitions.

11For more information on Add Health data, see http://www.cpc.unc.edu/projects/addhealth.
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4.1 Exogenous Network Structure

For this part of the study the n× 1 vector of observations on the dependent variable y is generated

from the following model:

y = λ1W1y + λ2W2y + βz+ γ1W1z+ γ2W2z+ u, u = ρ1W1u+ ρ2W2u+ v. (24)

The observations on the regressor z are assumed to be generated by the reduced form

z = x+ τe, (25)

where x is generated independently from Uniform[0, 5]. The distributions of e and v will be defined

later, but we note that e and v will be correlated. The coeffi cient τ can take on two possible values:

0 and 1. The regressor z is exogenous if τ = 0, and endogenous if τ = 1. We set β = 1 in the DGP.

To generate the weight matrices used in the Monte Carlo experiments we partition n individuals

into equal-sized groups with m individuals in each group. Let ξ1 = [ξ11, · · · , ξn1]′ be an n × 1

vector of i.i.d. binary random variables taking values −1 and 1 with equal probability, and let

ξ2 = [ξ12, · · · , ξn2]′ be an n× 1 vector of i.i.d. discrete random variables taking values 1, 2, · · · , 10

with equal probability. Let 1(·) denote an indicator function that equals one if its argument is true

and zero otherwise. Now define W∗
1 = [w

∗
ij,1] where w

∗
ij,1 = 1(ξi1 = ξj1) if i and j are in the same

group and w∗ij,1 = 0 otherwise, and W∗
2 = [w

∗
ij,2] where w

∗
ij,2 =

(
1 + |ξi2 − ξj2|

)−1
if i and j are in

the same group and w∗ij,2 = 0 otherwise. The weight matrices W1 = [wij,1] and W2 = [wij,2] are

then obtained by normalizing W∗
1 and W∗

2 such that wij,r = w∗ij,r/maxi
∑n
j=1 w

∗
ij,r for r = 1, 2.

12

For an exemplary interpretation, suppose ξi1 is an indicator for the gender of an individual, and

ξi2 represents the income decile of an individual. Then W∗
1 and W∗

2 reflect, respectively, network

links based on the gender of the individuals and on the similarity in their incomes.

We keep the weight matrices W1 and W2 and the exogenous variable x constant for all simu-

lation repetitions.

12Note wij,k = w∗ij,k/min{maxi
∑n
j=1 w

∗
ij,k,maxj

∑n
i=1 w

∗
ij,k} = w∗ij,k/maxi

∑n
j=1 w

∗
ij,k for k = 1, 2 as W∗1 and

W∗2 are symmetric,
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4.1.1 Simulations with Exogenous z and Homoskedastic Innovations

For our first set of Monte Carlo simulations the data are generated from (24)-(25) with τ = 0. In

this case, the regressor z (= x) is exogenous. Also, for this set of simulations the innovations v

are taken to be homoskedastic. More specifically, the innovations are generated as v =
√
2ε, where

the elements of the n × 1 vector ε are i.i.d. (0, 1). We explore two alternative distributions of

ε: (a) the standard normal distribution N(0, 1) and (b) the standardized log-normal distribution

(e2 − e)−1/2(lnN(0, 1)− e1/2). Under Hy
0 : λ1 = λ2 = γ1 = γ2 = ρ1 = ρ2 = 0 we have R

2 ≈ 0.5 for

both distributions of ε.

For the Monte Carlo simulations pertaining to the I2u(q) test we set λ1 = λ2 = γ1 = γ2 = 0,

and experiment with ρ1, ρ2 ∈ {0, 0.2, 0.4} in the DGP. We consider the test statistics defined by (4)

based on ṼU = ũ′W1ũ, ṼU = ũ′W2ũ, and ṼU = [ũ′W1ũ, ũ
′W2ũ]

′ respectively, where ũ denotes

the OLS residuals from regressing y on z. The simulation results for the I2u(q) tests, small sample

standardized I2u(q) tests, and the corresponding Bonferroni tests13 are reported in Table 1. For

the Monte Carlo simulations pertaining to the I2y (q) test we experiment with λ1, λ2 ∈ {0, 0.1, 0.2},

ρ1, ρ2 ∈ {0, 0.2, 0.4} and γ1, γ2 ∈ {0, 0.2, 0.5} in the DGP. We consider the test statistics defined

by (9) based on LV̂ = [û′W1z, û
′W1û]

′ and LV̂ = [û′W2z, û
′W2û]

′ with q = 1, and LV̂ =

[û′W1z, û
′W2z, û

′W1û, û
′W2û]

′ with q = 2, respectively, where û also denotes the OLS residuals

from regressing y on z. The simulation results for the I2y (q) tests, small sample standardized I2y (q)

tests, and the corresponding Bonferroni tests14 are reported in Table 2.

[Tables 1 and 2 approximately here]

We start with a discussion of the results on the size of the tests under the null hypotheses Hu
0

and Hy
0 . More specifically, the lines in Table 1 corresponding to ρ1 = ρ2 = 0 and those in Table 2

corresponding to λ1 = λ2 = ρ1 = ρ2 = γ1 = γ2 = 0 report the actual size of the tests. When the

innovations ε follow the standard normal distribution, the actual sizes of the I2u(q) and I2y (q) tests
13Let pr denote the p-value of the I2u(1) test statistic based on ṼU = ũ′Wrũ, for r = 1, 2. The Bonferroni test

with the nominal size α rejects Hu
0 if min{pr} ≤ α/2.

14Let pr denote the p-value of the I2y(1) test statistic based on LV̂ = [û′Wrz, û′Wrû]′, for r = 1, 2. The
Bonferroni test with the nominal size α rejects Hy

0 if min{pr} ≤ α/2.
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and their small sample standardized versions are close to the asymptotic nominal size of 0.05. This

is in contrast to the Bonferroni test, which under-rejects the null hypothesis. When the innovations

ε follow the log-normal distribution, the actual size of the I2u(2) and I2y (4) tests based on both W1

and W2 is closer to the asymptotic nominal size than that of the I2u(1) and I2y (2) tests based on a

single weight matrix (W1 or W2). Furthermore, the actual sizes of the small sample standardized

I2u(q) and I2y (q) tests are closer to the asymptotic nominal size than those without small sample

standardization.

We next discuss the results pertaining to the power of the tests under the alternative. Overall,

we find that the power increases to one as the amount of cross sectional dependence increases and

the small sample standardized tests improve the power of the tests. For the I2u(q) tests, we now

consider the case with ρ1 6= 0 and ρ2 = 0 in more detail. In this case, we expect the I2u(1) test

based on W1 to outperform the I2u(2) test based on W1 and W2 as the former incorporates the

information ρ2 = 0 while the latter does not. Indeed, we find some relative loss in power from the

I2u(2) test but the loss is mostly modest. We next consider the case with ρ2 6= 0. In this case, we

expect the I2u(2) test to outperform the I2u(1) test based on W1 as the former incorporates the

information about W2. An inspection of Table 1 shows that the results are consistent with this

conjecture. When ρ1 = 0 and ρ2 6= 0 (resp., ρ1 6= 0 and ρ2 = 0), the results of the I2u(1) test

based on W1 (resp., W2) provide some insight into the performance of I2u(q) tests when the weight

matrices are misspecified. The results suggest that with misspecified weight matrices there is loss in

power relative to tests with correctly specified weight matrices. Nevertheless, the power of the test

with misspecified weight matrices increases with the amount of cross sectional dependence. Similar

remarks apply for the results of the I2y (q) tests.

