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Abstract

This paper considers the IV estimation of spatial autoregressive models with endogenous

regressors in the presence of many instruments. To improve asymptotic e¢ ciency, it may be

desirable to use many valid instruments. However, �nite sample properties of IV estimators can

be sensitive to the number of instruments. For a spatial model with endogenous regressors, this

paper derives the asymptotic distribution of the 2SLS estimator when the number of instruments

grows with the sample size, and suggests a bias-correction procedure based on the leading-order

many-instrument bias. The paper also gives the Nagar-type approximate MSEs of the 2SLS

estimator and the bias-corrected 2SLS estimator, which can be minimized to choose instruments

as in Donald and Newey (2001). A limited Monte Carlo experiment is carried out to study the

�nite sample performance of the instrument selection procedure.
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1 Introduction

This paper considers the instrumental variable (IV) estimation of spatial autoregressive (SAR) mod-

els with endogenous regressors in the presence of many instruments. The paper derives the asymp-

totic distribution of the two-stage least squares (2SLS) estimator when the number of instruments

grows with the sample size, and suggests a bias-correction procedure based on the leading-order

many-instrument bias. To improve asymptotic e¢ ciency, it may be desirable to use many valid

instruments. However, �nite sample properties of IV estimators can be sensitive to the number of

instruments (see, e.g., Morimune, 1983; Bekker, 1994). Donald and Newey (2001) suggest minimiz-

ing the Nagar-type approximation (Nagar, 1959) of the mean square error (MSE) to choose among

valid instruments. We derive the approximate MSEs of the 2SLS estimator and the bias-corrected

2SLS (C2SLS) estimator for the SAR model. The approximate MSEs are more complicated than

those in Donald and Newey (2001) due to the sample observations being spatially correlated.

We consider the following SAR model with endogenous regressors:

yn = �0Wnyn + Z2n0 + �n: (1)

In this model, n is the total number of spatial units, yn is an n-dimensional vector of dependent

variables, Wn is an n � n spatial weights matrix of known constants with a zero diagonal, Z2n is

an n�m matrix of explanatory variables that are possibly correlated with �n, and the disturbances

�n1; � � � ; �nn of the n-dimensional vector �n are i.i.d. (0; �2�). Let Xn be a matrix of exogenous

variables. The nonparametric reduced-form relationship between Z2n and Xn is given by Z2n =

�Z2n + Un, where �Z2n = E(Z2n) = f(Xn). We assume uni�s in Un = (u0n1; � � � ; u0nn)0 are i.i.d. such

that E(uni) = 0 and E(u0niuni) = �u. The potential correlation between Z2n and �n is captured by

E(uni�ni) = �u�.1 Let Zn = (Wnyn; Z2n) and �0 = (�0; 00)
0. (1) can be rewritten more compactly

as yn = Zn�0 + �n.

The model (1) represents an equilibrium equation, so (In��0Wn) is assumed to be invertible. The

equilibrium vector yn is given by yn = (In � �0Wn)
�1(Z2n0 + �n). Let Gn(�) =Wn(In � �Wn)

�1

and Gn = Gn(�0). It follows that Wnyn = Gn(Z2n0 + �n). Let G
(p)
n = (Wn; � � � ;W p+1

n ) and

	q(Xn) be a known n� q matrix that depends on Xn.2 The set of instruments is given by an n�K
1When the jth regressor in Z2n is exogenous, we have �u�;j = 0.
2For example, the functions in 	q(Xn) may be a series of base functions in the approximation of �Z2n.
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matrix QK = [G
(p)
n (Ip+1 
 	q(Xn));	q(Xn)] for K � (m + 1), where 
 denotes the Kronecker

product operator.3 Let PK = QK(Q0KQK)
�Q0K , where A

� denotes a generalized inverse. The 2SLS

estimator considered is �̂2sls;n = (Z 0nPKZn)
�1Z 0nPKyn.

Let Fn and Vn denote the deterministic and stochastic parts of Zn respectively, such that Zn =

Fn + Vn where Fn = [Gn �Z2n0; �Z2n] and Vn = [Gn(Un0 + �n); Un]. The asymptotic variance of

the 2SLS estimator will decrease as linear combinations of QK can approximate Fn more closely.

The e¢ ciency lower bound for IV estimators can be attained if a linear combination of QK equals

Fn (Chamberlain, 1987). Under some regularity conditions, Gn can be approximated by a linear

combination of G(p)n as p goes to in�nity.4 To achieve asymptotic e¢ ciency, we need not only to

choose 	q(Xn), likely with a large number of columns q, so that �Z2n can be closely approximated

by linear combinations of 	q(Xn) as in Donald and Newey (2001), but also to choose a big p so

that Gn can be closely approximated by a linear combination of G
(p)
n . On the other hand, when

the number of instruments increases too fast relative to the sample size, the 2SLS estimator can be

asymptotically biased of a certain order (see, e.g., Morimune, 1983). Hence, the MSE, which takes

both bias and variance into account, appears to be an appropriate criterion to choose the instrument

set.

The current paper makes an interesting connection between spatial models with endogenous

regressors and models that are characterized by the availability of many instruments. Spatial mod-

els with endogenous regressors have been considered by Kelejian and Prucha (2004) in the case

of simultaneous systems of spatially interrelated equations and by Kelejian and Prucha (2007) in

the case of a general spatial regression model with spatially correlated error terms and unknown

heteroskedasticity in the innovations. Kelejian and Prucha (2007) presented a general SAR model

yn = Xn�0 + �0Wnyn + Yn0 + un, where Yn denotes the matrix of endogenous regressors. As

indicated in Kelejian and Prucha (2007), this equation may represent an equation in a linear system

of equations such that E(Yn) =
P1

s=0W
s
nXn�s, where Xn is the matrix of all exogenous variables

in the system. In that case, one may have many linear moment conditions as W s
nXn for all s can be

used as instruments. Similarly, if some elements of Yn are generated by a nonlinear model (Kelejian

and Prucha, 2007, p143), without a speci�c nonlinear functional form for the conditional mean of

3Following Donald and Newey (2001), K serves as both the number of instruments and the index of the instrument
set. More generally, it is possible to specify a di¤erent index for the instrument set and use the MSE criterion
introduced later to choose the instrument set. (Newey, 2007)

4See Lemma 2.1 in the next section.
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Yn, we might also end up with many instruments for estimation. The focus of Kelejian and Prucha

(2007) is on the robust estimation with a general pattern of spatial correlation and heteroskedastic-

ity, and a 2SLS estimator with a predetermined number of instruments is proposed to estimate the

general model. The issue raised from the availability of many instruments and the issue of how to

choose the optimal number of instruments have not been considered in that paper.

Since Bekker�s (1994) seminal work, the study of many-instrument asymptotics, where the num-

ber of instruments increases with the sample size, has attracted a lot of attention in the IV estimation

literature. Some recent developments in this area include selection of instruments and moment con-

ditions (e.g., Donald and Newey, 2001), various types of asymptotic sequences, bias-correction (e.g.,

Hansen et al., 2008), and the e¤ects of non-normality on the asymptotic distribution (e.g., Bekker

and van der Ploeg, 2005; van Hasselt, 2010). In particular, Donald and Newey (2001) have considered

a case where the number of instruments grows with, but at a slower rate than, the sample size and

suggested minimizing the Nagar-type approximation (Nagar, 1959) of the mean square error (MSE)

to choose among valid instruments. This literature of many instrument estimation has focused on

the case with independent observations.

