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Abstract

This paper considers the identification of social interaction effects in the context

of multivariate choices. First, we generalize the theoretical social interaction model to

allow individuals to make interdependent choices in different activities. Based on the

theoretical model, we propose a simultaneous-equation network model and discuss the

identification of social interaction effects in the econometric model. We also provide an

empirical example to show the empirical salience of this model. Using the Add Health

data, we find that a student’s academic performance is not only affected by academic

performance of her peers but also affected by screen-related activities of her peers.
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1 Introduction

Peer choices and/or peer characteristics have been shown to be important in predicting

individual outcomes, ranging from education and crime to participation in the labor market

(see, e.g., Ioannides and Loury, 2004; Sacerdote, 2011; Patacchini and Zenou, 2012). Most

of this literature has, however, focused on peer effects on choices regarding one specific

activity.

In reality, individuals make a multitude of choices in different activities, many of which

may depend on each other. As a result, an individual may have different and sometimes

opposite influences on her friend. For example, if a student is very active in extracurricular

activities but also studies very hard, how would these choices affect the study effort of her

friends? The peer effects of interdependent choices is what we study in this paper. Our

purpose is to help understand the decision making process involving multiple activities in

the context of peer influences and social networks.

The contribution of this paper is threefold. First, we provide a microfoundation that

helps characterize the decision making process in multiple activities in a social interaction

setting. The theoretical model we consider has two important features. First, as is common

in this literature (see, e.g., Ballester et al., 2006; Bramoullé and Kranton, 2007; Bramoullé

et al., 2014; Jackson and Zenou, 2015), our model has the feature that individuals enjoy

utility as a function of peers’choices. Second, our model allows individuals to make choices

in multiple activities that have an arbitrary degree of complementarity or substitutabil-

ity.1 The model is general enough to encompass arbitrary combinations of choices without

making assumptions regarding the orderings of choice bundles. This generality is essential

because combining sets of choices into bundles in a social interaction context dramatically

1Belhaj and Deroïan (2014) and Chen et al. (2015) develop a network model where two activities
are considered. Both papers only analyze the theoretical implications of their respective models without
addressing econometric issues.
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restricts the set of possible actions available to individuals. It is easy to construct exam-

ples of preference reversals in the bundled goods setting that comply with standard choice

axioms in the general setting considered here.

Second, we investigate the identification of peer effects in the context of multivariate

choices. The econometric model implied by the best response function of the theoreti-

cal model extends the simultaneous-equation spatial autoregressive model introduced by

Kelejian and Prucha (2004) to allow for network fixed effects. As single-activity social

interaction models (e.g., Bramoullé et al., 2009; Lee et al., 2010), our model includes the

within-activity peer effect (also known as the endogenous peer effect in single-activity social

interaction models) where an individual’s choice in an activity may depend on the choices

of her peers in the same activity; the contextual effect, where an individual’s choice may

depend on the exogenous characteristics of her peers; and the correlated effect, where indi-

viduals in the same network tend to behave similarly because they have similar unobserved

individual characteristics and/or face similar institutional environments. The well known

reflection problem (Manski, 1993) emerges from the coexistence of these effects. Further-

more, an individual’s choice in a certain activity may depend on her own choices in related

activities. This is the usual simultaneity effect that is endemic in simultaneous-equation

models. To distinguish it from other types of simultaneity effects in our model, we call

it the self-simultaneity effect. Finally, our model includes a new type of social interaction

effect, the cross-activity peer effect, where an individual’s choice in an activity may depend

on the choices of her peers in related activities. Following Bramoullé et al. (2009), we

provide identification conditions for these social interaction and simultaneity effects based

on the topology of underlying networks.

Third, we test the empirical salience of this model. Using a representative sample

of U.S. teenagers in the National Longitudinal Study of Adolescent Health (Add Health)
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data, we find that a student’s academic performance is positively affected by academic

performance of her peers and negatively affected by screen-related activities of her peers.

The rest of the paper is organized as follows. We develop a general theoretical model in

Section 2. Section 3 presents the econometric model and Section 4 discusses the identifica-

tion of peer effects. Section 5 provides an empirical example. Finally, Section 6 concludes.

The proofs are collected in the online appendix.

2 Theoretical Model

Suppose a finite set of individuals {1, · · · , n} is connected by a network. We keep track of

social connections in the network through an adjacency matrixG = [gij ]. Let ni denote the

number of direct connections of individual i. For ease of presentation, we assume ni > 0 for

all i. The (i, j)-th element of G is given by gij = 1/ni if individuals i and j are connected

and gij = 0 otherwise. We set gii = 0. We define the peers of individual i as the set of

individuals connected to individual i, i.e. {j : gij > 0}. An example is given in Figure 1

for a star-shaped network with four individuals.

3 4
1

2

G =



0 1/3 1/3 1/3

1 0 0 0

1 0 0 0

1 0 0 0


Figure 1: an example of G for a star-shaped network.

In the network game, individuals choose their effort levels in two activities, denoted

by y1 = (y11, · · · , yn1)′ and y2 = (y12, · · · , yn2)′, to maximize their utility. The utility of
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individual i is a linear-quadratic function of the effort levels y1 and y2 given by

Ui(y1,y2) = $i1yi1 +$i2yi2 +
∑n
j=1 gij(%11yj1yi1 + %12yj1yi2 + %21yj2yi1 + %22yj2yi2)︸ ︷︷ ︸

payoff

−1

2
(ϕ11y

2
i1 + 2ϕ12yi1yi2 + ϕ22y

2
i2)︸ ︷︷ ︸

cost

. (2.1)

As in the single-activity linear-quadratic utility function considered in Ballester et al.

(2006), the utility given by (2.1) has two components: payoff and cost. The marginal

payoff of individual i’s effort in activity k (for k = 1, 2) depends on (exogenous) attributes

of individual i given by $ik and the average effort of her peers in the same and related

activities given by
∑2
l=1 %lk

∑n
j=1 gijyjl. The parameter %lk (for k, l = 1, 2) captures the

strategic substitutability or complementarity (depending on the sign of %lk) between indi-

vidual i’s own effort in activity k and her peers’average effort in activity l. The marginal

cost of individual i’s effort in activity k depends on individual i’s effort in both activities.