[Tables 3 and 4 approximately here]

To investigate the performance of the test when the number of candidate weight matrices q is

large, we generate weight matrices W1, · · · ,Wq in the same way as W1. More specifically, let ξir

be an i.i.d. binary random variable taking values −1 and 1 with equal probability, for i = 1, · · · , n
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and r = 1, · · · , q. Let W∗
r = [w

∗
ij,r], where w

∗
ij,r = 1(ξir = ξjr) if i and j are in the same group and

w∗ij,r = 0 otherwise, for r = 1, · · · , q. The matrices Wr = [wij,r] are then obtained by normalizing

W∗
r such that wij,r = w∗ij,r/maxi

∑n
j=1 w

∗
ij,r. For the Monte Carlo simulations pertaining to the

I2u(q) test we experiment with ρ1 ∈ {0, 0.2, 0.4, 0.6, 0.8} in the DGP:

y = βx+ u, u = ρ1W1u+ v.

For the Monte Carlo simulations pertaining to the I2y (q) test we experiment with λ1 ∈ {0, 0.1, 0.2},

ρ1 ∈ {0, 0.2, 0.4} and γ1 ∈ {0, 0.2, 0.5} in the DGP:

y = λ1W1y + βx+ γ1W1x+ u, u = ρ1W1u+ v.

In both DGPs, β = 1, x is generated independently from Uniform[0, 5], and v =
√
2ε with ε ∼

N(0, In).

The simulation results for the I2u(q) and I2y (q) tests, their small sample standardized tests, and

the corresponding Bonferroni tests are reported in Tables 3 and 4. The actual sizes of the I2u(q) and

I2y (q) tests and their small sample standardized versions are close to the asymptotic nominal size

of 0.05. The Bonferroni test, on the other hand, under-rejects the null hypothesis. The downward

size distortion of the Bonferroni test is more severe as q increases. Also, as expected, the power of

the I2u(q) and I2y (q) tests reduces as q increases. The small sample standardized tests improve the

power of the tests.

4.1.2 Simulations with Endogenous z and Heteroskedastic Innovations

For our next set of Monte Carlo simulations the data are generated again from (24)-(25). In contrast

to the previous simulations the regressor z is endogenous by setting τ = 1 in (25). Also, for this set of

simulations the innovations are taken to be heteroskedastic. More specifically, let ri = (1+ξi1/2)
1/2,

then for each simulation repetition, we generate v = (v1, · · · , vn)′ and e = (e1, · · · , en)′ such that
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vi = riεi1 and ei = riεi2, where εi1 and εi2 are respectively the i-th elements of ε1 and ε2 with ε1

ε2

 ∼ N
0,

 In 0.5In

0.5In In


 .

For the Monte Carlo simulations pertaining to the I2u(q) test we set γ1 = γ2 = 0, and experiment

with λ1, λ2 ∈ {0, 0.2} and ρ1, ρ2 ∈ {0, 0.2, 0.4} in the DGP. We consider the test statistics defined

by (19) based on ṼU = ũ′W1ũ, ṼU = ũ′W2ũ, and ṼU = [ũ′W1ũ, ũ
′W2ũ]

′ respectively, where

ũ denotes the 2SLS residuals from regressing y on z with the IV x when λ1 = λ2 = 0 and

denotes the 2SLS residuals from regressing y on [W1y,W2y, z] with IVs [W1x,W2x,x] when

λ1 = λ2 = 0.2. The simulation results for the I2u(q) tests and the Bonferroni test are reported

in Table 5. For the Monte Carlo simulations pertaining to the I2y (q) test we experiment with

λ1, λ2 ∈ {0, 0.1, 0.2}, ρ1, ρ2 ∈ {0, 0.2, 0.4} and γ1, γ2 ∈ {0, 0.2, 0.5} in the DGP. We consider the

test statistics defined by (23) based on LV̂ = [û′W1z, û
′W1û]

′ and LV̂ = [û′W2z, û
′W2û]

′ with

q = 1, and LV̂ = [û′W1z, û
′W2z, û

′W1û, û
′W2û]

′ with q = 2, respectively, where û also denotes

the 2SLS residuals from regressing y on z with the IV x. The simulation results for the I2y (q) tests

are reported in Table 6.

[Tables 5 and 6 approximately here]

Similar to the results reported in the previous section, we find that the actual sizes of the

I2u(q) and I2y (q) tests are close to the asymptotic nominal size of 0.05, while the Bonferroni test

under-rejects the null hypothesis. The power of the tests increases to one as the amount of cross

sectional dependence increases. Furthermore, when the cross sectional dependence is based on W1

but not on W2, there is some modest loss in power from the I2u(2) and I2y (2) tests based on both

W1 and W2 relative to the I2u(1) and I2y (1) tests based on W1 only. However, when the cross

sectional dependence is based on both W1 and W2, the I2u(2) and I2y (2) tests with both W1 and

W2 outperform the I2u(1) and I2y (1) test based on W1 only.
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4.2 Endogenous Network Structure

For this part of the simulation study, we assume the vector of dependent variables y of the n

cross-sectional units is generated by

y = λW0y + βx+ γW0x+ u, u = ρW0u+ v, (26)

where β = 1, x is generated independently from Uniform[0, 5], and v =
√
2ε with ε ∼ N(0, In), and

where the elements of W0 are functions of the weight matrices W1 and W2 defined after (24)-(25).

More specifically, to generate the weight matrix, let

dij = wij,1 + wij,2 + ζij , (27)

where wij,1 and wij,2 are standardized wij,1 and wij,2 respectively15 and ζij is a random innovation.

Let W∗
0 = [w∗ij,0] where w

∗
ij,0 = 1(dij > 0) if i and j are in the same group and w∗ij,0 = 0

otherwise. The weight matrix W0 = [wij,0] is then obtained by normalizing W∗
0 such that wij,0 =

w∗ij,0/maxi
∑n
j=1 w

∗
ij,0. Abstractly, the design of the weight matrixW0 is motivated by a friendship

network based on the simple homophily link formation model (27), where two individuals i and j

in the same group are more likely to form a link, i.e. w∗ij,0 = 1, if they are of the same gender

(captured by wij,1) and have similar incomes (captured by wij,2).