In this paper, we also consider the case where the number of instruments increase with the sample

size. The many-instrument asymptotics allows us to study high-order properties of the proposed

2SLS estimator and the bias-corrected 2SLS (C2SLS) estimator for the SAR model. In particular,

it facilitates the derivation of the Nagar-type approximate MSE which can be used as a criterion

function to choose instruments as in Donald and Newey (2001). The theoretical innovation of this

paper is that we allow for spatial correlation in the dependent variable, which complicates matters

as compared to models with only independent observations. The main di¤erences will be discussed

later in this paper.

The rest of the paper is organized as follows. Section 2 derives the asymptotic distribution of the

2SLS estimator and proposes a bias-correction procedure to adjust for the leading-order bias due

to many instruments. Section 3 gives the approximate MSEs of the 2SLS and C2SLS estimators,

which can be used as criterion functions for choosing instruments. The estimation of the criterion

functions is discussed in Section 4. Section 5 presents some Monte-Carlo evidence on the �nite sample

performance of the instrument selection procedure. Section 6 brie�y concludes. The notations are

collected in Section 7 for easy reference. A technical appendix with all the proofs is available on the

web page http://spot.colorado.edu/~xiaodong/.
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2 The 2SLS Estimation and Bias Correction

To derive the asymptotic properties of the 2SLS estimator, we assume the following regularity

conditions. Henceforth, uniform boundedness in row (column) sums in absolute value of a sequence

of square matrices fAng will be abbreviated as UBR (UBC), and uniform boundedness in both row

and column sums in absolute value as UB.5 Let kAk =
p
tr(A0A) denote the Frobenius (Euclidean)

norm for a matrix A.

Assumption 1 f�ni; unig are i.i.d. with zero mean, E(�2ni) = �2� , E(u0niuni) = �u, and E(uni�ni) =

�u�. E(j�nij4), E(jjunijj4) and E(jjuni�nijj2) are bounded, uniformly in n.

Assumption 2 The sequences of matrices fWng and f(In � �0Wn)
�1g are UB.

Assumption 3 (i) �H = limn!1Hn, where Hn = 1
nF

0
nFn, is a �nite nonsingular (m + 1) square

matrix; (ii) for each K there exists �K such that 1
n jjFn �QK�K jj

2 ! 0 as n;K !1.

Assumption 1 imposes restrictions on the moments of the error terms. The uniform boundedness

of fWng and f(In � �0Wn)
�1g in Assumption 2 limits spatial dependence among the units to a

tractable degree and is originated in Kelejian and Prucha (1999). Assumption 3 (i) gives a su¢ cient

identi�cation condition for �0. Assumption 3 (ii) concerns approximation of the unknown reduced-

form Fn. If supn jj�0Wnjj1 < 1, where jjAnjj1 = maxi
Pn

j=1 jAn;ij j is the row sum matrix norm,

Gn = Wn(In � �0Wn)
�1 =

P1
j=0 �

j
0W

j+1
n =

Pp
j=0 �

j
0W

j+1
n + (�0Wn)

p+1Gn. With the vector of

coe¢ cients �(p)0 = (1; �0; � � � ; �p0)0, Gn can be approximated by G
(p)
n (�

(p)
0 
 In) such that jjGn �

G
(p)
n (�

(p)
0 
 In)jj1 � jj�0Wnjjp+11 jjGnjj1 = o(1) as p ! 1.6 Assumption 3 (ii) is implied by a

condition in the following lemma.

Lemma 2.1 Suppose supn jj�0Wnjj1 < 1 and, for each q, there exists �0q such that jj �Z2n�	q(Xn)�0qjj1 !

0 as n; q !1. Then, Assumption 3 (ii) is satis�ed for QK = [G(p)n (Ip+1
	q(Xn));	q(Xn)] where

p; q !1 as n!1.
5A sequence of square matrices fAng, where An = [An;ij ], is said to be UBR (UBC) if the sequence of row sum

matrix norm jjAnjj1 = maxi=1;��� ;n
Pn
j=1 jAn;ij j (column sum matrix norm jjAnjj1 = maxj=1;��� ;n

Pn
i=1 jAn;ij j) is

bounded. (Horn and Johnson, 1985)
6 If supn jj�0Wnjj1 < 1, p can be small as it can have the order O(ln(n)). This is so, because, by taking p = ln(n),

jj�0Wnjjp1 < exp(�a ln(n)) = 1=na for some a > 0. So K may be mainly determined by q. In Lemma 2.1, we
provided some primitive conditions on Wn and q, which would be su¢ cient for Assumption 3 (ii) on K to hold. In
order to make the model more general, we did not impose other restrictions on the functional relation between p; q
and K.
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Assumption 4 (i) The elements of QK are uniformly bounded constants and limn!1
1
nQ

0
KQK

exists and is nonsingular for each K; (ii) the elements of �Z2n are uniformly bounded constants;

and (iii) maxi PK;ii ! 0 and maxi jMK;iij ! 0 as n;K !1, where MK = PKGn.

The uniform boundedness conditions in Assumption 4 (i) and (ii) are for analytic tractability.

The �rst part of Assumption 4 (iii) is originated in Donald and Newey (2001), and the second

part is a generalized requirement which takes into account of spatial interactions. They imposes

restrictions on the rate at which K increases with n.7 The following proposition provides the

asymptotic distribution of the 2SLS with many instruments.

Proposition 1 Under Assumptions 1-4, if K=n! 0, then
p
n(�̂2sls;n��0�b2sls;n)

d! N(0; �2�
�H�1),

where b2sls;n = (Z 0nPKZn)
�1[tr(MK)(�u�0 + �

2
�);K�u�]

0 = Op(K=n).

When the number of instruments grows at a rate slower than the sample size, the 2SLS estimator

is consistent and asymptotically normal. However, the asymptotic distribution of the 2SLS estimator

may not center around the true parameter value due to the presence of many instruments. The

following corollary summarizes the asymptotic properties of the 2SLS for di¤erent divergent rates

of K relative to n.

Corollary 2 Under Assumptions 1-4, (i) if K2=n ! 0,
p
n(�̂2sls;n � �0)

d! N(0; �2� �H
�1); (ii) if

K2=n! c <1 and c 6= 0,
p
n(�̂2sls;n � �0)

d! N(b2sls; �
2
�
�H�1), where b2sls = limn!1

p
nb2sls;n =

�H�1 limn!1[tr(MK)(�u�0+�
2
�);K�u�]

0=
p
n; and (iii) if K2=n!1 but K1+�=n! 0 for 0 < � <

1, K�(�̂2sls;n � �0)
p! 0.

The 2SLS estimator with K instruments given in QK is e¢ cient when K2=n! 0, as the variance

matrix �2� �H
�1 attains the e¢ ciency lower bound for the class of IV estimators. On the other hand,

the condition that K=n ! 0 in Proposition 1 is crucial for the IV estimator to be consistent. The

following corollary shows the inconsistency of the 2SLS estimator if K=n converges to a nonzero

constant.

Proposition 3 Under Assumptions 1-4, if K=n ! c 6= 0, then �̂2sls;n � �0 � b2sls;n
p! 0, where

b2sls;n might converge to a nonzero constant.

7Since PK is an n�n projector with tr(PK) = K, the average diagonal element of PK is �PK;ii =
1
n
tr(PK) = K=n.