The parameter ϕ12 measures the substitutability or complementarity (depending on the

sign of ϕ12) of an individual’s effort levels in these two activities.

Given the network structure and effort levels of the peers, individual i chooses effort lev-

els yi1 and yi2 to maximize the utility (2.1). From the first order condition, the equilibrium

best response function is

yik = φlkyil + λkk
∑n
j=1 gijyjk + λlk

∑n
j=1 gijyjl + πik, for k = 1, 2 and l = 3− k,

where φlk = −ϕ12/ϕkk, λkk = %kk/ϕkk, λlk = %lk/ϕkk, and πik = $ik/ϕkk. In matrix form,

the equilibrium best response function is given by

yk = φlkyl + λkkGyk + λlkGyl + πk, for k = 1, 2 and l = 3− k, (2.2)
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where πk = (π1k, · · · , πnk)′. Let

S = (1− φ12φ21)In − (λ11 + λ22 + φ21λ12 + φ12λ21)G + (λ11λ22 − λ12λ21)G2. (2.3)

If φ12φ21 6= 1 and

max{|λ11 + φ21λ12|+|λ21 + φ21λ22| , |λ22 + φ12λ21|+|λ12 + φ12λ11|} < |1− φ12φ21| , (2.4)

then S defined in (2.3) is nonsingular and the network game with the utility (2.1) has a

unique Nash equilibrium in pure strategies with the equilibrium efforts given by

yk = S−1[(In − λllG)πk + (φlkIn + λlkG)πl], for k = 1, 2 and l = 3− k.

This theoretical model provides a microfoundation to understand an individual’s be-

havior involving multiple activities and motivates the econometric model considered in

the following section. However, it is worth noting that the best response function that

the econometric model is based on can be derived from theoretical models with other un-

derlying utility functions (see online Appendix A). Hence, the usefulness of the proposed

econometric model is not limited to the specific structural model considered here.

3 Simultaneous-Equation Network Model

3.1 The econometric model

Consider a data set containing r̄ networks, with nr individuals in the r-th network (r =

1, · · · , r̄) and
∑r̄
r=1 nr = n. Links between individuals in network r are captured by

an nr × nr zero-diagonal row-normalized adjacency matrix Gr = [gij,r] as defined in the

previous section.
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Our specification of the econometric model follows closely from the equilibrium best re-

sponse function of the theoretical model. For the r-th network, the best response functions

(2.2) can be written as

yk,r = φlkyl,r + λkkGryk,r + λlkGryl,r + πk,r, for k = 1, 2 and l = 3− k. (3.1)

Let πk,r = Xrβk + GrXrγk + αk,rιnr + εk,r, for k = 1, 2, where Xr is an nr × p matrix of

observations on p exogenous individual characteristics, ιnr is an nr × 1 vector of ones, and

εk,r is an nr × 1 vector of disturbances. Then, substitution of πk,r into the best response

functions (3.1) gives the simultaneous-equation network model

yk,r = φlkyl,r + λkkGryk,r + λlkGryl,r + Xrβk + GrXrγk + αk,rιnr + εk,r, (3.2)

for k = 1, 2, l = 3− k, and r = 1, · · · , r̄.

Let diag{Ds}s̄s=1 denote a “generalized” block diagonal matrix with diagonal blocks

being (possibly non-square) matrices Ds’s for s = 1, · · · , s̄. For all r̄ networks in the

sample, the simultaneous-equation network model can be written as

yk = φlkyl + λkkGyk + λlkGyl + Xβk + GXγk + Lαk + εk, (3.3)

where yk = (y′k,1, · · · ,y′k,r̄)′, X = (X′1, · · · ,X′r̄)′, εk = (ε′k,1, · · · , ε′k,r̄)′, G = diag{Gr}r̄r=1,

L = diag{ιnr}r̄r=1, and αk = (αk,1, · · · , αk,r̄)′, for k = 1, 2 and l = 3− k.

In model (3.3), we allow network fixed effects captured by αk to depend on G and X

by treating αk as vectors of unknown parameters. To avoid the “incidental parameters”

problem (Neyman and Scott, 1948) when the number of network r̄ is large, we transform

(3.3) with a projector J = diag{Jr}r̄r=1, where Jr = Inr − 1
nr
ιnrι

′
nr . This transformation is
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analogous to the within transformation for fixed effect panel data models. As JL = 0, the

within-transformed model is

Jyk = φlkJyl + λkkJGyk + λlkJGyl + JXβk + JGXγk + Jεk, (3.4)

for k = 1, 2 and l = 3− k.

Following Bramoullé et al. (2009), we assume that we observe an independently dis-

tributed sample of size r̄ from a population of networks with a fixed and known structure

(i.e. G is nonstochastic). We consider the identification of the parameters in the within-

transformed model (3.4) via the moment conditions E(εk|X) = 0 for k = 1, 2. It is worth

noting that we do not impose any restrictions on the variance and covariance matrices of

ε1 and ε2 given by E(εkε
′
l|X), for k, l = 1, 2, except that they are finite and the diagonal

elements of E(εkε
′
k|X) are bounded away from zero.

3.2 Identification challenges

As in most models in the social interaction literature (see, e.g., Blume et al., 2011; Ioan-

nides, 2012), a host of identification issues arises in the simultaneous-equation network

model (3.3). In particular, model (3.3) not only suffers from the reflection problem as

single-activity social interaction models but also has the simultaneity issue that is endemic

to simultaneous-equation models. Our main interest in this paper is to study the identifi-

cation of the following effects in this model.

The within-activity peer effect and contextual effect The well known reflection

problem (Manski, 1993) emerges from the coexistence of the within-activity peer effect

λkk (aka. the endogenous peer effect in single-activity social interaction models) and the

contextual effect γk. In Manski’s linear-in-means model, individuals are assumed to be
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affected by all members of their group and by no one outside the group, and thus the

simultaneity in behavior of individuals in the same group introduces a perfect collinearity

between the within-activity peer effect and the contextual effect. Hence, these two effects

cannot be identified in the linear-in-means model from the moment conditions E(εk|X) = 0.

In most social networks, individuals are not impacted evenly by all members in the

network. Instead, they are influenced by their (direct) connections or peers. Thus, the

structure of social networks can be exploited to identify peer effects. This was originally

recognized in Cohen-Cole (2006) and systematically explored in Bramoullé et al. (2009).