We consider both exogenous and endogenous W0 in the Monte Carlo experiment. For the

exogenous W0, the random innovations ζij in (27) are generated independently from N(0, 1). For

the endogenous W0, the random innovations in (27) are given by ζij = 2
−1/2(εi+εj), where εi and

εj are random innovations of the outcome equation (26).

For the Monte Carlo simulations pertaining to the I2u(q) test we set λ = γ = 0, and experiment

with ρ ∈ {0, 0.2, 0.4, 0.6, 0.8} in the DGP. We consider the test statistics defined by (19) based on

ṼU = ũ′W0ũ, ṼU = ũ′W1ũ, ṼU = ũ′W2ũ, and ṼU = [ũ′W1ũ, ũ
′W2ũ]

′ respectively, where ũ

denotes the OLS residuals from regressing y on x. The simulation results for the I2u(q) tests are
15We standardize wij,1 and wij,2 so that wij,1 and wij,2 have empirical distributions with zero mean and unit

variance.
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reported in Table 7. For the Monte Carlo simulations pertaining to the I2y (q) test we experiment

with λ ∈ {0, 0.1, 0.2}, ρ ∈ {0, 0.2, 0.4} and γ ∈ {0, 0.2, 0.5} in the DGP. We consider the test

statistics defined by (23) based on LV̂ = [û′W0x, û
′W0û]

′, LV̂ = [û′W1x, û
′W1û]

′ and LV̂ =

[û′W2x, û
′W2û]

′ with q = 1, and LV̂ = [û′W1x, û
′W2x, û

′W1û, û
′W2û]

′ with q = 2, respectively,

where û also denotes the OLS residuals from regressing y on x. The simulation results for the I2y (q)

tests are reported in Table 8.

[Tables 7 and 8 approximately here]

When W0 is exogenous, we expect the I2u(1) and I2y (1) tests based on W0 to outperform the

I2u(q) and I2y (q) tests based on W1 and/or W2 as the former is based on the true weight matrix in

the DGP. Indeed, we find some relative loss in power from the I2u(q) and I2y (q) tests based on W1

and/or W2 but the loss is mostly modest.

When W0 is endogenous we expect the I2u(1) and I2y (1) tests based on W0 to be distorted

in size, but expect the tests based on W1 and/or W2 to be properly sized. Indeed, we find that

the actual sizes of the I2u(q) and I2y (q) tests based on W1 and/or W2 are close to the asymptotic

nominal size of 0.05, while the I2u(1) and I2y (1) tests based on W0 over-reject the null hypotheses.

In particular, the size distortion is more severe (the actual size is 1) for the I2y (1) test with W0.

For the I2u(q) and I2y (q) tests based on W1 and/or W2, the power increases to one as the amount

of cross sectional dependence increases. The I2u(2) and I2y (2) tests based on both W1 and W2

improve the power of the I2u(1) and I2y (1) tests based on W1 or W2 only.

5 Conclusion

In this paper we introduced generalizations of the Moran I tests for network generated cross sec-

tional dependence in the disturbance process, and in the dependent variable and the exogenous

covariates. Those tests incorporate information from multiple weight matrices. Weight matrices

are frequently used to model the proximity between cross sectional units in a network. Our tests are

intuitively motivated by the fact that empirical researchers are often faced with multiple potential
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choices for the weight matrices, but are unsure about the proper selection. While our tests are

intuitive, they are also shown to have a formal interpretation as Lagrange Multiplier tests. We

establish the limiting distribution of the test statistics and the rejection regions of the tests for a

given significance level under fairly general assumptions, which should make the test useful in a

wide range of empirical research. We also derive small sample standardized variants of the test

statistics based on a Laplace approximation.

We also conduct Monte Carlo experiments to investigate the finite sample performance of the

generalized Moran I tests. Overall, the results suggest that the proposed tests perform well with

proper size and reasonable power. The loss in power from using more weight matrices than needed

is mostly modest. Furthermore, in situations where the network links are endogenous, the proposed

tests could be used to test for cross sectional dependence generated by the endogenous network,

using weight matrices based on exogenous proximity measures underlying the link formation process.

Our generalized Moran I tests are specification tests. As with any specification test, a closely

related issue is the performance of pre-test estimators. The latter is a serious and diffi cult issue,

without a general consensus in the profession on how to best deal with this issue —see Leeb and

Pöetscher (2005, 2008, 2009) for a general discussion of pre-test estimators. It would be of interest

to explore the behavior of pre-test estimators in connection with the generalized Moran I tests

in future research. This should include an exploration of the effect on the estimation of impact

measures. For large sample sizes, where relative effi ciency may be of a lesser concern, it may be

prudent to estimate an encompassing model with several weight matrices to avoid the pre-testing

problem. Of course, opinions may differ, and future research may attempt to shed more light on

this issue. Another area of interesting future research would be an extension of the I2u(q) and I2y (q)

tests to panel data.
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A Proofs of Theorems

Proof of Theorem 1. Observe that

n−1/2ũ′Wrũ = n−1/2u′Wru− 2(n−1Z′Wru)
′n1/2(θ̃ − θ) + (θ̃ − θ)′(n−1Z′WrZ)n

1/2(θ̃ − θ)

and

n1/2(θ̃ − θ) =
(
n−1Z̃′Z

)−1
n−1/2Z̃′u = P′nn

−1/2H′u

with Pn = n(H
′
H)
−1

H′Z
[
Z′H(H

′
H)
−1

H′Z
]−1

. In light of Assumptions 2, n−1Z′WrZ = Op(1)

and

n1/2(θ̃ − θ) = P′n−1/2H′Ξε+ op(1) = Op(1),

whereP = Q−1HHQHZ(Q
′
HZQ−1HHQHZ)

−1 withQHZ = plimn→∞n
−1H′Z andQHH = limn→∞ n−1H′H.

Hence,

(n−1Z′Wru)
′n1/2(θ̃ − θ) = n−1E(Z′Wru)

′P′n−1/2H′Ξε+ op(1)

and

n−1/2ũ′Wrũ = n−1/2(ε′Crε+ c′rε) + op(1),

where Cr = Ξ′WrΞ and cr = −2Ξ′HP[n−1E(Z′Wru)]. Observe that Cr is a symmetric matrix

with a zero diagonal. It follows from Lemma A.1 in Kelejian and Prucha (2010) that under Hu
0 we

have E(ε′Crε+ c′rε) = 0 and cov[ε
′Crε+ c′rε, ε

′Csε+ c′sε] = 2tr(CrCs) + c′rcs for r, s = 1, · · · , q.

Let

ΦUU = [2tr(CrCs) + c′rcs]r,s=1,··· ,q. (A.1)

Under the maintained assumptions, the row and column sums of Cr are uniformly bounded in

absolute value by some finite constant, and the elements of cr are uniformly bounded in absolute

value by some finite constant. It follows that n−1ΦUU = O(1). Since the smallest eigenvalues of

n−1ΦUU are bounded away from zero it follows immediately from Theorem A.1 in Kelejian and
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Prucha (2010) that

(ΦUU )−1/2ṼU = (n−1ΦUU )−1/2


n−1/2(ε′C1ε+ c′1ε)

...

n−1/2(ε′Cqε+ c′qε)

+ op(1) d→ N(0, Iq).