Thus, the �rst part of Assumption 4 (iii) imposes some restrictions on the rate K in terms of n.
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To understand this result, let�s look at the �rst-order condition of the 2SLS, 1
nZ

0
nPK(yn �

Zn�̂2sls;n) = 0. At �0, E[ 1nZ
0
nPK(yn � Zn�0)] = 1

nE(V
0
nPK�n) =

1
n [tr(MK)(�u�0 + �

2
�);K�u�]

0 =

O(K=n), which may not converge to zero when the number of instruments grows at the same rate

of the sample size.

The many-instrument bias of the 2SLS estimator can be corrected by the estimated leading-

order bias b2sls;n given in Proposition 1. Let ~�n = (~�n; ~
0
n)
0 be a

p
n-consistent 2SLS estimator

based on a �xed number of instruments Q0. The leading-order bias b2sls;n can be estimated by

b̂2sls;n = (Z
0
nPKZn)

�1[tr(PK ~Gn)(~�u�~n+~�
2
�);K~�u�]

0, where ~Gn = Gn(~�n), ~�0u� =
1
nZ

0
2n(yn�Zn~�n),

and ~�2� =
1
n (yn � Zn~�n)

0(yn � Zn~�n). The bias-corrected 2SLS (C2SLS) estimator is given by

�̂c2sls;n = �̂2sls;n � b̂2sls;n.

Proposition 4 Under Assumptions 1-4, if K=n! 0, then
p
n(�̂c2sls;n � �0)

d! N(0; �2� �H
�1).

The C2SLS estimator is properly centered and asymptotically e¢ cient as long as the number of

instruments increases slower than the sample size.

3 The MSE

Following Donald and Newey (2001), to derive the approximate MSE, we will need to �nd a decom-

position

n(�̂n � �0)(�̂n � �0)0 = L̂(K) + r̂(K); (2)

where E[L̂(K)] = �2�H
�1
n + S(K) + T (K). Here, S(K) is the dominant term that depends on K in

the MSE of the dominant terms for the estimator, and T (K) and r̂(K) are remainder terms that

diminish faster than S(K), such that [r̂(K) + T (K)]=tr(S(K)) = op(1) as K;n!1.

To be intuitively motivated, as the 2SLS and C2SLS estimators can be presented in the form
p
n(�̂n � �0) = Ĥ�1

n ĥn, we consider an expansion such that
p
n(�̂n � �0) = H�1

n �̂ + Ẑ, where

�̂ = ĥn � (Ĥn � Hn)H�1
n hn, Ẑ = H�1

n (Hn � Ĥn)(Ĥ�1
n � H�1

n )hn + (Ĥ
�1
n � H�1

n )(ĥn � hn), and

hn = F 0n�n=
p
n. �̂ and Ẑ are, respectively, linear and quadratic in the di¤erences of estimates

and true values. L̂(K) in (2) is the leading component of H�1
n �̂ �̂ 0H�1

n , and �2�H
�1
n + S(K) is the

dominant component of E[L̂(K)].

Assumption 5 (i) limK!1
1
K tr(MK) 6= 0, (ii)

P
i jMK;iij = O(K).

Assumption 5 (i) is for analytic simplicity. Assumption 5 (ii), together with the second part of
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Assumption 4 (iii), simpli�es the presentation of the approximate MSE for the C2SLS estimator.8

Proposition 5 gives the approximate MSE for the 2SLS estimator.9

Proposition 5 Under Assumptions 1-4 and 5 (i), if K2=n ! 0, �u� 6= 0, �3 = E(�3ni) = 0 and

E(�2niuni) = 0, then equation (2) for the 2SLS estimator is satis�ed with

S(K) =
1

n
H�1
n [E(V 0nPK�n)E(�

0
nPKVn) + �

2
�F

0
n(In � PK)Fn]H�1

n ; (3)

where E(V 0nPK�n) = [tr(MK)(�u�0 + �
2
�);K�u�]

0.

The �rst term in (3) is approximately the MSE of the random vector H�1
n V 0nPK�n=

p
n. The

dominant component of the MSE of this term comes from its expectation. This term is due to

many-instrument bias and increases with the number of instruments K. The second term in S(K)

comes from approximating the reduced from Fn by linear combinations of the columns in the IV

matrix QK . This is a variance term and will be smaller when QK , likely with a large K, provides

a better approximation to Fn. Hence, for the 2SLS estimator, minimization of the MSE criterion

will account for a trade-o¤ between the bias and variance. For the 2SLS estimator, the approximate

MSE has a similar interpretation as that in Donald and Newey (2001). But the expression of the

MSE is more complicated due to spatial correlation. In addition to the projector PK , which plays

the important role in Donald and Newey (2001), the term MK = PKGn, where the matrix Gn

captures the spatial dependence, also plays an important role in the MSE.

The following proposition gives the approximate MSE for the C2SLS estimator. Let

�1(K) =

264 tr(M 0
KMK)(�u�0 + �

2
�)
2 + tr(M2

K)�
2
�(

0
0�u0 + 2�u�0 + �

2
�) �

tr(MK)[(�u�0 + �
2
�)�

0
u� + �

2
�(�u0 + �

0
u�)] K(�0u��u� + �

2
��u)

375 ;
8Without this assumption, the approximate MSE for the C2SLS estimator will have an additional term, which can

be estimated along with S(K) given in Proposition 6. We have conducted Monte Carlo experiments based on the
approximate MSE with and without the estimated additional term. The simulation results are robust.

9 If �3 6= 0 and E(�2niuni) 6= 0, the MSE will have an additional term

1

n
H�1
n [F 0nvecD(MK)E(�

2
niuni)0 + F

0
nvecD(MK)�3; F

0
nvecD(PK)E(�

2
niuni)]

sH�1
n ;

where As = A + A0 and vecD (A) is a column vector formed by the diagonal elements of a square matrix A. This
term can be estimated along with S(K) in (3). We have not included it in the instrument selection criterion function
for simplicity. In Donald and Newey (2001), this simplicity has also been adopted for their suggested MSE criteria.
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and

�2(K) =

264 �2;11 �

[Kn tr(Gn)� tr(MK)]�
2
�(�u0 + �

0
u�) 0

375 ;
where �2;11 = 2[ 1n tr(MK)tr(Gn) � tr(M 0

KMK)]�
2
�(

0
0�u0 + 2�u�0 + �

2
�) + 2[

1
n tr(MK)tr(Gn) �

tr(PKG
2
n)]�

2
�(�u�0 + �

2
�).

Proposition 6 Under Assumptions 1-5, if K=n ! 0, �u� 6= 0, �3 = 0 and E(�2niuni) = 0, then

equation (2) for the C2SLS estimator is satis�ed with

S(K) =
1

n
H�1
n [�1(K) + �2(K) + �

2
�F

0
n(In � PK)Fn]H�1

n : (4)

For the C2SLS, the term 1
nH

�1
n �1(K)H

�1
n in (4) comes from the dominant component in the

variance of H�1
n [V 0nPK�n � E(V 0nPK�n)]=

p
n.10 The second term 1

nH
�1
n �2(K)H

�1
n in S(K) is due

to the estimated leading order bias. And the last term is identical to that in (3) and comes from

approximation error. Thus, for the C2SLS estimator, minimization of the approximate MSE will

account for a trade-o¤ between variance terms. For the C2SLS estimator, the approximate MSE

derived in this paper is more complicated and has one more term 1
nH

�1
n �2(K)H

�1
n than the one

in Donald and Newey (2001). Note that, if we had independent observations instead of spatially

interdependent observations, in �2(K), Gn will be replaced an identity matrix and MK = PKGn

will be replaced by the projection matrix PK , and, then, we would have �2(K) = 0.