Bramoullé et al. (2009) show that these two effects can be identified if intransitivities exist

in a network so that Inr ,Gr,G
2
r are linearly independent. Intuitively, if individuals i and

j are connected and j and k are connected, it does not necessarily imply that i and k are

also connected. Because of intransitivities, the characteristics of an individual’s indirect

connections are not collinear with her own characteristics and the characteristics of her

direct connections. Therefore, the characteristics of an individual’s indirect connections

can be used as instruments to identify the endogenous within-activity peer effect from the

exogenous contextual effect.

The cross-activity peer effect and self-simultaneity effect A central component

of our model is that we allow an individual’s behavior in a certain activity to be affected

by her own and her peers’choices in other activities, by introducing the self-simultaneity

effect φlk, and the cross-activity peer effect λlk, for l 6= k. These two effects bring additional

layers of complication to the identification. In this paper, we show that the self-simultaneity

effect, the within-activity and cross-activity peer effects, and the contextual effect cannot

be separately identified solely relying on intransitivities of network connections. In order

to achieve identification, we need to impose exclusion restrictions on the model coeffi cients

as in a classical simultaneous-equation model (see, e.g., Schmidt, 1976).
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The correlated effect Finally, in our model, the correlated effect is captured by

the network fixed effect parameter αk. The network fixed effect can be motivated by a

two-step link formation model, where, in the first step, individuals self-select into different

networks based on network-specific characteristics and, in the second step, link formation

takes place within networks based on observable individual characteristics. Thus, network

fixed effects serve as a partial remedy for the bias that originates from the possible sorting of

individuals into networks. In our identification strategy, the correlated effect is eliminated

by the within transformation.

4 Identification of Social Interaction Effects

Identification of the simultaneous-equation network model (3.4) via the moment conditions

E(Jε1|X) = E(Jε2|X) = 0 requires E(JZ1|X) and E(JZ2|X) to have full column rank,

where Z1 = [y2,Gy1,Gy2,X,GX] and Z2 = [y1,Gy2,Gy1,X,GX]. However, in general,

this rank condition is not satisfied.

Proposition 1. For the simultaneous-equation network model (3.4), E(JZ1|X) and E(JZ2|X)

do not have full column rank.

Therefore, to achieve identification, we need to impose exclusion restrictions. Model

(3.4) has a pseudo reduced form

Jyk = λ∗kkJGyk + λ∗lkJGyl + JXβ∗k + JGXγ∗k + Jε∗k, (4.1)

for k = 1, 2 and l = 3− k, where

λ∗kk = (1− φ12φ21)−1(λkk + φlkλkl), λ∗lk = (1− φ12φ21)−1(λlk + φlkλll),

β∗k = (1− φ12φ21)−1(βk + φlkβl), γ∗k = (1− φ12φ21)−1(γk + φlkγl),
(4.2)
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and Jε∗k = (1− φ12φ21)−1(Jεk + φlkJεl). Our identification strategy takes two steps as in

Yang and Lee (2017). In the first step, we show that the pseudo reduced form parame-

ters can be identified by exploiting intransitivities of network connections. In the second

step, we show that the structural parameters in model (3.4) can be identified from the

pseudo reduced form parameters by imposing exclusion restrictions as in a classical linear

simultaneous-equation model.

4.1 Identification of pseudo reduced form parameters

The pseudo reduced form (4.1) has the same specification as a simultaneous-equation net-

work model without self-simultaneity effects, i.e. φ12 = φ21 = 0. By a similar argument

as in Bramoullé et al. (2009), this model is identified if the network topology satisfies As-

sumption 1 (see the proof of Proposition 2). Let β∗k,h and γ
∗
k,h denote the h-th element of

β∗k and γ
∗
k respectively, for k = 1, 2.

Assumption 1. (i) In the data generating process, for some h ∈ {1, · · · , p},

(λ∗11β
∗
1,h + λ∗21β

∗
2,h + γ∗1,h)[(λ∗12λ

∗
21 − λ∗11λ

∗
22)β∗2,h + λ∗12γ

∗
1,h − λ∗11γ

∗
2,h]

6= (λ∗22β
∗
2,h + λ∗12β

∗
1,h + γ∗2,h)[(λ∗12λ

∗
21 − λ∗11λ

∗
22)β∗1,h + λ∗21γ

∗
2,h − λ∗22γ

∗
1,h].

(ii) The matrices In,G,G2,G3,G4 are linearly independent.

Remark 1. The moment condition E(Jεk|X) = 0 implies E(Jyk|X) = E(JZ∗k|X)θ∗k, where

Z∗k = [Gyk,Gyl,X,GX] and θ∗k = (λ∗kk, λ
∗
lk,β

∗′
k ,γ

∗′
k )′, for k = 1, 2 and l = 3−k. To better

understand Assumption 1 (i), consider two special cases where this assumption is violated.

In the first case, suppose β∗k = γ∗k = 0, for k = 1, 2, in the data generating process. This

case corresponds to the situation where none of the observed exogenous characteristics

has an effect on y1 and y2. In this case, E(JZ∗k|X) does not have full column rank as
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E(JGy1|X) = E(JGy2|X) = 0. In the second case, suppose the restrictions, λ∗11 = λ∗22

and λ∗12 = λ∗21 = 0, hold in the data generating process but the researcher estimates model

(4.1) without imposing these restrictions. This case corresponds to the situation where the

true model is a seemingly unrelated regression (SUR) network model with identical within-

activity peer effects. In this case, E(JGyk|X) = JG(I − λ∗kkG)−1[X,GX](β∗′k ,γ
∗′
k )′, for

k = 1, 2, and hence E(JZ∗k|X) does not have full column rank due to the perfect collinearity

of E(JGy1|X) and E(JGy2|X).

Remark 2. As pointed out by Bramoullé et al. (2009), the powers of the adjacency matrix

G is closely related to the diameter of the network. In graph theory, the (i, j)-th element

of Gs is non-zero if there exists a path from node i to node j of length s, and the diameter

of a network is the shortest distance between the two most distant nodes in the network.

Hence, to check the linear independence of In,G,G2,G3,G4, one could simply check if

there exists a pair of nodes i and j (i 6= j) in the network such that the shortest path from

i to j is of length 4, i.e., if the diameter of the network is no less than 4.