The above discussion also establishes that n−1/2(ε′C1ε+c′1ε) = Op(1). To show the desired result,

it now suffi ces to show that n−1Φ̃UU = n−1ΦUU + op(1). From (A.1) it follows that the (r, s)-th

element of n−1ΦUU can be written as

2n−1tr(WrΣWsΣ) + 4[n
−1E(u′WsZ)]P

′ [n−1H′ΣH
]
P[n−1E(Z′Wsu)]

with Σ = Euu′ = ΞΞ′. From (18) we see that the (r, s)-th element of n−1Φ̃UU can be written as

2n−1tr(WrΣ̃WsΣ̃) + 4
[
n−1ũ′Wr(Z− Z̃)

] [
n−1Z̃′Z̃

]−1
n−1Z̃′Σ̃Z̃

[
n−1Z̃′Z̃

]−1 [
n−1(Z− Z̃)′Wsũ

]
= 2n−1tr(WrΣ̃WsΣ̃) + 4

[
n−1ũ′Wr(Z− Z̃)

]
P′n

[
n−1H′Σ̃H

]
Pn

[
n−1(Z− Z̃)′Wsũ

]
,

In light of Assumptions 2, we have Pn = P + op(1) = Op(1), n−1Z′Wrũ = n−1Z′Wru −

n−1Z′WsZ(θ̃−θ) = n−1E(Z′Wru)+op(1) = Op(1), and n−1Z̃′Wrũ = n−1Z̃′Wru−n−1Z̃′WsZ(θ̃−

θ) = op(1). By similar argument as in Lemmata C.3-C.5 in Kelejian and Prucha (2010) it follows

that n−1tr(WrΣ̃WsΣ̃) = n−1tr(WrΣWsΣ) + op(1) = Op(1) and n−1H′Σ̃H = n−1H′ΣH +

op(1) = Op(1). The consistency of n−1Φ̃UU now follows from standard argumentation.

The following two Lemmata will be used in the proof of Theorem 2.

Lemma A.1. Suppose Z is defined by (21) and suppose Assumption 3 holds. Let W be an n× n

nonstochastic zero-diagonal matrix with its row and column sums uniformly bounded in absolute
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value by some finite constant. Then

n−1Z′WZ = n−1Π′X′WXΠ+ op(1) = Op(1)

n−1Z′Wu = op(1).

Proof. Let zk denote the k-th column of Z and πk denote the k-th column of Π. In light of

Assumption 3 we have

z′kWzl = π′kX
′WXπl + ε

′Ψ′kWΨlε+ [Ψ
′
kWXπl +Ψ′lW

′Xπk]
′ε

= π′kX
′WXπl + ε

′D1ε+ d′1ε

with D1 = (Ψ′kWΨl + Ψ′lW
′Ψk)/2 and d1 = Ψ′kWXπl + Ψ′lW

′Xπk. Observe that under

the maintained assumptions the diagonal elements of D1 are zero. Consequently, employing the

formulae for the mean and variance of linear quadratic forms given by Lemma A.1 in Kelejian and

Prucha (2010) we have

E[z′kWzl] = π
′
kX
′WXπl, and cov[z′kWzl] = 2tr(D

2
1) + d′1d1.

Given the maintained assumptions n−1π′kX
′WXπl = O(1), n−1tr(D2

1) = O(1), and n−1d′1d1 =

O(1). Thus

E[n−1z′kWzl] = O(1) and cov[n−1z′kWzl] = o(1),

which implies n−1z′kWzl = E[n
−1z′kWzl] + op(1) = π

′
kX
′WXπl + op(1) = Op(1).

Next observe that in light of Assumption 3 we have

z′kWu = ε′Ψ′kWΞε+ π′kX
′WΞε = ε′D2ε+ d′2ε

with D2 = (Ψ
′
kWΞ+Ξ′WΨk)/2 and d2 = Ξ′W′Xπk. Observe that, under maintained assump-

tions, the diagonal elements of D2 are zero. Consequently, employing again the formulae for the
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mean and variance of linear quadratic forms given by Lemma A.1 in Kelejian and Prucha (2010)

we have

E[z′kWu] = 0, and cov[z′kWu] = 2tr(D2
2) + d′2d2.

Given the maintained assumptions n−1tr(D2
2) = O(1) and n−1d′2d2 = O(1). Thus cov[n−1z′kWu] =

o(1), and n−1z′kWu = E[n−1z′kWu] + op(1) = op(1).

Lemma A.2. Suppose the data generating process is defined by (17) and (21), and suppose As-

sumptions 1 and 3 hold. Suppose furthermore that

n1/2(θ̂ − θ) = n−1/2T′u+ op(1) = Op(1),

where T is a nonstochastic n×K matrix with its elements uniformly bounded in absolute value by

some finite constant. Let û = y − Zθ̂ and let W be an n × n nonstochastic zero-diagonal matrix

with its row and column sums uniformly bounded in absolute value by some finite constant. Then

n−1/2y′W′
rû = n−1/2ε′Arε+ n

−1/2a′rε+ op(1)

n−1/2z′kW
′
rû = n−1/2ε′Bk,rε+ n

−1/2b′k,rε+ op(1)

n−1/2û′W′
rû = n−1/2ε′Crε+ op(1),

where

Ar = Ξ′WrΞ+
1

2

∑K
k=1 θk[Ξ

′WrΨk +Ψ′kW
′
rΞ],

ar = Ξ′
[
In − n−1TΠ′X′

]
WrXΠθ,

Bk,r =
1

2
[Ξ′WrΨk +Ψ′kW

′
rΞ],

bk,r = Ξ′
[
In − n−1TΠ′X′

]
WrXπk,

and Cr = Ξ′WrΞ.
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Proof. Observing that û = u−Z(θ̂−θ), employing Assumptions 1, 3 and Lemma A.1, and recalling

from the proof of that lemma that z′kW
′u = ε′Ψ′kW

′Ξε+ π′kX
′W′Ξε it follows that

n−1/2y′W′
rû

= n−1/2u′W′
ru+ n

−1/2θ′Z′W′
ru− θ′[n−1Z′W′

rZ]n
1/2(θ̂ − θ)− [n−1u′W′

rZ]n
1/2(θ̂ − θ)

= n−1/2[ε′Ξ′W′
rΞε+

∑K
k=1 θkε

′Ψ′kW
′
rΞε+ θ

′Π′X′W′
rΞε− n−1θ′Π′X′W′

rXΠT′Ξε] + op(1),

which verifies that n−1/2y′W′
rû = n−1/2ε′Arε+ n

−1/2a′rε+ op(1) as claimed.

