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A. Proofs
Proof of Proposition 1 (i) The FOCs of maximizing the profit function given by Equation

(4) with respect to the R&D effort ei and the output qi of firm i are given by

∂πi

∂ei
= qi − ei = 0,

∂πi

∂qi
= µi − 2qi − ρ

n∑
j=1

bijqj + ei + φ

n∑
j=1

aijej = 0,

where µi ≡ ᾱi − c̄i. Solving the FOCs gives

ei = qi, (A.1)

qi = µi − ρ
n∑

j=1

bijqj + φ
n∑

j=1

aijqj, (A.2)

or, in vector-matrix form,

e = q,

q = µ− ρBq+ φAq.

Therefore, there exists a unique Nash equilibrium with the equilibrium outputs and R&D
efforts given by Equation (6) if the matrix I+ ρB− φA is positive definite. The symmetric
matrix In + ρB− φA is positive definite if its smallest eigenvalue is positive, that is when

1 + λmin(ρB− φA) > 0. (A.3)

First we consider the case of φ = 0. In this case, Equation (A.3) becomes 1+ ρλmin(B) > 0.
Since B can be written as a block diagonal matrix with a zero diagonal and blocks of sizes
|Mm|, m = 1, . . . ,M , the spectrum (set of eigenvalues) of B is given by {|M1| − 1, |M2| −
1, ..., |MM | − 1,−1, . . . ,−1}, with λmin(B) = −1. As 0 ≤ ρ < 1, 1 + ρλmin(B) > 0 and thus
Equation (A.3) holds. Next we consider the general case that φ may not be zero. In this case,
Equation (A.3) is equivalent to λmax(φA − ρB) < 1. Since λmax(φA − ρB) ≤ φλmax(A) +
ρλmax(B) and λmax(B) = maxm=1,...,M{|Mm|− 1},1 a sufficient condition for Equation (A.3)
to hold is given by Equation (5). Finally, substitution of the equilibrium outputs and R&D
efforts given by Equation (6) into the profit function (4) gives the equilibrium profits in
Equation (7).

(ii) When all firms operate in the same market so that M = 1, the best response function given
by Equation (A.2) can be written as

qi =
1

1− ρ
µi −

ρ

1− ρ
q̂ +

φ

1− ρ

n∑
j=1

aijqj. (A.4)

where q̂ ≡
∑n

j=1 qj corresponds to the total output of all firms. Observe that 0 < 1− ρ ≤ 1

1Let ∥·∥ be any matrix norm, including the spectral norm, which is just the largest eigenvalue. Then we have
that ∥

∑n
i=1 αiAi∥ ≤

∑n
i=1 |αi|∥Ai∥ ≤ (

∑n
i=1 |αi|)maxi ∥Ai∥ by Weyl’s theorem [cf. e.g. Horn and Johnson,

1990, Theorem 4.3.1].
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as 0 ≤ ρ < 1. In matrix form, Equation (A.4) can be written as

(I− ϕA)q =
1

1− ρ
(µ− ρq̂ι),

where ϕ = φ/(1 − ρ), µ = (µ1, . . . , µn)
⊤, and ι = (1, . . . , 1)⊤. If ϕ < λmax(A)−1, this is

equivalent to

q =
1

1− ρ
(bµ(G, ϕ)− ρq̂ bι(G, ϕ)) , (A.5)

where bι(G, ϕ) = (I − ϕA)−1ι is the vector of unweighted Katz-Bonacich centralities and
bµ(G, ϕ) = (I−ϕA)−1µ is the vector of weighted Katz-Bonacich centralities with the weights
given by µi for i = 1, . . . , n. Premultiplying Equation (A.5) by ι⊤, we obtain

(1− ρ) q̂ = ∥bµ(G, ϕ)∥1 − ρq̂ ∥bι(G, ϕ)∥1 ,

where ∥bµ(G, ϕ)∥1 = ι⊤bµ(G, ϕ) is the sum of the weighted Katz-Bonacich centralities and
∥bι(G, ϕ)∥1 = ι⊤bι(G, ϕ) is the sum of the unweighted Katz-Bonacich centralities. Solving
this equation, we get

q̂ =
∥bµ(G, ϕ)∥1

(1− ρ) + ρ ∥bι(G, ϕ)∥1
.

Plugging this value of q̂ into Equation (A.5), we finally obtain Equation (8) in the proposition.
In the following we provide a condition which guarantees that the equilibrium outputs given
by Equation (8) are positive. According to Equation (8), q∗ > 0 if and only if

bµ(G, ϕ) >
ρ ∥bµ(G, ϕ)∥1

(1− ρ) + ρ ∥bι(G, ϕ)∥1
bι(G, ϕ). (A.6)

Denote by µ = mini {µi | i ∈ N} and µ = maxi {µi | i ∈ N}, with µ ≤ µ. Then, we have

∥bµ(G, ϕ)∥1 ≤ µ ∥bι(G, ϕ)∥1 ,
bµ(G, ϕ) ≥ µbι(G, ϕ).