4.2 Identification of structural parameters

If the pseudo reduced form parameters in (4.1) are identified, then the structural parameters

in model (3.4) can be identified via (4.2) as in a classical linear simultaneous-equation model

(see, e.g., Schmidt, 1976). To be more specific, Let θ1 = (1,−φ21,−λ11,−λ21,−β′1,−γ ′1)′,

θ2 = (−φ12, 1,−λ12,−λ22,−β′2,−γ ′2)′, and Θ = [θ1,θ2]. Suppose that, for k = 1, 2, there

are qk restrictions on θk of the form Rkθk = 0 where Rk is a qk× (4+2p) matrix of known

constants. Then, the suffi cient and necessary rank condition for θk to be identified by the

restrictions Rkθk = 0 is that rank(RkΘ) = 1, and the necessary order condition is qk ≥ 1.

Assumption 2. Suppose there are qk restrictions on θk of the form Rkθk = 0, such that

rank(RkΘ) = 1, for k = 1, 2.
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Proposition 2. Under Assumptions 1 and 2, the simultaneous-equation network model

(3.4) is identified.

To better understand Proposition 2, especially the role played by Assumption 2 in

identification, consider the following examples.

Example 1. Consider the model

yk = φlkyl + λkkGyk + Xβk + GXγk + Lαk + εk

for k = 1, 2 and l = 3− k, with its within-transformed counterpart

Jyk = φlkJyl + λkkJGyk + JXβk + JGXγk + Jεk. (4.3)

This model includes the self-simultaneity effect and within-activity peer effect but does not

include the cross-activity peer effect. It has a pseudo reduced form defined in (4.1), where

λ∗kk = (1− φ12φ21)−1λkk, λ∗lk = (1− φ12φ21)−1φlkλll,

β∗k = (1− φ12φ21)−1(βk + φlkβl), γ∗k = (1− φ12φ21)−1(γk + φlkγl).
(4.4)

Suppose Assumption 1 is satisfied and the pseudo reduced form parameters can be iden-

tified. Then, the parameters in model (4.3) can be identified via (4.4) if Assumption

2 holds. The exclusion restriction λ21 = 0 can be written as R1θ1 = 0 where R1 =

[0, 0, 0,−1,01×p,01×p]. ThenR1Θ = [0, λ22], which has rank 1 if λ22 6= 0. Similarly, the ex-

clusion restriction λ12 = 0 can be written as R2θ2 = 0 where R2 = [0, 0,−1, 0,01×p,01×p].

Then R2Θ = [λ11, 0], which has rank 1 if λ11 6= 0. Indeed, if λ11 = λ22 = 0, then (4.3)

becomes a classical linear simultaneous-equation model, which cannot be identified without

imposing additional exclusion restrictions.
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Example 2. Suppose X = [X1,X2], where X1 and X2 are, respectively, n × p1 and

n×p2 matrices of exogenous variables. Correspondingly, partition the parameter vectors as

follows β1 = (β′11,β
′
21)′, β2 = (β′12,β

′
22)′, γ1 = (γ ′11,γ

′
21)′ and γ2 = (γ ′12,γ

′
22)′. Consider

the model

yk = φlkyl + λkkGyk + λlkGyl + Xkβkk + GXkγkk + Lαk + εk

for k = 1, 2 and l = 3− k, with its within-transformed counterpart

Jyk = φlkJyl + λkkJGyk + λlkJGyl + JXkβkk + JGXkγkk + Jεk. (4.5)

This model has a pseudo reduced form defined in (4.1), where

λ∗kk = (1− φ12φ21)−1(λkk + φlkλkl), (4.6)

λ∗lk = (1− φ12φ21)−1(λlk + φlkλll),

[β∗1,β
∗
2] = (1− φ12φ21)−1

 β11 φ12β11

φ21β22 β22

 ,
[γ∗1,γ

∗
2] = (1− φ12φ21)−1

 γ11 φ12γ11

φ21γ22 γ22

 .
Suppose Assumption 1 is satisfied and the pseudo reduced form parameters can be identi-

fied. Then, the parameters in model (4.5) can be identified via (4.6) if Assumption 2 holds.

The exclusion restrictions β21 = γ21 = 0 can be written as R1θ1 = 0 where

R1 =

 0p2×4 0p2×p1 −Ip2 0p2×p1 0p2×p2

0p2×4 0p2×p1 0p2×p2 0p2×p1 −Ip2

 .
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Then

R1Θ =

 0p2×1 β22

0p2×1 γ22

 ,
which has rank 1 if (β′22,γ

′
22)′ 6= 0. Similarly, the exclusion restrictions β12 = γ12 = 0 can

be written as R2θ2 = 0 where

R2 =

 0p1×4 −Ip1 0p1×p2 0p1×p1 0p1×p2

0p1×4 0p1×p1 0p1×p2 −Ip1 0p1×p2

 .
Then

R2Θ =

 β11 0p1×1

γ11 0p1×1

 ,
which has rank 1 if (β′11,γ

′
11)′ 6= 0.

5 Empirical Application

5.1 Data

To illustrate the empirical salience of the proposed model, we study the (peer) effects of

screen-related activities (e.g., watching TV, playing video games, etc.) on the academic

performance of a student. Indeed, there is a growing concern that screen-related activities

are taking up the time of adolescents and that these activities have strong negative effects

on education. In the United States, eight- to eighteen-year-olds spend more time with

media than in any other activity besides (maybe) sleeping —an average of more than 71
2

hours a day, seven days a week (Cordes and Miller, 2000). The TV shows they watch,

video games they play, and websites they visit have an enormous influence on their lives.

Moreover, there is strong evidence that screen-related activities have a negative impact
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on education. For example, in a research synthesis of 23 studies of the relation between

leisure television time and achievement, Williams et al. (1982) found an overall negative

relation between achievement and TV time. The relation between achievement and TV

watching seems to persist across research designs and background characteristics are con-

trolled for. In particular, it has been shown that TV watching negatively impacts reading

comprehension skills and reduces recreational reading (Koolstra et al., 1997). Moreover, a

number of studies have documented a significant negative relationship between the amount

of time spent with screen-based media (television, movies and video games) and school per-

formance (see, e.g., Cordes and Miller, 2000; Chan and Rabinowitz, 2006; Gentile, 2009).