Next observe that

n−1/2z′kW
′
rû

= n−1/2π′kX
′W′

ru+ n
−1/2ε′Ψ′kW

′
ru− n−1z′kW′

rZn
1/2(θ̂ − θ)

= n−1/2[ε′Ψ′kW
′
rΞε+ π

′
kX
′W′

rΞε− n−1π′kX′W′
rXΠT′Ξε] + op(1),

which verifies that n−1/2z′kW
′
rû = n−1/2ε′Bk,rε+ n

−1/2b′k,rε+ op(1) as claimed.

Finally, in light of Assumptions 1 and 3, it follows from Lemma A.1 that

n−1/2û′W′
rû

= n−1/2u′W′
ru− 2[n−1u′WrZ]n

1/2(θ̂ − θ) + (θ̂ − θ)′[n−1Z′WrZ]n
1/2(θ̂ − θ)

= n−1/2ε′Ξ′W′
rΞε+ op(1),

which verifies that n−1/2û′W′
rû = n−1/2ε′Crε+ op(1) as claimed.

Proof of Theorem 2. Observe that

n−1/2(θ̂ − θ) = (n−1Ẑ′Ẑ)−1n−1/2Ẑ′u = n−1/2T̂′u

where T̂ = Ẑ(n−1Ẑ′Ẑ)−1 = XP̂ with P̂ = (n−1X′X)−1(n−1X′Z)[(n−1Z′X)(n−1X′X)−1(n−1X′Z)]−1.

37



Let T = XP with P = Q−1XXQXZ [QXZQ−1XXQXZ ]
−1, and observe that under the maintained

assumptions T is a nonstochastic n × K matrix with its elements uniformly bounded in ab-

solute value by some finite constant. Furthermore, P̂
p→ P and n−1/2X′u = Op(1), and thus

n−1/2T̂′u =n−1/2T′u+ op(1). Now let

V◦ =


VY
◦

VZ
◦

VU
◦

 , VY
◦ =


ε′A1ε+ a′1ε

...

ε′Aqε+ a′qε

 , VU
◦ =


ε′C1ε

...

ε′Cqε



VZ
◦ =


VZ
◦,1
...

VZ
◦,q

 , VZ
◦,r =


ε′B1,rε+ b′1,rε

...

ε′BK,rε+ b′K,rε

 ,

with Ar,Bk,r,Cr,ar and bk,r as defined in Lemma A.2, then by that lemma n−1/2V̂−n−1/2V◦ =

op(1). Furthermore, observing that Ar,Bk,r and Cr are symmetric matrices with zero diagonals,

it follows from Lemma A.1 in Kelejian and Prucha (2010) that

Φ =EV◦V
′
◦ =


ΦY Y ΦY Z ΦY U

(ΦY Z)′ ΦZZ ΦZU

(ΦY U )′ (ΦZU )′ ΦUU

 (A.2)

where

ΦY Y

q×q
= [φY Yrs ]r,s=1,··· ,q, φY Yrs

1×1
= 2tr(ArAs) + a′ras

ΦY Z

q×qK
= [φY Zrs ]r,s=1,··· ,q, φY Zrs

1×K
= [2tr(ArBl,s) + a′rbl,s]l=1,··· ,K

ΦY U

q×q
= [φY Urs ]r,s=1,··· ,q, φY Urs

1×1
= 2tr(ArCs)

ΦZZ

qK×qK
= [φZZrs ]r,s=1,··· ,q, φZZrs

K×K
= [2tr(Bk,rBl,s) + b′k,rbl,s]k,l=1,··· ,K

ΦZU

qK×q
= [φZUrs ]r,s=1,··· ,q, φZUrs

K×1
= [2tr(Bk,rCs)]k=1,··· ,K

ΦUU

q×q
= [φUUrs ]r,s=1,··· ,q, φUUrs

1×1
= 2tr(CrCs),

Under the maintained assumptions the row and column sums of Ar,Bk,r and Cr are uniformly
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bounded in absolute value by some finite constant, and the elements of ar and bk,r are uniformly

bounded in absolute value by some finite constant. Thus, n−1Φ = O(1). By assumption the

smallest eigenvalue of LΦL′ is bounded away from zero. Consequently it follows immediately from

Lemma A.1 and Theorem A.1 in Kelejian and Prucha (2010) and Lemma A.2 that

(LΦL′)−1/2(LV̂) = (n−1LΦL′)−1/2(n−1/2LV◦) + op(1)
d→ N(0, I(K?+2)q).

Observe that n−1/2LV◦ = Op(1). To show the desired result it thus suffi ces to show that n−1Φ̂ =

n−1Φ+ op(1). Let Σ = Euu′ = ΞΞ′, Σk = Eεku
′ = ΨkΞ

′, and Σkl = Eεkε
′
l = ΨkΨ

′
l and observe

that

φY Yrs = 2tr(WrΣWsΣ) + 2
∑K
k=1 θktr(WsΣWrΣk +WrΣWsΣk)

+
∑K
k=1

∑K
l=1 θkθltr(WrΣkWsΣl +WrΣklW

′
sΣ)

+θ′Π′X′W′
r(In − n−1XΠT′)Σ(In − n−1TΠ′X′)WsXΠθ,

φY Zrs =
[
2tr(WrΣWsΣl) +

∑K
k=1 θktr(WrΣkWsΣl +WrΣklW

′
sΣ)

]
l=1,··· ,K

+θ′Π′X′W′
r(In − n−1XΠT′)Σ(In − n−1TΠ′X′)WsXΠ,

φY Urs = 2tr(WrΣWsΣ) + 2
∑K
k=1 θktr(WrΣkWsΣ),

φZZrs = [tr(WrΣkWsΣl +WrΣklW
′
sΣ)]k,l=1,··· ,K

+Π′X′W′
r(In − n−1XΠT′)Σ(In − n−1TΠ′X′)WsXΠ,

φZUrs =
[
2tr(WrΣkWsΣ)

]
k=1,··· ,K ,

φUUrs = 2tr(WrΣWsΣ).

The estimators of φ̂
Y Y

rs , φ̂
Y Z

rs , φ̂
Y U

rs , φ̂
ZZ

rs , φ̂
ZU

rs , and φ̂
UU

rs defined in the theorem are obtained by

making the following replacements in the above expressions:θ → θ̂, Σ → Σ̂, Σk → Σ̂k, Σkl →

Σ̂kl, Π→ Π̂ = (X′X)−1X′Z, XΠ → XΠ̂ = Ẑ, T → T̂ = Ẑ(n−1Ẑ′Ẑ)−1. Given the maintained

assumptions it follows from a similar argument as in Lemmata C.3-C.5 in Kelejian and Prucha
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(2010) that

n−1tr(WrΣ̂WsΣ̂) = n−1tr(WrΣWsΣ) + op(1) = Op(1),

n−1tr(WrΣ̂WsΣ̂k) = n−1tr(WrΣWsΣk) + op(1) = Op(1),

n−1tr(WrΣ̂kWsΣ̂l) = n−1tr(WrΣkWsΣl) + op(1) = Op(1),

n−1tr(WrΣ̂klW
′
sΣ̂) = n−1tr(WrΣklW

′
sΣ) + op(1) = Op(1),

n−1X′Σ̂X = n−1X′ΣX+ op(1) = Op(1),

n−1X′W′
rΣ̂X = n−1X′W′

rΣX+ op(1) = Op(1),

n−1X′W′
rΣ̂WsX = n−1X′WrΣWsX+ op(1) = Op(1).