4 The Optimal Choice of K

The optimal K can be obtained by minimizing the MSE criteria S�(K) = �0S(K)� of a linear

combination �0�̂n, where S(K) is given in (3) for the 2SLS and in (4) for the C2SLS, and � is a

vector of linear combination coe¢ cients. Let 
1(K) = E(V 0nPK�n)E(�
0
nPKVn), and


2(K) = E(V
0
nPKVn) =

264 tr(M 0
KMK)(

0
0�u0 + 2�u�0 + �

2
�) �

tr(MK)(�u0 + �
0
u�) K�u

375 :
For the 2SLS, S�(K) can be estimated, up to an additive constant, by

Ŝ�(K) =
1

n
�0Ĥ�1

n 
̂1Ĥ
�1
n � +

1

n
�̂2��

0Ĥ�1
n [Z 0n(In � PK)Zn + 
̂2]Ĥ�1

n �; (5)

10Note H�1
n [V 0nPK�n � E(V 0nPK�n)]=

p
n has zero mean.
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with some preliminary estimators given below. Note that

1

n
E[Z 0n(In�PK)Zn] = E[(Fn+Vn)0(In�PK)(Fn+Vn)] =

1

n
F 0n(In�PK)Fn+

1

n
E(V 0nVn)�

1

n
E(V 0nPKVn):

Hence, 1
n [Z

0
n(In � PK)Zn + 
̂2] is an estimator of 1

nFn(In � PK)Fn in S(K), up to a constant
1
nE(V

0
nVn) that does not depend on K. Similarly, for the C2SLS, S�(K) can be estimated, up to an

additive constant, by

Ŝ�(K) =
1

n
�0Ĥ�1

n (�̂1 + �̂2)Ĥ
�1
n � +

1

n
�̂2��

0Ĥ�1
n [Z 0n(In � PK)Zn + 
̂2]Ĥ�1

n �: (6)

For a simple illustration of the preliminary estimators, consider a predetermined IV matrix Q �K

with �K instruments. Let P �K = Q �K(Q
0
�K
Q �K)

�Q0�K ,
��n = (Z

0
nP �KZn)

�1Z 0nP �Kyn, �̂n = yn � Zn��n and

Ûn = (In � P �K)Z2n. Then, 
̂1; 
̂2; �̂1 and �̂2 can be obtained, with the preliminary estimators

�̂u� =
1
n �̂
0
nÛn, �̂

2
� =

1
n �̂
0
n�̂n, and �̂u =

1
n Û

0
nÛn. On the other hand, a preliminary estimator of Hn

could be Ĥn = 1
nZ

0
nP �KZn.

The optimal choice of K is given by K̂ = argminK Ŝ�(K). K̂ is optimal in the sense that the

approximate MSE is asymptotically as small at K̂ as at its minimum, i.e.,

S�(K̂)

minK S�(K)

p! 1: (7)

To show (7), we assume the consistency of the initial estimators in Assumption 6. We also employ

constraints on the set of possible K values in Assumption 7. Let eF (K) = 1
nF

0
n(In � PK)Fn and

�K = tr(eF (K)).

Assumption 6 (i) ��n
p! �0, �̂

2
�
p! �2� , �̂u

p! �u, �̂u�
p! �u�, Ĥn

p! �H, (ii) for 2SLS, infK jS�(K)j=(K2+

n�K) > 0, and for C2SLS infK jS�(K)j=(K + n�K) > 0.

Assumption 7
P

K [nS�(K)]
�1 ! 0.

The following proposition shows that K̂ is the high-order asymptotically optimal choice for the

number of instruments.

Proposition 7 Under Assumptions 1-7, for K̂ = argminK Ŝ�(K), (7) is satis�ed for both 2SLS

and C2SLS.
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5 Simulation Study

We conduct a small Monte-Carlo experiment to study how the instrument selection procedure per-

forms in �nite samples. Some parts of the experimental design follow Donald and Newey (2001).

The model considered is

yn = �0Wnyn + 0Z2n + �n; Z2n = Xn�0 + Un;

where �n = (�n1; � � � ; �nn)0, Un = (un1; � � � ; unn)0, and Xn = (X 0
n1; � � � ; X 0

nn)
0. For �0 = 0:6 and

0 = 1, random samples are generated with (�ni; uni)0 � i:i:d:N(0;�),

� =

0B@ 1 �u�

�u� 1

1CA ;
and Xni � N(0; I�q), where �q is the maximal number of instruments for Z2n. As shown in Hahn and

Hausman (2002), the speci�cation implies a theoretical �rst stage R-squared R2f = �
0
0�0=(�

0
0�0+1).

We consider two models with di¤erent speci�cations of �0. In Model 1, the kth element of �0 is

given by

�0k = c(�q)(1�
k

�q + 1
)4; for k = 1; � � � ; �q;

where c(�q) is chosen such that �00�0 = R2f=(1 � R2f ) for some R2f speci�ed in the experiment. In

this model, the �q instruments are arranged in decreasing order of importance. This speci�cation

represents the case where some instruments are more important than others. This case seems

relevant to many applications as argued by Donald and Newey (2001). For comparison purpose, we

also consider a speci�cation where all instruments in Xn are equally important. The kth element of

�0 is given by

�0k =

s
R2f

�q(1�R2f )
; for k = 1; � � � ; �q;

According to Donald and Newey (2001), this speci�cation represents a �worst case� for the in-

strumental selection procedure, as there is no a priori information to prefer one instrument over

another.

We experiment with di¤erent speci�cations for n 2 f98; 490g, �u� 2 f0:1; 0:5; 0:9g, and R2f 2

f0:02; 0:1g. LetWA denote the weights matrix for the study of crimes across 49 districts in Columbus,

11



Ohio, in Anselin (1988). For n = 98, we set �q = 5 andWn = I2
WA, and conduct 5000 replications.

For n = 490, we set �q = 10 and Wn = I10 
WA, and conduct 1000 replications.

Let Xq
n be a matrix consisting of the �rst q columns of Xn, and Qp;q = [X

q
n;WnX

q
n; � � � ;W p

nX
q
n]

for p = 1; 2; 3 and q = 1; � � � ; �q. The estimators considered are: (i) 2SLS-min: the 2SLS with Q1;1;

(ii) 2SLS-max: the 2SLS with Q3;�q; (iii) 2SLS-op: the 2SLS obtained by choosing the (p; q) to

minimize Ŝ�(K) in (5) with � = (1; 1)0; (iv) C2SLS-max: the C2SLS with Q3;�q; and (v) C2SLS-op:

the C2SLS obtained by choosing the (p; q) to minimize Ŝ�(K) in (6) with � = (1; 1)0. The initial

estimates used in the bias-correction procedure are obtained with Q1;1. The approximate MSEs for

both 2SLS and C2SLS are estimated using Q3;�q.

For summary statistics of each estimator, we use robust measures of central tendency and disper-

sion, namely, the median bias (Med. Bias), the median of the absolute deviations (Med. AD), the

di¤erence between the 0.1 and 0.9 quantile (Dec. Rge) in the empirical distribution, and the cover-

age rate (Cov. Rate) of a nominal 95% con�dence interval. Let Zn = [Wnyn; Z2n] and Ẑn = PKZn.

The variance of �̂n is estimated by V̂(�̂n) = 1
n (yn � Zn�̂n)

0(yn � Zn�̂n)(Ẑ 0nZn)�1Ẑ 0nẐn(Z 0nẐn)�1.