For example, a survey on a large, nationally representative sample of American children and

adolescents found that nearly half (47%) of heavy media users get poor grades compared to

23% of light media users (Rideout et al., 2010). A longitudinal study of elementary school

children showed that total screen time significantly predicts poorer grades later in the school

year, even while controlling for other relevant characteristics (Anderson et al., 2007).

These studies, however, did not take into account peer effects in these activities. To

understand the impact of peers on education and screen-related activities, we use a unique

and now widely used data set provided by the National Longitudinal Survey of Adoles-

cent Health (Add Health). The data set collected national representative information on

7th-12th graders in both public and private schools in the United States. The survey was

conducted in 1994-1995 and was designed to capture information on friends, family, school

and neighborhood influences on students behaviors, including academic performance, so-

cial decisions, extracurriculars, dangerous behaviors and more. Every student attending

schools on the sampling day was provided with a questionnaire that covered topics on

demographics, behavioral characteristics, education, family background and critically for

our purposes, friendships. The in-school survey was followed by four waves of in-home
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interviews with more detailed information. In this empirical study, we use the first wave

of the in-home interview data.

We consider the estimation of model (3.3) where y1 and y2 measure, respectively,

academic performance and screen-related activities. To be more specific, y1 is the average

grade (converted to a four point scale, with A = 4, B = 3, etc.) in English (or language

arts), mathematics, history (or social studies) and science at the most recent grading

period. y2 is the logarithm of the total number of hours spent on watching TV/videos and

playing video/computer games in a week. We use the logarithm to alleviate the problem

of measurement errors when a student reports spending a large amount of time on screen-

related activities. After taking the logarithm, y2 has similar mean and standard deviation

as y1. A list of the variables used in the empirical study, together with their summary

statistics, is given in Table 1.

[Insert Table 1 here]

The adjacency matrix G = [gij ] is constructed based on the friend-nomination infor-

mation provided by the Add Health data. In the in-school survey questionnaire, students

were asked to identify their 10 best friends (up to 5 female friends and 5 male friends) from

a school roster. About 6.5% of the students in the sample nominated 5 female friends and

about 3.9% of the students in the sample nominated 5 male friends. Thus the bound on the

number of friend-nominations is not binding. We define gij = 1/ni if student i nominates

student j as a friend and gij = 0 otherwise, where ni is the number of nominated friends

of student i. A network is defined as the smallest set of students such that all students

in the same network are directly or indirectly connected through friend nominations while

no students from different networks are connected. After removing isolated students (i.e.

students who nominated no friends and were not nominated by any students) and students

17



with missing observations on y1 and y2, the sample consists of 7,669 students distributed

over 124 schools. A school usually consists of several networks. In the sample used by this

empirical study, there are 1043 networks, with sizes ranging from 2 to 484.2 Among all

the networks in the sample, there are 315 networks with diameters no less than 4. Hence,

the identification condition given in Assumption 1 (ii) in terms of the network topology is

clearly satisfied for the sample considered.

5.2 Parameter estimates

We consider the estimation of model (3.4) under different exclusion restrictions. First, we

impose the exclusion restrictions that λ12 = λ21 = φ12 = φ21 = 0. Under these exclusion

restrictions, model (3.4) reduces to a single-activity social interaction model. The 2SLS

estimation results with the IV matrix Q1 = [JX,JGX,JG2X] are reported in the left

panel (under Model 1) of Table 2a. The estimates of the within-activity peer effect show

that the academic performance of the peers has a statistically significantly positive effect

on a student’s academic performance. This result is in line with studies in the literature

showing positive peer effects in education (see, e.g., Calvó-Armengol et al., 2009; De Giorgi

et al., 2010; Bifulco et al., 2011). Also, the time spent by the peers on screen-related

activities has a positive effect on a student’s own time spent on these activities. However,

the estimated peer effect in screen-related activities is not statistically significant.

It is worth noting that the validity of the IV matrix Q1 relies on the exogeneity of

the network adjacency matrix G. If the over-identifying restrictions (OIR) test (Lin and

Lee, 2010) cannot reject the null hypothesis that the IV matrix Q1 is valid, then it provides

evidence that G is uncorrelated with the error term after controlling for the exogenous

regressors X and network fixed effects. As reported at the bottom of Table 2a, the p-value

2The estimation results reported in the following subsection are qualitatively unchanged when we drop
networks of extremely small or large sizes from the sample.

18



of the OIR test is larger than conventional significance levels, which provides evidence for

the exogeneity of G.

[Insert Table 2a and Table 2b here]

Next, we impose the exclusion restrictions that λ11 = λ22 = λ12 = λ21 = 0. Under these

exclusion restrictions, model (3.4) becomes a classical simultaneous-equation model without

endogenous peer effects. It is well known that the identification of this model requires

instruments (or exclusion restrictions). Let x1 be a vector of dummy variables set equal to

1 if at least one of the non-resident biological parents of the student is a college graduate,

and 0 if the non-resident biological parents do not have a college degree or the student lives

with both biological parents.3 The intelligence of a student is likely to be correlated with her

biological parent’s education. However, the non-resident parent would have little influence

on the amount of time the student spends on screen-related activities. Hence, we use x1 as

an instrument for the academic performance y1. On the other hand, let x2 be a vector of

dummy variables coded as 1 if the resident parents let the student decide how much TV to

watch, and 0 otherwise. We use x2 as an instrument for y2, with the underlying exclusion

restriction that whether the student is allowed to make her own decision on how much

TV to watch only affects her academic performance indirectly through how much time she

spends on watching TV. As the model includes contextual effects, we use Gx1 and Gx2

as additional instruments for y1 and y2 respectively. Thus, the model is over-identified.

The 2SLS estimation results with the IV matrix Q2 = [JX,JGX], where X is a matrix of

all exogenous variables (listed in Table 1) including x1 and x2, are reported in the right

panel (under Model 2) of Table 2a. The p-value of the OIR test is larger than conventional

3The effects of living with both biological parents and the education level of resident parents are con-
trolled for by other regressors in X.
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significance levels, which provides some evidence on the validity of the instruments. The

Cragg-Donald F statistics (Stock and Yogo, 2005) suggest the instruments are informative.