The consistency of n−1Φ̂ now follows from standard argumentation.
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Table 1. Rejection Rates for 𝐼𝐼𝑢𝑢2(𝑞𝑞) Tests (n = 500, m = 10, exogenous z, and homoskedastic errors) 
      Standardized Tests 

𝜌𝜌1 𝜌𝜌2 𝐼𝐼𝑢𝑢2(1) Test 
with 𝑊𝑊1 

𝐼𝐼𝑢𝑢2(1) Test 
with 𝑊𝑊2 

𝐼𝐼𝑢𝑢2(2) Test 
with 𝑊𝑊1,𝑊𝑊2 

Bonferroni 
Test 

𝐼𝐼𝑢𝑢2(1) Test 
with 𝑊𝑊1 

𝐼𝐼𝑢𝑢2(1) Test 
with 𝑊𝑊2 

𝐼𝐼𝑢𝑢2(2) Test 
with 𝑊𝑊1,𝑊𝑊2 

Bonferroni 
Test 

  Normal Errors 
0 0 0.0453 0.0490 0.0457 0.0392 0.0465 0.0477 0.0476 0.0420 
.2 0 0.5615 0.2631 0.5001 0.5021 0.5761 0.2821 0.5171 0.5204 
.4 0 0.9902 0.7956 0.9857 0.9869 0.9913 0.8100 0.9874 0.9877 
0 .2 0.1770 0.3543 0.2952 0.3075 0.1902 0.3754 0.3132 0.3258 
0 .4 0.6065 0.9013 0.8587 0.8695 0.6228 0.9108 0.8697 0.8803 
.2 .2 0.8834 0.8498 0.8854 0.9001 0.8923 0.8621 0.8961 0.9089 
.4 .4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
  Log-normal Errors 

0 0 0.0381 0.0355 0.0404 0.0368 0.0392 0.0374 0.0427 0.0390 
.2 0 0.5362 0.2311 0.4542 0.4652 0.5542 0.2507 0.4699 0.4866 
.4 0 0.9959 0.7996 0.9900 0.9922 0.9965 0.8135 0.9912 0.9931 
0 .2 0.1582 0.3230 0.2624 0.2747 0.1705 0.3428 0.2775 0.2920 
0 .4 0.5829 0.9091 0.8494 0.8658 0.6024 0.9184 0.8607 0.8785 
.2 .2 0.9060 0.8551 0.8894 0.9073 0.9141 0.8685 0.9003 0.9164 
.4 .4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
Nominal size is 0.05 
  



Table 2a. Rejection Rates for 𝐼𝐼𝑦𝑦2(𝑞𝑞) Tests (n = 500, m = 10, exogenous z, and homoskedastic normal errors) 
          Standardized Tests 

𝜆𝜆1 𝜆𝜆2 𝜌𝜌1 𝜌𝜌2 𝛾𝛾1 𝛾𝛾2 
𝐼𝐼𝑦𝑦2(1) Test 

with 𝑊𝑊1 
𝐼𝐼𝑦𝑦2(1) Test 
with 𝑊𝑊2 

𝐼𝐼𝑦𝑦2(2) Test 
with 𝑊𝑊1,𝑊𝑊2 

Bonferroni 
Test 

𝐼𝐼𝑦𝑦2(1) Test 
with 𝑊𝑊1 

𝐼𝐼𝑦𝑦2(1) Test 
with 𝑊𝑊2 

𝐼𝐼𝑦𝑦2(2) Test 
with 𝑊𝑊1,𝑊𝑊2 

Bonferroni 
Test 

0 0 0 0 0 0 0.0465 0.0460 0.0502 0.0391 0.0478 0.0459 0.0494 0.0406 
.1 0 0 0 0 0 0.4171 0.2321 0.3409 0.3561 0.4263 0.2381 0.3469 0.3648 
.2 0 0 0 0 0 0.9688 0.7690 0.9391 0.9523 0.9697 0.7759 0.9417 0.9540 
0 .1 0 0 0 0 0.1760 0.2852 0.2271 0.2436 0.1791 0.2931 0.2336 0.2502 
0 .2 0 0 0 0 0.6036 0.8656 0.7851 0.8206 0.6087 0.8705 0.7912 0.8261 
.1 .1 0 0 0 0 0.8454 0.8195 0.8171 0.8576 0.8498 0.8244 0.8208 0.8618 
.2 .2 0 0 0 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0 0 .2 0 0 0 0.4874 0.2206 0.4281 0.4274 0.5047 0.2343 0.4419 0.4428 
0 0 .4 0 0 0 0.9831 0.7365 0.9730 0.9761 0.9846 0.7518 0.9756 0.9787 
0 0 0 .2 0 0 0.1504 0.2987 0.2470 0.2553 0.1580 0.3138 0.2616 0.2693 
0 0 0 .4 0 0 0.5291 0.8597 0.8024 0.8190 0.5448 0.8715 0.8133 0.8317 
0 0 .2 .2 0 0 0.8382 0.7944 0.8395 0.8608 0.8482 0.8069 0.8511 0.8725 
0 0 .4 .4 0 0 1.0000 0.9998 1.0000 1.0000 1.0000 0.9998 1.0000 1.0000 
.1 .1 .2 .2 0 0 0.9989 0.9969 0.9991 0.9994 0.9990 0.9973 0.9991 0.9994 
.2 .2 .4 .4 0 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0 0 0 0 .2 0 0.8149 0.5631 0.7128 0.7568 0.8131 0.5639 0.7105 0.7561 
0 0 0 0 .5 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0 0 0 0 0 .2 0.4265 0.6628 0.5418 0.5847 0.4249 0.6630 0.5396 0.5842 
0 0 0 0 0 .5 0.9976 1.0000 1.0000 1.0000 0.9976 1.0000 1.0000 1.0000 
0 0 0 0 .2 .2 0.9983 0.9962 0.9968 0.9988 0.9983 0.9962 0.9966 0.9988 
0 0 0 0 .5 .5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Nominal size is 0.05 
 

  



Table 2b. Rejection Rates for 𝐼𝐼𝑦𝑦2(𝑞𝑞) Tests (n = 500, m = 10, exogenous z, and homoskedastic log-normal errors) 
          Standardized Tests 