[Tables 1 and 2 approximately here]

Tables 1 and 2 report the summary statistics for the estimators of Model 1. Relative to the 2SLS-

min, instrument selection reduces median absolute deviation and dispersion (interdecile range), and

improves coverage probability. When the reduced-form R2 is low, the 2SLS-op also has smaller

median bias than the 2SLS-min. Instrument selection reduces median bias of the 2SLS-max in

most cases. With moderate sample size n = 490 and �u� 2 f0:5; 0:9g, instrument selection also

improves precision (in terms of median absolute deviation) of the 2SLS-max estimator of 0. Cov-

erage probabilities of the 2SLS-op estimators are closer to their nominal levels than the 2SLS-max.

The suggested bias-correction procedure substantially reduces the many-instrument bias. For the

bias-corrected estimators, instrument selection leads to a reduction in median absolute deviation of

the estimator of 0 and large improvements in coverage probability.

[Tables 3 and 4 approximately here]

Estimation results of Model 2 are reported in Tables 3 and 4. Choosing the number of instruments

tends to raise precision and lower dispersion of the 2SLS-min. Instrument selection also reduces bias

and improves coverage probability of the 2SLS-min estimator of �0. Instrument selection reduces

12



the bias of the 2SLS-max in about half the cases. However, in terms of the precision and dispersion,

the 2SLS-op are generally not as good as the 2SLS-max. This aligns with the �nding in Donald

and Newey (2001) that when instruments are equally important, instrument selection may be less

useful for the 2SLS. Instrument selection improves the precision of the C2SLS estimator of 0. For

the 2SLS and C2SLS, coverage probabilities are closer to their nominal levels when instruments are

chosen.

[Tables 5 and 6 approximately here]

Tables 5 and 6 contain summary statistics for the estimated p̂ and q̂. For most cases in both

models, only the �rst spatial lag (p = 1) is used by the proposed selection procedure. This is

consistent with the fact that the approximation error of Gn by a linear combination of (Wn; � � � ;W p
n)

diminishes very fast as p increases. On the other hand, the distribution of q̂ is quite sensitive to the

speci�cation of �0. Also, there is a tendency to use a larger q when the reduced-form R2f is large.

[Tables 7 and 8 approximately here]

In the simulation study, we also consider the instrument selection procedure proposed in Donald

and Newey (2001) by ignoring the spatial correlation. For a predetermined projector P �K with �K

instruments, let V̂n = (In � P �K)Zn, �̂v� =
1
n �̂
0
nV̂n, and �̂v =

1
n V̂

0
nV̂n. The approximate MSE of the

2SLS in Donald and Newey (2001) is given by

Ŝ�_dn(K) =
1

n
�0Ĥ�1

n [K2�̂0v��̂v� + �̂
2
�(Z

0
n(In � PK)Zn +K�̂v)]Ĥ�1

n �;

where �̂2� and Ĥn can be estimated by the preliminary estimators described in the previous section.

Denote the 2SLS estimator obtained by choosing the (p; q) to minimize Ŝ�_dn(K) with � = (1; 1)0

by 2SLS-dn. The estimation results of Model 1 and the distribution of the estimated p̂ and q̂ are

reported in Tables 7 and 8 respectively. For the estimation of �0, the 2SLS-op generally has smaller

median bias but larger median absolute deviation than the 2SLS-dn. This is consistent with the

observation that the 2SLS-dn tends to use more instruments. Coverage probabilities are closer to

their nominal levels when the approximate MSE explicitly accounts for spatial correlation.
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6 Concluding Remarks

This paper derives the approximate MSEs of the 2SLS and C2SLS estimators of the SAR model

with endogenous regressors. The approximate MSE can be minimized to choose the instruments

as in Donald and Newey (2001). We study the �nite sample behavior of the instrument selection

procedure in a limited Monte-Carlo experiment. We �nd that, for the case where some instruments

are more important than others, the instrument selection often leads to smaller bias, better precision

and more reliable inference.

In a recent paper, Liu and Lee (2010) has considered the estimation of a network model speci�ed

as a SAR model. They suggest that a measure for the interaction structure within a group can be

used as an instrument for the endogenous social interaction e¤ect (similar to the spatial lag term

in the current model). As the number of groups increases in asymptotics, so does the number of

the instruments based on the group interaction measures. The results of the current paper can

be modi�ed to estimate and/or choose instruments in that social interaction model with many

instruments.

7 Summary of Notations

Aij is the (i; j)th element of a matrix A.

For an n� n matrix A, As = A+A0, vecD(A) = (A11; � � � ; Ann)0, and A� is a generalized inverse.

ej is the jth unit (column) vector.

Z2n = �Z2n + Un, where �Z2n = E(Z2n) = f(Xn).

Zn = (Wnyn; Z2n) = Fn + Vn, where Fn = [Gn �Z2n0; �Z2n] and Vn = [Gn(Un0 + �n); Un].

�Un = (�u
0
n1; � � � ; �u0nn)0, where �uni = uni0 + �ni. E(�2ni) = �2� , E(uni�ni) = �u�, and E(u0niuni) = �u.

Gn =Wn(In � �0Wn)
�1, G(p)n = (Wn; � � � ;W p+1

n ).

PK = QK(Q
0
KQK)

�Q0K , MK = PKGn.

eF (K) =
1
nF

0
n(In � PK)Fn, �K = tr(eF (K)), �K;n = tr(S(K)).

hn = F
0
n�n=

p
n, Hn = 1

nF
0
nFn, �H = limn!1Hn.


1(K) = E(V
0
nPK�n)E(�

0
nPKVn), 
2(K) = E[V

0
n(In � PK)Vn];

�1(K) =

264 tr(M 0
KMK)(�u�0 + �

2
�)
2 + tr(M2

K)�
2
�(

0
0�u0 + 2�u�0 + �

2
�) �

tr(MK)[(�u�0 + �
2
�)�

0
u� + �

2
�(�u0 + �

0
u�)] K(�0u��u� + �

2
��u)

375 ;
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and

�2(K) =

264 �2;11 �

[Kn tr(Gn)� tr(MK)]�
2
�(�u0 + �

0
u�) 0

375 ;
where �2;11 = 2[ 1n tr(MK)tr(Gn) � tr(M 0

KMK)]�
2
�(

0
0�u0 + 2�u�0 + �

2
�) + 2[

1
n tr(MK)tr(Gn) �

tr(PKG
2
n)]�

2
�(�u�0 + �

2
�).