We find the time a student spends on screen-related activities is negatively affected by her

own GPA, while a student’s academic performance is positively affected by the time spent

on screen-related activities. However, neither effect is statistically significant.

Finally, we estimate model (3.4) with self-simultaneity effects and cross-activity peer

effects. As discussed in Section 4, identification of this model requires exclusion restrictions.

We consider three sets of exclusion restrictions. Model 3 imposes the exclusion restrictions

that φ12 = φ21 = 0, i.e. no self-simultaneity effects. Model 4 imposes the exclusion

restrictions that λ12 = λ21 = 0, i.e. no cross-activity peer effects. Model 5 imposes the

same set of exclusion restrictions on the exogenous regressors as in Model 2. It is worth

noting that Model 3 has the same specification of the pseudo reduced form (4.1), Model

4 conforms to the model in Example 1, and Model 5 conforms to the model in Example

2. Table 2b reports the 2SLS estimation results of these three models with the IV matrix

Q3 = [JX,JGX,JG2X], where X includes a subset of exogenous variables in X. To be

more specific, X includes “Age”, “Female”, “Living condition”, and “Live with both bio

parents”. As the Cragg-Donald F statistics reported in Table 2b suggest the instruments are

weak, we only use a subset of the exogenous characteristics in X to construct instruments

to alleviate the potential weak instrument bias. The estimates of these three models are

qualitatively consistent with each other. The estimates of λkk, λlk and φlk (k = 1, 2 and

l = 3 − k) satisfy the condition given in (2.4), suggesting the reduced form equations of

the system are well defined. From the estimates of Model 5, we find that the academic

performance of a student is not only positively affected by the academic performance of the

peers, but also negatively affected by the time the peers spend on screen-related activities.

Both types of peer effects are statistically significant. We also find that the academic
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performance of a student is negatively correlated with the time she spend on screen-related

activities. However, only the negative effect of GPA on one’s own screen-related activities

is statistically significant. These results confirm the studies cited at the beginning of this

section and, more importantly, show the importance of peer effects in these activities.

5.3 Marginal effects

It follows from the reduced form of model (3.3) that

∂yk
∂x′h

= S−1[(φlkβl,h +βk,h)In + (λlkβl,h−λllβk,h +φlkγl,h + γk,h)G + (λlkγl,h−λllγk,h)G2]

for k = 1, 2 and l = 3 − k, where xh = (x1h, · · · , xnh)′ is the h-th column of X. For

k = 1, 2, ∂yk/∂x′h is an n × n matrix of marginal effects, with its (i, j)-th element given

by ∂yik/∂xjh. The off-diagonal element of ∂yk/∂x′h, in general, is not zero, suggesting

that a change in the h-th explanatory variable for an individual can potentially affect the

dependent variable of all the other individuals in the network. Following LeSage and Pace

(2009), we define the average direct impact of xh on yk as n−1
∑n
i=1 ∂yik/∂xih and the

average indirect impact of xh on yk as n−1
∑n
i=1

∑n
j=1,j 6=i ∂yik/∂xjh, for h = 1, · · · , p and

k = 1, 2. Table 3 reports the average direct and indirect impacts of the exogenous variables

with standard errors calculated by the Delta method.

[Insert Table 3 here]

Due to the presence of simultaneity/peer effects, the average direct impact of a covari-

ate is, in general, different from its coeffi cient estimate reported in Table 2b. Some of the

average direct impacts even have opposite signs from the corresponding coeffi cient esti-

mates. According to the reported marginal effects, a younger white female student, who
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is in a higher grade, in excellent health, lives with both biological parents in a well-kept

home, and has well-educated resident or non-resident biological parents, is more likely to

have better academic performance. A younger non-white male student, who is in poor

health and is allowed to make own decision on TV watching time, tends to spend more

time on screen-related activities.

6 Conclusion

In this paper, we investigate the impact of peers on individual outcomes when individ-

uals embedded in a network are involved in multiple activities. We develop a general

simultaneous-equation network model that captures the different social interaction effects.

In addition to endogenous, contextual and correlated effects that exist in a single-activity

network model, we introduce the self-simultaneity effect and the cross-activity peer effect.

We provide identification conditions for network models with the above effects. We then

study the impact of peer effects on education and screen-related activities and show that

a student’s academic performance is not only affected by the academic performance of the

peers but also affected by screen-related activities of the peers.

We believe that the methodology developed in this paper is important because, in

real-world situations, individuals often make decisions involving more than one activity. In

terms of policy implications, this implies that the social planner could use more than one in-

strument in constructing policy. For example, most policies aiming at reducing crime focus

on the deterrence effect of punishment and the social influence of punishment (Patacchini

and Zenou, 2012). Using the model developed in this paper, one could characterize the

social interdependence of crime and education and develop a more effective policy that uses

both punishment and education to reduce crime.

Some possible extensions of the current work are in order. First, different individu-
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als may participate in different activities. Therefore, it would be interesting to study the

sample selection issue (Heckman, 1976) in the context of social networks and multivariate

choices. Second, people may form different social networks for different activities they

participate. Hence, another thread of future research could be to consider activity-specific

networks and to study the formation and evolution of such networks and associated iden-

tification problems. Third, sampling issues prevail in network data. It is very rare one can

observe the whole network of the full population. For example, the Add Health data used in

the empirical application does not provide information on students’friends outside school.

For the single-activity network model, there is a growing literature on the sampling issue

in network data (see, e.g., Sojourner, 2013; Liu, 2013; Liu et al., 2016; Chandrasekhar and

Lewis, 2016). It would be interesting to extend these works to the simultaneous-equation

network model.
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Table 1: Data Summary 
 Definition Mean SD 

Dependent variables    
GPA The average grade in English, math, history, and science at 

the most recent grading period 
   2.87    0.73 

TV The logarithm of weekly time spent on watching TV/videos 
and playing video/computer games  