Thus, a sufficient condition for Equation (A.6) to hold is

µbι(G, ϕ) >
ρµ ∥bι(G, ϕ)∥1

(1− ρ) + ρ ∥bι(G, ϕ)∥1
bι(G, ϕ),

or equivalently
1− ρ > ρ ∥bι(G, ϕ)∥1

(
µ

µ
− 1

)
. (A.7)

Next, observe that, by definition

∥bι(G, ϕ)∥1 =
∞∑
p=0

ϕpι⊤Apι. (A.8)

We know that λmax(A
p) ≤ λmax(A)p, for all p ≥ 0.2 Also, ι⊤Apι/n is the average connec-

2Observe that the relationship λmax (A
p) = λmax (A)

p, p ≥ 0, holds true for both symmetric as well as
asymmetric adjacency matrices A as long as A has non-negative entries, aij ≥ 0.
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tivity in the matrix Ap of paths of length p in the original network A, which is smaller than
its spectral radius λmax(A

p) [Cvetkovic et al., 1995], i.e. ι⊤Apι/n ≤ λmax(A
p) ≤ λmax(A)p.

Therefore, Equation (A.8) leads to the following inequality

∥bι(G, ϕ)∥1 =
∞∑
p=0

ϕpι⊤Apι ≤ n
∞∑
p=0

ϕpλmax(A)p =
n

1− ϕλmax(A)
.

A sufficient condition for Equation (A.7) to hold is thus given by Equation (9). In the case
that all firms are homogenous, µ/µ = 1, and Equation (A.7) holds as 0 ≤ ρ < 1.

(iii) When ρ = 0, if φ < λmax(A)−1, the matrix I− φA is nonsingular. From the FOCs of profit
maximization, the equilibrium R&D efforts and outputs are given by

e∗ = q∗ = (I− φA)−1µ =
∞∑
p=0

φpApµ > 0.

(iv) Let B denote the competition matrix with an arbitrary number of markets. Under the
competition matrix B, the Nash equilibrium output levels are the solution to the following
system of equations

qi = fi(q) ≡ µi − ρ
n∑

j=1

bijqj + φ
n∑

j=1

aijqj. (A.9)

We can compare this to the Nash equilibrium output levels with a single market, which solve

qi = f
i
(q) ≡ µi − ρ

n∑
j=1,j ̸=i

qj + φ
n∑

j=1

aijqj,

and the Nash equilibrium output levels with non-substitutable goods, which solve

qi = f i(q) ≡ µi + φ
n∑

j=1

aijqj.

As f i(q) ≥ fi(q) ≥ f
i
(q) when q > 0, the desired result follows by the comparison lemma

(cf. Lemma 3.4 in Khalil [2002]).

Proof of Propositions 2 and 3 As Proposition 2 is a special case of Proposition 3 with
si = s for i = 1, . . . , n, we give the proof of the two propositions together.

(i) The FOCs of maximizing the profit function given by Equation (18) with respect to the R&D
effort ei and the output qi of firm i are given by

∂πi

∂ei
= qi − ei + si = 0,

∂πi

∂qi
= µi − 2qi − ρ

n∑
j=1

bijqj + ei + φ

n∑
j=1

aijej = 0,
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where µi ≡ ᾱi − c̄i. Solving the FOCs gives

ei = qi + si,

qi = µi − ρ

n∑
j=1

bijqj + φ

n∑
j=1

aijqj + si + φ

n∑
j=1

aijsj,

or, in vector-matrix form,

e = q+ s,

q = µ− ρBq+ φAq+ s+ φAs.

Therefore, there exists a unique Nash equilibrium with the equilibrium outputs and R&D
efforts given by Equations (19) and (20) if the matrix I+ ρB− φA is positive definite. From
the proof of Proposition 1, a sufficient condition for the matrix I + ρB − φA to be positive
definite is φ = 0 or the condition given by Equation (5) holds. Substitution of Equations
(19) and (20) into the profit function given by Equation (18) gives the equilibrium profits in
Equation (21). Equations (14) and (15) can be obtained by replacing s in Equations (19) and
(20) by sι. Substitution of Equations (14) and (15) into the profit function given by Equation
(13) gives the equilibrium profits in Equation (16).