For 2SLS,

S(K) =
1

n
H�1
n [
1(K) + �

2
�F

0
n(In � PK)Fn]H�1

n ;

Ŝ�(K) =
1

n
�0Ĥ�1

n 
̂1Ĥ
�1
n � +

1

n
�̂2��

0Ĥ�1
n [Z 0n(In � PK)Zn + 
̂2]Ĥ�1

n �:

For C2SLS,

S(K) =
1

n
H�1
n [�1(K) + �2(K) + �

2
�F

0
n(In � PK)Fn]H�1

n ;

Ŝ�(K) =
1

n
�0Ĥ�1

n (�̂1 + �̂2)Ĥ
�1
n � +

1

n
�̂2��

0Ĥ�1
n [Z 0n(In � PK)Zn + 
̂2]Ĥ�1

n �:
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Table 1: 2SLS Estimation of Model 1, R2f = 0:02

�0 = 0:6 0 = 1:0

n = 98

�u� = 0:1 2SLS-min 0.147 (0.506) [3.045] {0.994} 0.027 (0.643) [3.664] {0.999}

2SLS-max 0.172 (0.175) [0.313] {0.760} 0.004 (0.160) [0.607] {0.960}

2SLS-op 0.132 (0.269) [1.586] {0.964} 0.063 (0.345) [1.886] {0.989}

C2SLS-max 0.018 (0.387) [4.240] {0.544} 0.111 (0.871) [5.743] {0.436}

C2SLS-op -0.055 (0.755) [12.54] {0.787} 0.169 (1.025) [13.42] {0.820}

0:5 2SLS-min 0.114 (0.421) [2.472] {0.994} 0.183 (0.632) [3.629] {0.980}

2SLS-max 0.105 (0.112) [0.256] {0.826} 0.380 (0.381) [0.555] {0.531}

2SLS-op 0.090 (0.187) [1.049] {0.959} 0.357 (0.462) [1.446] {0.795}

C2SLS-max 0.004 (0.277) [3.458] {0.570} 0.247 (0.826) [5.628] {0.415}

C2SLS-op -0.036 (0.659) [13.21] {0.857} 0.270 (1.047) [17.17] {0.811}

0:9 2SLS-min 0.104 (0.339) [2.189] {0.993} 0.285 (0.568) [3.741] {0.885}

2SLS-max 0.035 (0.044) [0.137] {0.901} 0.785 (0.785) [0.328] {0.004}

2SLS-op 0.048 (0.107) [0.739] {0.958} 0.667 (0.717) [1.208] {0.446}

C2SLS-max -0.018 (0.222) [3.217] {0.555} 0.333 (0.741) [5.963] {0.371}

C2SLS-op -0.025 (0.484) [14.49] {0.873} 0.345 (0.868) [17.68] {0.727}

n = 490

�u� = 0:1 2SLS-min 0.118 (0.383) [2.180] {0.994} -0.009 (0.377) [1.719] {0.998}

2SLS-max 0.155 (0.155) [0.207] {0.548} -0.000 (0.102) [0.389] {0.959}

2SLS-op 0.119 (0.183) [0.830] {0.939} 0.029 (0.201) [0.931] {0.986}

C2SLS-max -0.010 (0.202) [2.708] {0.497} 0.036 (0.402) [2.614] {0.458}

C2SLS-op -0.024 (0.306) [4.270] {0.777} 0.089 (0.406) [2.888] {0.822}

0:5 2SLS-min 0.122 (0.337) [1.982] {0.994} 0.027 (0.345) [1.721] {0.971}

2SLS-max 0.103 (0.103) [0.163] {0.659} 0.323 (0.323) [0.350] {0.335}

2SLS-op 0.099 (0.150) [0.645] {0.946} 0.206 (0.305) [0.936] {0.766}

C2SLS-max -0.002 (0.178) [2.120] {0.489} 0.080 (0.422) [2.576] {0.422}

C2SLS-op -0.015 (0.287) [5.323] {0.809} 0.119 (0.399) [3.225] {0.833}

0:9 2SLS-min 0.129 (0.303) [1.939] {0.988} 0.058 (0.334) [1.767] {0.928}

2SLS-max 0.046 (0.046) [0.091] {0.730} 0.679 (0.679) [0.217] {0.000}

2SLS-op 0.112 (0.166) [0.664] {0.934} 0.277 (0.341) [0.950] {0.693}

C2SLS-max -0.014 (0.195) [3.193] {0.438} 0.107 (0.420) [3.636] {0.420}

C2SLS-op -0.017 (0.331) [6.884] {0.804} 0.142 (0.414) [4.668] {0.799}

Med. Bias (Med. AD) [Dec. Rge] {Cov. Rate}
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Table 2: 2SLS Estimation of Model 1, R2f = 0:1

�0 = 0:6 0 = 1:0

n = 98

�u� = 0:1 2SLS-min 0.094 (0.312) [1.787] {0.990} -0.018 (0.283) [1.287] {0.991}

2SLS-max 0.161 (0.163) [0.302] {0.766} -0.005 (0.134) [0.515] {0.951}

2SLS-op 0.107 (0.206) [1.034] {0.959} 0.014 (0.213) [0.933] {0.980}

C2SLS-max -0.009 (0.198) [2.118] {0.609} 0.020 (0.341) [1.849] {0.656}

C2SLS-op -0.028 (0.247) [2.630] {0.755} 0.052 (0.322) [1.832] {0.853}

0:5 2SLS-min 0.105 (0.293) [1.716] {0.989} -0.005 (0.285) [1.351] {0.968}

2SLS-max 0.114 (0.119) [0.249] {0.802} 0.255 (0.258) [0.468] {0.656}

2SLS-op 0.107 (0.184) [0.913] {0.950} 0.130 (0.263) [0.953] {0.864}

C2SLS-max -0.003 (0.194) [2.260] {0.575} 0.032 (0.354) [2.215] {0.639}

C2SLS-op -0.004 (0.245) [3.906] {0.802} 0.074 (0.335) [2.475] {0.857}

0:9 2SLS-min 0.107 (0.276) [1.648] {0.986} 0.002 (0.271) [1.427] {0.936}

2SLS-max 0.068 (0.071) [0.161] {0.807} 0.527 (0.527) [0.338] {0.066}

2SLS-op 0.104 (0.199) [1.087] {0.948} 0.151 (0.287) [1.127] {0.809}

C2SLS-max -0.002 (0.197) [2.544] {0.547} 0.032 (0.353) [2.642] {0.622}

C2SLS-op 0.005 (0.268) [6.076] {0.836} 0.077 (0.354) [3.843] {0.839}

n = 490

�u� = 0:1 2SLS-min 0.026 (0.173) [0.723] {0.979} -0.014 (0.135) [0.564] {0.979}

2SLS-max 0.130 (0.130) [0.196] {0.601} -0.004 (0.075) [0.286] {0.951}

2SLS-op 0.059 (0.109) [0.407] {0.935} 0.004 (0.099) [0.388] {0.951}

C2SLS-max -0.022 (0.080) [0.404] {0.738} 0.009 (0.129) [0.547] {0.762}

C2SLS-op -0.005 (0.083) [0.394] {0.830} 0.019 (0.111) [0.478] {0.848}

0:5 2SLS-min 0.032 (0.172) [0.865] {0.989} -0.026 (0.141) [0.597] {0.972}

2SLS-max 0.105 (0.105) [0.159] {0.611} 0.160 (0.160) [0.261] {0.633}

2SLS-op 0.063 (0.113) [0.439] {0.946} 0.033 (0.110) [0.407] {0.925}

C2SLS-max -0.019 (0.083) [0.514] {0.676} 0.009 (0.137) [0.591] {0.752}

C2SLS-op 0.005 (0.091) [0.459] {0.838} 0.019 (0.119) [0.456] {0.888}

0:9 2SLS-min 0.047 (0.165) [0.998] {0.990} -0.017 (0.143) [0.631] {0.960}

2SLS-max 0.083 (0.083) [0.110] {0.541} 0.327 (0.327) [0.194] {0.065}

2SLS-op 0.059 (0.120) [0.529] {0.957} 0.037 (0.115) [0.438] {0.910}

C2SLS-max -0.016 (0.083) [0.787] {0.627} 0.010 (0.143) [0.731] {0.713}

C2SLS-op 0.005 (0.103) [0.800] {0.829} 0.017 (0.122) [0.498] {0.893}

Med. Bias (Med. AD) [Dec. Rge] {Cov. Rate}
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Table 3: 2SLS Estimation of Model 2, R2f = 0:02