   2.84    0.82 

Control variables    
Age  Age    15.29    1.66 
Female 1 if female    0.53    0.50 
(White) 1 if White American    0.53    0.50 
African American 1 if African American    0.22    0.41 
Other races 1 if race is not White or African American    0.25    0.43 
(Freshman) 1 if in Grade 7 or 8    0.34    0.47 
Junior 1 if in Grade 9 or 10    0.38    0.48 
Senior 1 if in Grade 11 or 12    0.28    0.45 
Health 1 if health is excellent    0.30    0.46 
Living condition 1 if the building in which the respondent lives is well kept    0.59    0.49 
Live with both bio parents 1 if live with both biological parents    0.55    0.50 
(Res parent: less than HS) 1 if the resident parent’s education is less than high school    0.13    0.34 
Res parent: HS grad 1 if the resident parent’s education is high school or higher 

but no college degree 
   0.54    0.50 

Res parent: college grad 1 if the resident parent’s education is college or higher    0.29    0.45 
Res parent: educ missing 1 if the resident parent’s education information is missing    0.04    0.20 
Res parent: professional 1 if the resident parent’s job is a doctor, lawyer, scientist, 

teacher, librarian, nurse, manager, executive, director, 
technical/computer specialist, or radiologist 

   0.30    0.46 

Res parent: office worker 1 if the resident parent’s job is office worker, bookkeepers, 
clerk, secretary, sales worker, insurance agent, or store clerk 

   0.22    0.41 

Res parent: other job 1 if the resident parent’s job is not listed above    0.34    0.47 
(Res parent: no job) 1 if the resident parent does not have a job    0.13    0.34 
Res parent: job missing 1 if the resident parent’s job information is missing    0.01    0.10 
Bio parent: college grad 1 if the non-resident bio parent is a college graduate    0.08    0.26 
Own TV time decision 1 if the resident parents let the respondent decide how much 

TV to watch 
   0.81    0.39 

The variable in the parentheses is the reference category.  
If both parents are in the household, the education and job of the mother is considered. 
  



Table 2a: Parameter Estimates 
 Model 1 Model 2 
 GPA TV GPA TV 

Peer GPA   0.3999***    
  (0.1304)    
Peer TV    0.2924   
   (0.2902)   
Own GPA     -0.4652 
     (0.2908) 
Own TV     0.1941  
    (0.1985)  
Age   -0.0570***  -0.0582***  -0.0496***  -0.1008*** 
  (0.0112)  (0.0184)  (0.0173)  (0.0232) 
Female   0.2086***  -0.2650***   0.2566***  -0.1734*** 
  (0.0162)  (0.0198)  (0.0552)  (0.0626) 
African American  -0.0985***   0.2916***  -0.1652***   0.2303*** 
  (0.0338)  (0.0422)  (0.0660)  (0.0533) 
Other races  -0.0191   0.1071***  -0.0461   0.1067*** 
  (0.0284)  (0.0362)  (0.0371)  (0.0355) 
Junior   0.0461  -0.0965*   0.0701  -0.0607 
  (0.0454)  (0.0549)  (0.0485)  (0.0580) 
Senior   0.2403***  -0.0765   0.2619***   0.0665 
  (0.0555)  (0.0723)  (0.0565)  (0.1029) 
Health   0.1138***  -0.0659***   0.1421***  -0.0026 
  (0.0175)  (0.0207)  (0.0210)  (0.0437) 
Living condition   0.0727***   0.0065   0.0814***   0.0496 
  (0.0176)  (0.0209)  (0.0173)  (0.0326) 
Live with both bio parents   0.1519***  -0.0101   0.1722***   0.0731 
  (0.0192)  (0.0230)  (0.0184)  (0.0470) 
Res parent: HS grad   0.1098***   0.0104   0.1239***   0.0810 
  (0.0267)  (0.0336)  (0.0267)  (0.0500) 
Res parent: college grad   0.2418***  -0.0375   0.2806***   0.0923 
  (0.0325)  (0.0373)  (0.0319)  (0.0920) 
Res parent: educ missing  -0.0425  -0.0480  -0.0212  -0.0578 
  (0.0477)  (0.0657)  (0.0496)  (0.0642) 
Res parent: professional   0.0575**   0.0464   0.0556*   0.0774* 
  (0.0277)  (0.0343)  (0.0298)  (0.0400) 
Res parent: office worker   0.0514*   0.0918***   0.0433   0.1145*** 
  (0.0281)  (0.0351)  (0.0340)  (0.0393) 
Res parent: other job   0.0238   0.0627*   0.0153   0.0745** 
  (0.0258)  (0.0320)  (0.0291)  (0.0337) 
Res parent: job missing   0.2490***   0.0226   0.2558***   0.1389 
  (0.0869)  (0.1326)  (0.0918)  (0.1528) 
Bio parent: college grad   0.1409***  -0.0564   0.1375***  
  (0.0331)  (0.0394)  (0.0345)  
Own TV time decision   0.0116   0.1015***    0.1138*** 
  (0.0209)  (0.0255)   (0.0268) 
Contextual effects Yes Yes Yes Yes 
OIR test p-value 0.300 0.664 0.947 0.393 
Cragg-Donald F statistic 18.016 5.367 8.422 8.702 
Heteroskedastic-robust standard errors in parentheses.  
Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
To save space, estimates of contextual effects are not reported. 
 
  