𝜆𝜆1 𝜆𝜆2 𝜌𝜌1 𝜌𝜌2 𝛾𝛾1 𝛾𝛾2 
𝐼𝐼𝑦𝑦2(1) Test 

with 𝑊𝑊1 
𝐼𝐼𝑦𝑦2(1) Test 
with 𝑊𝑊2 

𝐼𝐼𝑦𝑦2(2) Test 
with 𝑊𝑊1,𝑊𝑊2 

Bonferroni 
Test 

𝐼𝐼𝑦𝑦2(1) Test 
with 𝑊𝑊1 

𝐼𝐼𝑦𝑦2(1) Test 
with 𝑊𝑊2 

𝐼𝐼𝑦𝑦2(2) Test 
with 𝑊𝑊1,𝑊𝑊2 

Bonferroni 
Test 

0 0 0 0 0 0 0.0456 0.0442 0.0469 0.0420 0.0473 0.0451 0.0474 0.0433 
.1 0 0 0 0 0 0.3985 0.2076 0.3112 0.3354 0.4087 0.2129 0.3196 0.3453 
.2 0 0 0 0 0 0.9737 0.7738 0.9406 0.9582 0.9755 0.7813 0.9436 0.9611 
0 .1 0 0 0 0 0.1577 0.2623 0.2037 0.2193 0.1615 0.2717 0.2087 0.2288 
0 .2 0 0 0 0 0.6003 0.8696 0.7761 0.8205 0.6073 0.8747 0.7835 0.8264 
.1 .1 0 0 0 0 0.8494 0.8273 0.8085 0.8607 0.8547 0.8330 0.8184 0.8680 
.2 .2 0 0 0 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0 0 .2 0 0 0 0.4615 0.2007 0.3914 0.4013 0.4765 0.2113 0.4058 0.4169 
0 0 .4 0 0 0 0.9907 0.7343 0.9798 0.9848 0.9917 0.7515 0.9824 0.9860 
0 0 0 .2 0 0 0.1374 0.2744 0.2219 0.2345 0.1454 0.2903 0.2363 0.2495 
0 0 0 .4 0 0 0.5068 0.8600 0.7807 0.8127 0.5245 0.8712 0.7956 0.8258 
0 0 .2 .2 0 0 0.8498 0.7977 0.8379 0.8607 0.8608 0.8117 0.8487 0.8698 
0 0 .4 .4 0 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
.1 .1 .2 .2 0 0 0.9995 0.9989 0.9995 0.9998 0.9995 0.9990 0.9997 0.9999 
.2 .2 .4 .4 0 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0 0 0 0 .2 0 0.8285 0.5727 0.7248 0.7700 0.8290 0.5707 0.7233 0.7690 
0 0 0 0 .5 0 1.0000 0.9990 0.9997 0.9999 1.0000 0.9990 0.9997 0.9999 
0 0 0 0 0 .2 0.4204 0.6739 0.5404 0.5976 0.4199 0.6738 0.5383 0.5970 
0 0 0 0 0 .5 0.9949 0.9994 0.9988 0.9993 0.9950 0.9994 0.9988 0.9993 
0 0 0 0 .2 .2 0.9958 0.9959 0.9936 0.9961 0.9956 0.9958 0.9936 0.9961 
0 0 0 0 .5 .5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Nominal size is 0.05 
 
  



 
Table 3. Rejection Rates for 𝐼𝐼𝑢𝑢2(𝑞𝑞) Tests (n = 500, m = 10, exogenous z, and homoskedastic normal errors) 

   Standardized Tests 

𝜌𝜌1 𝐼𝐼𝑢𝑢2(𝑞𝑞) Test with 
𝑊𝑊1, … ,𝑊𝑊𝑞𝑞 

Bonferroni 
Test 

𝐼𝐼𝑢𝑢2(𝑞𝑞) Test with 
𝑊𝑊1, … ,𝑊𝑊𝑞𝑞 

Bonferroni 
Test 

 𝑞𝑞 = 5 
0 0.0479 0.0400 0.0498 0.0414 
.2 0.3891 0.4312 0.4041 0.4515 
.4 0.9627 0.9765 0.9669 0.9799 
.6 1.0000 1.0000 1.0000 1.0000 
.8 1.0000 1.0000 1.0000 1.0000 
 𝑞𝑞 = 10 

0 0.0514 0.0374 0.0524 0.0390 
.2 0.3056 0.3938 0.3180 0.4138 
.4 0.9290 0.9673 0.9322 0.9713 
.6 1.0000 1.0000 1.0000 1.0000 
.8 1.0000 1.0000 1.0000 1.0000 
Nominal size is 0.05 
 

 

Table 4. Rejection Rates for 𝐼𝐼𝑦𝑦2(𝑞𝑞) Tests (n = 500, m = 10, exogenous z, and homoskedastic normal errors) 
     Standardized Tests 

𝜆𝜆1 𝜌𝜌1 𝛾𝛾1 
𝐼𝐼𝑦𝑦2(𝑞𝑞) Test with  
𝑊𝑊1, … ,𝑊𝑊𝑞𝑞 

Bonferroni 
Test 

𝐼𝐼𝑦𝑦2(𝑞𝑞) Test with 
𝑊𝑊1, … ,𝑊𝑊𝑞𝑞 

Bonferroni 
Test 

   𝑞𝑞 = 5 
0 0 0 0.0497 0.0366 0.0499 0.0377 
.1 0 0 0.2625 0.3225 0.2681 0.3305 
.2 0 0 0.8856 0.9475 0.8880 0.9499 
0 .2 0 0.3218 0.3570 0.3339 0.3767 
0 .4 0 0.9342 0.9602 0.9382 0.9644 
.1 .2 0 0.7501 0.8169 0.7607 0.8293 
.2 .4 0 1.0000 1.0000 1.0000 1.0000 
0 0 .2 0.5861 0.7269 0.5836 0.7261 
0 0 .5 1.0000 1.0000 1.0000 1.0000 
   𝑞𝑞 = 10 

0 0 0 0.0481 0.0333 0.0487 0.0349 
.1 0 0 0.1915 0.2835 0.1947 0.2931 
.2 0 0 0.7817 0.9189 0.7851 0.9222 
0 .2 0 0.2518 0.3301 0.2616 0.3483 
0 .4 0 0.8869 0.9476 0.8928 0.9543 
.1 .2 0 0.6455 0.7842 0.6554 0.7954 
.2 .4 0 0.9994 1.0000 0.9995 1.0000 
0 0 .2 0.4088 0.6545 0.4054 0.6533 
0 0 .5 1.0000 1.0000 1.0000 1.0000 

Nominal size is 0.05 
 
  



Table 5. Rejection Rates for 𝐼𝐼𝑢𝑢2(𝑞𝑞) Tests (n = 500, m = 10, endogenous z, and heteroskedastic normal errors) 