�0 = 0:6 0 = 1:0

n = 98

�u� = 0:1 2SLS-min 0.139 (0.570) [3.630] {0.995} 0.082 (0.900) [5.313] {1.000}

2SLS-max 0.171 (0.174) [0.317] {0.759} 0.007 (0.161) [0.615] {0.957}

2SLS-op 0.131 (0.271) [1.641] {0.959} 0.075 (0.367) [2.413] {0.989}

C2SLS-max 0.024 (0.452) [5.417] {0.544} 0.155 (1.126) [7.771] {0.368}

C2SLS-op -0.055 (0.963) [15.90] {0.767} 0.238 (1.494) [21.11] {0.759}

0:5 2SLS-min 0.092 (0.437) [2.627] {0.997} 0.393 (0.892) [4.724] {0.987}

2SLS-max 0.104 (0.111) [0.254] {0.830} 0.382 (0.383) [0.549] {0.531}

2SLS-op 0.084 (0.178) [1.048] {0.958} 0.417 (0.507) [1.662] {0.778}

C2SLS-max -0.001 (0.293) [3.691] {0.589} 0.457 (1.063) [6.829] {0.324}

C2SLS-op -0.059 (0.689) [14.54] {0.850} 0.515 (1.395) [21.67] {0.754}

0:9 2SLS-min 0.041 (0.264) [1.682] {0.998} 0.658 (0.843) [3.599] {0.830}

2SLS-max 0.034 (0.044) [0.136] {0.902} 0.784 (0.784) [0.331] {0.004}

2SLS-op 0.031 (0.091) [0.574] {0.966} 0.781 (0.801) [1.057] {0.374}

C2SLS-max -0.009 (0.120) [2.035] {0.648} 0.654 (0.930) [4.895] {0.248}

C2SLS-op -0.027 (0.311) [10.11] {0.888} 0.699 (1.084) [15.67] {0.599}

n = 490

�u� = 0:1 2SLS-min 0.159 (0.517) [2.731] {0.997} 0.048 (0.723) [3.957] {0.998}

2SLS-max 0.155 (0.155) [0.209] {0.542} 0.002 (0.104) [0.406] {0.961}

2SLS-op 0.140 (0.205) [1.159] {0.939} 0.069 (0.254) [1.585] {0.987}

C2SLS-max 0.025 (0.302) [3.655] {0.462} 0.121 (0.770) [4.856] {0.295}

C2SLS-op -0.009 (0.667) [9.910] {0.736} 0.186 (0.871) [10.54] {0.719}

0:5 2SLS-min 0.097 (0.391) [2.578] {0.999} 0.266 (0.693) [4.337] {0.984}

2SLS-max 0.104 (0.104) [0.161] {0.667} 0.322 (0.322) [0.351] {0.341}

2SLS-op 0.092 (0.145) [0.767] {0.948} 0.346 (0.429) [1.268] {0.720}

C2SLS-max 0.003 (0.207) [3.091] {0.498} 0.307 (0.783) [5.109] {0.265}

C2SLS-op -0.038 (0.554) [10.55] {0.799} 0.379 (0.950) [12.34] {0.711}

0:9 2SLS-min 0.082 (0.307) [1.941] {0.997} 0.429 (0.639) [3.926] {0.866}

2SLS-max 0.046 (0.046) [0.091] {0.723} 0.675 (0.675) [0.224] {0.000}

2SLS-op 0.073 (0.143) [0.922] {0.968} 0.588 (0.640) [1.570] {0.553}

C2SLS-max -0.007 (0.132) [2.269] {0.492} 0.402 (0.651) [4.522] {0.216}

C2SLS-op -0.003 (0.326) [10.25] {0.836} 0.438 (0.796) [12.25] {0.633}

Med. Bias (Med. AD) [Dec. Rge] {Cov. Rate}
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Table 4: 2SLS Estimation of Model 2, R2f = 0:1

�0 = 0:6 0 = 1:0

n = 98

�u� = 0:1 2SLS-min 0.135 (0.481) [2.912] {0.994} 0.012 (0.576) [3.238] {0.999}

2SLS-max 0.159 (0.162) [0.301] {0.769} 0.001 (0.135) [0.515] {0.951}

2SLS-op 0.121 (0.212) [1.175] {0.946} 0.051 (0.256) [1.339] {0.977}

C2SLS-max 0.032 (0.310) [3.464] {0.545} 0.061 (0.580) [3.910] {0.479}

C2SLS-op 0.011 (0.394) [4.821] {0.667} 0.069 (0.556) [4.267] {0.690}

0:5 2SLS-min 0.116 (0.410) [2.455] {0.994} 0.138 (0.571) [3.154] {0.982}

2SLS-max 0.113 (0.118) [0.246] {0.805} 0.259 (0.263) [0.466] {0.659}

2SLS-op 0.100 (0.171) [0.889] {0.948} 0.252 (0.346) [1.153] {0.826}

C2SLS-max 0.012 (0.240) [2.996] {0.554} 0.142 (0.573) [3.895] {0.459}

C2SLS-op 0.005 (0.325) [4.816] {0.722} 0.188 (0.573) [4.892] {0.695}

0:9 2SLS-min 0.109 (0.342) [2.237] {0.993} 0.233 (0.527) [3.328] {0.903}

2SLS-max 0.067 (0.070) [0.157] {0.810} 0.527 (0.527) [0.335] {0.065}

2SLS-op 0.083 (0.177) [1.178] {0.963} 0.408 (0.494) [1.495] {0.668}

C2SLS-max 0.008 (0.199) [2.943] {0.540} 0.193 (0.516) [4.346] {0.444}

C2SLS-op 0.012 (0.291) [5.994] {0.763} 0.241 (0.554) [6.642] {0.670}

n = 490

�u� = 0:1 2SLS-min 0.125 (0.387) [2.370] {0.996} -0.007 (0.397) [1.803] {0.997}

2SLS-max 0.133 (0.133) [0.185] {0.574} -0.004 (0.074) [0.281] {0.956}

2SLS-op 0.110 (0.151) [0.598] {0.900} 0.019 (0.134) [0.680] {0.965}

C2SLS-max 0.018 (0.163) [1.858] {0.496} 0.024 (0.246) [1.340] {0.512}

C2SLS-op 0.020 (0.170) [1.632] {0.548} 0.030 (0.209) [1.014] {0.628}

0:5 2SLS-min 0.131 (0.341) [2.042] {0.995} 0.031 (0.377) [1.797] {0.972}

2SLS-max 0.110 (0.110) [0.150] {0.592} 0.161 (0.162) [0.258] {0.626}

2SLS-op 0.106 (0.151) [0.696] {0.930} 0.123 (0.220) [0.897] {0.874}

C2SLS-max 0.006 (0.148) [1.923] {0.475} 0.047 (0.240) [1.541] {0.515}

C2SLS-op 0.013 (0.162) [1.886] {0.565} 0.050 (0.201) [1.238] {0.656}

0:9 2SLS-min 0.138 (0.300) [1.989] {0.990} 0.067 (0.348) [1.806] {0.933}

2SLS-max 0.082 (0.082) [0.108] {0.540} 0.326 (0.326) [0.194] {0.059}

2SLS-op 0.130 (0.220) [1.287] {0.969} 0.178 (0.306) [1.270] {0.846}

C2SLS-max -0.006 (0.159) [2.230] {0.452} 0.063 (0.233) [1.901] {0.493}

C2SLS-op 0.016 (0.160) [2.104] {0.597} 0.080 (0.206) [1.618] {0.679}

Med. Bias (Med. AD) [Dec. Rge] {Cov. Rate}
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Table 5: The Distributions of p̂ and q̂ in Model 1