Table 2b: Parameter Estimates 
 Model 3 Model 4 Model 5 
 GPA TV GPA TV GPA TV 

Peer GPA   0.4877***  -0.1320   0.5876***    0.5319***   0.2487 
  (0.1549)  (0.3835)  (0.2246)   (0.1789)  (0.2675) 
Peer TV  -0.2283   0.4545    0.4155  -0.2774*   0.1844 
  (0.2116)  (0.5609)   (0.3471)  (0.1613)  (0.4590) 
Own GPA     -0.3097   -0.4488* 
     (0.4108)   (0.2579) 
Own TV    -0.5608   -0.0688  
    (0.4678)   (0.1916)  
Age   -0.0659***  -0.0530**  -0.0940***  -0.0723***  -0.0720***  -0.0876*** 
  (0.0141)  (0.0245)  (0.0336)  (0.0270)  (0.0182)  (0.0233) 
Female   0.2068***  -0.2645***   0.0600  -0.2003**   0.1884***  -0.1720*** 
  (0.0166)  (0.0206)  (0.1255)  (0.0882)  (0.0533)  (0.0581) 
African American  -0.1035***   0.2931***   0.0651   0.2615***  -0.0845   0.2458*** 
  (0.0349)  (0.0439)  (0.1423)  (0.0593)  (0.0665)  (0.0505) 
Other races  -0.0104   0.1002***   0.0485   0.0957***  -0.0009   0.1032*** 
  (0.0302)  (0.0425)  (0.0662)  (0.0406)  (0.0388)  (0.0411) 
Junior   0.0532  -0.1003*  -0.0052  -0.0846   0.0491  -0.0730 
  (0.0467)  (0.0581)  (0.0691)  (0.0599)  (0.0501)  (0.0591) 
Senior   0.2579***  -0.0869   0.2064***  -0.0093   0.2588***   0.0391 
  (0.0588)  (0.0811)  (0.0724)  (0.1165)  (0.0588)  (0.0941) 
Health   0.1126***  -0.0623***   0.0710*  -0.0270   0.1068***  -0.0165 
  (0.0180)  (0.0240)  (0.0418)  (0.0562)  (0.0240)  (0.0404) 
Living condition   0.0733***   0.0079   0.0735***   0.0307   0.0733***   0.0390 
  (0.0180)  (0.0220)  (0.0214)  (0.0389)  (0.0182)  (0.0303) 
Live with both bio parents   0.1521***  -0.0069   0.1403***   0.0405   0.1503***   0.0545 
  (0.0196)  (0.0255)  (0.0258)  (0.0717)  (0.0204)  (0.0442) 
Res parent: HS grad   0.1143***   0.0104   0.1132***   0.0455   0.1158***   0.0606 
  (0.0279)  (0.0350)  (0.0328)  (0.0582)  (0.0280)  (0.0447) 
Res parent: college grad   0.2358***  -0.0277   0.2066***   0.0467   0.2294***   0.0673 
  (0.0336)  (0.0481)  (0.0491)  (0.1181)  (0.0368)  (0.0864) 
Res parent: educ missing  -0.0415  -0.0465  -0.0728  -0.0593  -0.0464  -0.0681 
  (0.0493)  (0.0686)  (0.0654)  (0.0700)  (0.0512)  (0.0678) 
Res parent: professional   0.0559**   0.0487   0.0802**   0.0663   0.0588*   0.0715* 
  (0.0285)  (0.0361)  (0.0386)  (0.0446)  (0.0301)  (0.0402) 
Res parent: office worker   0.0447   0.0980***   0.0954*   0.1129***   0.0491   0.1117*** 
  (0.0298)  (0.0406)  (0.0493)  (0.0463)  (0.0333)  (0.0436) 
Res parent: other job   0.0216   0.0648*   0.0564   0.0718**   0.0257   0.0727** 
  (0.0267)  (0.0335)  (0.0409)  (0.0356)  (0.0292)  (0.0348) 
Res parent: job missing   0.2419***   0.0294   0.2535**   0.1054   0.2290***   0.1319 
  (0.0898)  (0.1369)  (0.1139)  (0.1736)  (0.0912)  (0.1536) 
Bio parent: college grad   0.1502***  -0.0652   0.1200***  -0.0202   0.1497***  
  (0.0348)  (0.0484)  (0.0440)  (0.0632)  (0.0356)  
Own TV time decision   0.0123   0.1025***   0.0663   0.1064***    0.1062*** 
  (0.0215)  (0.0266)  (0.0521)  (0.0276)   (0.0272) 
Contextual effects Yes Yes Yes Yes Yes Yes 
OIR test p-value 0.374 0.518 0.643 0.650 0.501 0.839 
Cragg-Donald F statistic 4.871 1.383 0.796 2.028 2.235 1.374 
Heteroskedastic-robust standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
To save space, estimates of contextual effects are not reported. 
 
 
  



Table 3: Marginal Effects of Model 5 
 GPA TV 
 Direct Effects Indirect Effects Direct Effects Indirect Effects 

Age   -0.0686***  -0.0439  -0.0619***  -0.0755 
  (0.0153)  (0.0595)  (0.0200)  (0.0729) 
Female   0.2074***  -0.0053  -0.2663***  -0.0249 
  (0.0337)  (0.1818)  (0.0267)  (0.2214) 
African American  -0.1003**   0.0395   0.2923***  -0.0089 
  (0.0510)  (0.1982)  (0.0537)  (0.2609) 
Other races   0.0066   0.1308   0.1050**  -0.0332 
  (0.0408)  (0.1171)  (0.0513)  (0.1317) 
Junior   0.0540   0.0846  -0.0851   0.2007 
  (0.0578)  (0.1632)  (0.0644)  (0.1699) 
Senior   0.2679***   0.1810  -0.0612   0.2806 
  (0.0769)  (0.2666)  (0.0854)  (0.3440) 
Health   0.1206***   0.0576  -0.0706***  -0.0656 
  (0.0267)  (0.1307)  (0.0270)  (0.1374) 
Living condition   0.0734***   0.0204   0.0082   0.0284 
  (0.0219)  (0.0605)  (0.0249)  (0.0550) 
Live with both bio parents   0.1581***   0.0723  -0.0128   0.0078 
  (0.0245)  (0.0947)  (0.0263)  (0.0901) 
Res parent: HS grad   0.1327***   0.1553   0.0068  -0.0376 
  (0.0384)  (0.1394)  (0.0446)  (0.1336) 
Res parent: college grad   0.2608***   0.2374  -0.0426  -0.0976 
  (0.0477)  (0.2358)  (0.0462)  (0.2335) 
Res parent: educ missing  -0.0420   0.0218  -0.0473   0.0226 
  (0.0596)  (0.1357)  (0.0749)  (0.1049) 
Res parent: professional   0.0503  -0.0467   0.0472   0.0099 
  (0.0355)  (0.0906)  (0.0418)  (0.0782) 
Res parent: office worker   0.0350  -0.0640   0.0941*   0.0266 
  (0.0392)  (0.1053)  (0.0492)  (0.1003) 
Res parent: other job   0.0173  -0.0475   0.0621  -0.0144 
  (0.0330)  (0.0810)  (0.0389)  (0.0786) 
Res parent: job missing   0.2480**   0.1700   0.0255  -0.0766 
  (0.1085)  (0.2679)  (0.1496)  (0.2475) 
Bio parent: college grad   0.1512***  -0.0183  -0.0676   0.0274 
  (0.0432)  (0.1042)  (0.0438)  (0.0598) 
Own TV time decision  -0.0113  -0.0402   0.1092***  -0.0046 
  (0.0279)  (0.0671)  (0.0315)  (0.1023) 
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
 