𝜌𝜌1 𝜌𝜌2 𝐼𝐼𝑢𝑢2(1) Test 
with 𝑊𝑊1 

𝐼𝐼𝑢𝑢2(1) Test 
with 𝑊𝑊2 

𝐼𝐼𝑢𝑢2(2) Test 
with 𝑊𝑊1,𝑊𝑊2 

Bonferroni 
Test 

  𝜆𝜆1 = 𝜆𝜆2 = 0 
0 0 0.0485 0.0475 0.0478 0.0404 
.2 0 0.4699 0.2427 0.4077 0.4095 
.4 0 0.9728 0.7690 0.9579 0.9619 
0 .2 0.1541 0.3502 0.2897 0.2875 
0 .4 0.5009 0.8973 0.8533 0.8538 
.2 .2 0.8092 0.8348 0.8329 0.8539 
.4 .4 1.0000 1.0000 1.0000 1.0000 
  𝜆𝜆1 = 𝜆𝜆2 = .2 

0 0 0.0433 0.0433 0.0433 0.0389 
.2 0 0.3551 0.1903 0.2928 0.3067 
.4 0 0.9169 0.6319 0.8754 0.8926 
0 .2 0.1145 0.2689 0.2138 0.2145 
0 .4 0.3926 0.7946 0.7229 0.7312 
.2 .2 0.6826 0.7134 0.7030 0.7387 
.4 .4 0.9998 0.9999 0.9998 0.9998 

Nominal size is 0.05 
 

 

Table 6. Rejection Rates for 𝐼𝐼𝑦𝑦2(𝑞𝑞) Tests (n = 500, m = 10, endogenous z, and heteroskedastic normal errors) 

𝜆𝜆1 𝜆𝜆2 𝜌𝜌1 𝜌𝜌2 𝛾𝛾1 𝛾𝛾2 𝐼𝐼𝑦𝑦2(1) Test 
with 𝑊𝑊1 

𝐼𝐼𝑦𝑦2(1) Test 
with 𝑊𝑊2 

𝐼𝐼𝑦𝑦2(2) Test 
with 𝑊𝑊1,𝑊𝑊2 

Bonferroni 
Test 

0 0 0 0 0 0 0.0478 0.0501 0.0491 0.0433 
.1 0 0 0 0 0 0.7039 0.4319 0.6043 0.6353 
.2 0 0 0 0 0 0.9999 0.9761 0.9990 0.9994 
0 .1 0 0 0 0 0.3041 0.5374 0.4300 0.4636 
0 .2 0 0 0 0 0.9038 0.9922 0.9846 0.9887 
.1 .1 0 0 0 0 0.9922 0.9869 0.9887 0.9924 
.2 .2 0 0 0 0 1.0000 1.0000 1.0000 1.0000 
0 0 .2 0 0 0 0.4042 0.2084 0.3545 0.3547 
0 0 .4 0 0 0 0.9572 0.7075 0.9368 0.9436 
0 0 0 .2 0 0 0.1314 0.2949 0.2398 0.2392 
0 0 0 .4 0 0 0.4358 0.8579 0.8001 0.8056 
0 0 .2 .2 0 0 0.7506 0.7836 0.7793 0.8076 
0 0 .4 .4 0 0 1.0000 1.0000 1.0000 1.0000 
.1 .1 .2 .2 0 0 0.9998 0.9999 1.0000 1.0000 
.2 .2 .4 .4 0 0 1.0000 1.0000 1.0000 1.0000 
0 0 0 0 .2 0 0.9951 0.9106 0.9843 0.9904 
0 0 0 0 .5 0 1.0000 1.0000 1.0000 1.0000 
0 0 0 0 0 .2 0.7937 0.9570 0.9187 0.9363 
0 0 0 0 0 .5 1.0000 1.0000 1.0000 1.0000 
0 0 0 0 .2 .2 1.0000 1.0000 1.0000 1.0000 
0 0 0 0 .5 .5 1.0000 1.0000 1.0000 1.0000 

Nominal size is 0.05 
  



Table 7. Rejection Rates for 𝐼𝐼𝑢𝑢2(𝑞𝑞) Tests (n = 500, m = 10, exogenous z, and homoskedastic errors) 

𝜌𝜌 𝐼𝐼𝑢𝑢2(1) Test 
with 𝑊𝑊0 

𝐼𝐼𝑢𝑢2(1) Test 
with 𝑊𝑊1 

𝐼𝐼𝑢𝑢2(1) Test 
with 𝑊𝑊2 

𝐼𝐼𝑢𝑢2(2) Test 
with 𝑊𝑊1,𝑊𝑊2 

 Exogenous 𝑊𝑊0 
0 0.0535 0.0521 0.0512 0.0502 
.2 0.3394 0.2775 0.2523 0.2683 
.4 0.8744 0.7744 0.7324 0.7753 
.6 0.9958 0.9833 0.9752 0.9852 
.8 1.0000 0.9998 0.9996 0.9997 
 Endogenous 𝑊𝑊0 

0 0.0657 0.0453 0.0490 0.0457 
.2 0.4136 0.2229 0.2286 0.2286 
.4 0.9277 0.7055 0.7156 0.7260 
.6 0.9993 0.9772 0.9768 0.9828 
.8 1.0000 0.9998 0.9997 0.9997 
Nominal size is 0.05 
 

 

Table 8. Rejection Rates for 𝐼𝐼𝑦𝑦2(𝑞𝑞) Tests (n = 500, m = 10, exogenous z, and homoskedastic errors) 

𝜆𝜆 𝜌𝜌 𝛾𝛾 𝐼𝐼𝑦𝑦2(1) Test 
with 𝑊𝑊0 

𝐼𝐼𝑦𝑦2(1) Test 
with 𝑊𝑊1 

𝐼𝐼𝑦𝑦2(1) Test 
with 𝑊𝑊2 

𝐼𝐼𝑦𝑦2(2) Test 
with 𝑊𝑊1,𝑊𝑊2 

   Exogenous 𝑊𝑊0 
0 0 0 0.0505 0.0494 0.0506 0.0527 
.1 0 0 0.2852 0.2297 0.2127 0.2016 
.2 0 0 0.8371 0.7182 0.6882 0.6827 
0 .2 0 0.2794 0.2293 0.2114 0.2295 
0 .4 0 0.8271 0.7182 0.6654 0.7160 
.1 .2 0 0.6732 0.5519 0.5072 0.5353 
.2 .4 0 0.9978 0.9867 0.9797 0.9879 
0 0 .2 0.6538 0.5187 0.4999 0.4520 
0 0 .5 1.0000 0.9996 0.9986 0.9987 
   Endogenous 𝑊𝑊0 

0 0 0 1.0000 0.0465 0.0460 0.0502 
.1 0 0 1.0000 0.2506 0.2395 0.2279 
.2 0 0 1.0000 0.7830 0.7547 0.7518 
0 .2 0 1.0000 0.1956 0.1991 0.1999 
0 .4 0 1.0000 0.6625 0.6691 0.6784 
.1 .2 0 1.0000 0.6083 0.5927 0.5974 
.2 .4 0 1.0000 0.9963 0.9951 0.9961 
0 0 .2 1.0000 0.4422 0.4228 0.3781 
0 0 .5 1.0000 0.9933 0.9901 0.9899 

Nominal size is 0.05 