2sls c2sls

p̂ q̂ p̂ q̂

n = 98

R2f = 0:02 �u� = 0:1 1 [ 1, 1, 2] 1 [ 1, 1, 2] 1 [ 1, 1, 2] 1 [ 1, 2, 4]

0:5 1 [ 1, 1, 2] 1 [ 1, 1, 3] 1 [ 1, 1, 2] 1 [ 1, 1, 2]

0:9 1 [ 1, 1, 2] 1 [ 1, 1, 3] 1 [ 1, 1, 2] 1 [ 1, 1, 2]

0:1 �u� = 0:1 1 [ 1, 1, 2] 1 [ 1, 1, 2] 1 [ 1, 1, 3] 1 [ 1, 3, 5]

0:5 1 [ 1, 1, 2] 1 [ 1, 1, 2] 1 [ 1, 1, 2] 1 [ 1, 2, 3]

0:9 1 [ 1, 1, 1] 1 [ 1, 1, 2] 1 [ 1, 1, 2] 1 [ 1, 1, 2]

n = 490

R2f = 0:02 �u� = 0:1 1 [ 1, 1, 2] 1 [ 1, 2, 4] 1 [ 1, 1, 2] 1 [ 1, 2, 4]

0:5 1 [ 1, 1, 2] 1 [ 1, 2, 4] 1 [ 1, 1, 2] 1 [ 1, 2, 3]

0:9 1 [ 1, 1, 1] 1 [ 1, 2, 2] 1 [ 1, 1, 1] 1 [ 1, 2, 3]

0:1 �u� = 0:1 1 [ 1, 1, 1] 2 [ 2, 3, 4] 1 [ 1, 2, 3] 3 [ 3, 5, 9]

0:5 1 [ 1, 1, 1] 2 [ 2, 2, 3] 1 [ 1, 1, 2] 3 [ 3, 4, 6]

0:9 1 [ 1, 1, 1] 2 [ 1, 2, 2] 1 [ 1, 1, 1] 2 [ 2, 3, 4]

Mode [L.Q., Med., U.Q.]

Table 6: The Distributions of p̂ and q̂ in Model 2

2sls c2sls

p̂ q̂ p̂ q̂

n = 98

R2f = 0:02 �u� = 0:1 1 [ 1, 1, 2] 1 [ 1, 1, 3] 1 [ 1, 1, 2] 1 [ 1, 2, 4]

0:5 1 [ 1, 1, 2] 1 [ 1, 2, 4] 1 [ 1, 1, 2] 1 [ 1, 1, 3]

0:9 1 [ 1, 1, 2] 1 [ 1, 2, 3] 1 [ 1, 1, 2] 1 [ 1, 1, 3]

0:1 �u� = 0:1 1 [ 1, 1, 2] 1 [ 1, 2, 4] 1 [ 1, 1, 3] 5 [ 2, 4, 5]

0:5 1 [ 1, 1, 2] 1 [ 1, 2, 4] 1 [ 1, 1, 2] 5 [ 2, 3, 5]

0:9 1 [ 1, 1, 1] 1 [ 1, 1, 2] 1 [ 1, 1, 2] 1 [ 1, 3, 4]

n = 490

R2f = 0:02 �u� = 0:1 1 [ 1, 1, 2] 1 [ 1, 2, 6] 1 [ 1, 1, 2] 1 [ 1, 3, 7]

0:5 1 [ 1, 1, 2] 1 [ 1, 2, 6] 1 [ 1, 1, 1] 1 [ 1, 2, 5]

0:9 1 [ 1, 1, 1] 1 [ 1, 1, 2] 1 [ 1, 1, 1] 1 [ 1, 1, 4]

0:1 �u� = 0:1 1 [ 1, 1, 1] 1 [ 1, 4, 9] 1 [ 1, 1, 3] 10 [9,10,10]

0:5 1 [ 1, 1, 1] 1 [ 1, 2, 4] 1 [ 1, 1, 1] 10 [8,10,10]

0:9 1 [ 1, 1, 1] 1 [ 1, 1, 2] 1 [ 1, 1, 1] 10 [ 6, 9,10]

Mode [L.Q., Med., U.Q.]
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Table 7: 2SLS Estimation of Model 1 with Selected IVs based on Ŝ�_dn(K)

�0 = 0:6 0 = 1:0

n = 98

R2f = 0:02 �u� = 0:1 2SLS-dn 0.150 (0.207) [0.715] {0.911} 0.033 (0.220) [1.096] {0.987}

0:5 2SLS-dn 0.097 (0.156) [0.654] {0.940} 0.373 (0.434) [1.113] {0.723}

0:9 2SLS-dn 0.050 (0.098) [0.611] {0.955} 0.689 (0.734) [1.156] {0.402}

n = 490

�u� = 0:1 2SLS-dn 0.140 (0.157) [0.394] {0.813} 0.018 (0.130) [0.564] {0.979}

0:5 2SLS-dn 0.099 (0.126) [0.387] {0.907} 0.254 (0.304) [0.724] {0.678}

0:9 2SLS-dn 0.110 (0.156) [0.579] {0.928} 0.297 (0.356) [0.917] {0.651}

n = 98

R2f = 0:1 �u� = 0:1 2SLS-dn 0.142 (0.170) [0.474] {0.886} 0.005 (0.157) [0.659] {0.974}

0:5 2SLS-dn 0.118 (0.146) [0.483] {0.910} 0.190 (0.270) [0.795] {0.772}

0:9 2SLS-dn 0.114 (0.166) [0.777] {0.934} 0.197 (0.308) [1.045] {0.732}

n = 490

�u� = 0:1 2SLS-dn 0.117 (0.121) [0.241] {0.741} 0.002 (0.079) [0.309] {0.956}

0:5 2SLS-dn 0.093 (0.109) [0.300] {0.889} 0.053 (0.106) [0.382] {0.867}

0:9 2SLS-dn 0.078 (0.114) [0.391] {0.938} 0.047 (0.108) [0.386] {0.879}

Med. Bias (Med. AD) [Dec. Rge] {Cov. Rate}

Table 8: The Distributions of p̂ and q̂ Selected based on Ŝ�_dn(K)

n = 98 n = 490

p̂ q̂ p̂ q̂

R2f = 0:02 �u� = 0:1 1 [ 1, 2, 3] 1 [ 1, 3, 4] 3 [ 1, 2, 3] 10 [ 2, 5, 8]

0:5 1 [ 1, 2, 3] 1 [ 1, 2, 4] 1 [ 1, 1, 3] 2 [ 2, 3, 7]

0:9 1 [ 1, 1, 2] 1 [ 1, 2, 3] 1 [ 1, 1, 1] 1 [ 1, 2, 2]

0:1 �u� = 0:1 3 [ 1, 2, 3] 5 [ 2, 3, 5] 3 [ 2, 3, 3] 10 [ 5, 7, 9]

0:5 1 [ 1, 2, 3] 1 [ 1, 2, 4] 1 [ 1, 1, 2] 3 [ 3, 3, 5]

0:9 1 [ 1, 1, 2] 1 [ 1, 1, 2] 1 [ 1, 1, 1] 2 [ 2, 2, 2]

Mode [L.Q., Med., U.Q.]
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