(ii) The net welfare can be written as

W (G, s) =
1

2

(
n∑

i=1

(q∗i )
2 + ρ

n∑
i=1

n∑
j=1

bijq
∗
i q

∗
j

)
+

n∑
i=1

π∗
i −

n∑
i=1

sie
∗
i

=
n∑

i=1

(q∗i )
2 −

n∑
i=1

q∗i si −
1

2

n∑
i=1

s2i +
ρ

2

n∑
i=1

n∑
j=1

bijq
∗
i q

∗
j

= q∗⊤q∗ − 1

2
(q∗⊤s+ s⊤q∗)− 1

2
s⊤s+

ρ

2
q∗⊤Bq∗.

Using the fact that q∗ = q̃+Rs, where q̃ ≡ (I+ρB−φA)−1µ and R ≡ (I+ρB−φA)−1(I+φA),
we can write the net welfare as

W (G, s) = q̃⊤q̃+
ρ

2
q̃⊤Bq̃+ s⊤(2R+ ρBR− I)⊤q̃− 1

2
s⊤Hs, (A.10)

where
H = I+R+R⊤ − 2R⊤R− ρR⊤BR.

Observe that the matrix H is symmetric. The FOC of maximizing the net welfare with respect
to s is given by

∂W (G, s)

∂s
= (2R+ ρBR− I)⊤q̃−Hs = 0,

with the hessian given by ∂2W (G,s)
∂s∂s⊤

= −H. When the matrix H is positive definite, we obtain
a global maximum for the concave quadratic optimization problem with the optimal subsidy
levels given by Equation (22). To obtain the optimal homogenous subsidy level given by
Equation (17), replace s in the net welfare given by Equation (A.10) by sι and maximize the
net welfare with respect to s.
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B. Definitions and Characterizations
B.1. Network Definitions

A network (graph) G ∈ Gn is the pair (N , E) consisting of a set of nodes (vertices) N = {1, . . . , n}
and a set of edges (links) E ⊂ N ×N between them, where Gn denotes the family of undirected
graphs with n nodes. A link (i, j) is incident with nodes i and j. The neighborhood of a node
i ∈ N is the set Ni = {j ∈ N : (i, j) ∈ E}. The degree di of a node i ∈ N gives the number of links
incident to node i. Clearly, di = |Ni|. Let N (2)

i =
∪

j∈Ni
Nj\ (Ni ∪ {i}) denote the second-order

neighbors of node i. Similarly, the k-th order neighborhood of node i is defined recursively from
N (0)

i = {i}, N (1)
i = Ni and N (k)

i =
∪

j∈N (k−1)
i

Nj\
(∪k−1

l=0 N (l)
i

)
. A walk in G of length k from i to

j is a sequence ⟨i0, i1, . . . , ik⟩ of nodes such that i0 = i, ik = j, ip ̸= ip+1, and ip and ip+1 are
(directly) linked, that is ipip+1 ∈ E , for all 0 ≤ p ≤ k − 1. Nodes i and j are said to be indirectly
linked in G if there exists a walk from i to j in G containing nodes other than i and j. A pair
of nodes i and j is connected if they are either directly or indirectly linked. A node i ∈ N is
isolated in G if Ni = ∅. The network G is said to be empty (denoted by Kn) when all its nodes
are isolated.

A subgraph, G′, of G is the graph of subsets of the nodes, N (G′) ⊆ N (G), and links,
E(G′) ⊆ E(G). A graph G is connected, if there is a path connecting every pair of nodes.
Otherwise G is disconnected. The components of a graph G are the maximally connected
subgraphs. A component is said to be minimally connected if the removal of any link makes
the component disconnected.

A dominating set for a graph G = (N , E) is a subset S of N such that every node not in S
is connected to at least one member of S by a link. An independent set is a set of nodes in a
graph in which no two nodes are adjacent. For example the central node in a star K1,n−1 forms
a dominating set while the peripheral nodes form an independent set.

Let G = (N , E) be a graph whose distinct positive degrees are d(1) < d(2) < . . . < d(k), and let
d0 = 0 (even if no agent with degree 0 exists in G). Furthermore, define Di = {v ∈ N : dv = d(i)}
for i = 0, . . . , k. Then the set-valued vector D = (D0,D1, . . . ,Dk) is called the degree partition
of G.

Consider a nested split graph G = (N , E) and let D = (D0,D1, . . . ,Dk) be its degree
partition [cf. Cvetkovic and Rowlinson, 1990; Mahadev and Peled, 1995]. Then the nodes N
can be partitioned in independent sets Di, i = 1, . . . ,

⌊
k
2

⌋
and a dominating set

∪k
i=⌊ k

2⌋+1
Di in

the graph G′ = (N\D0, E). Moreover, the neighborhoods of the nodes are nested, such that the
set of neighbors of each node is contained in the set of neighbors of each higher degree node.
In particular, for each node v ∈ Di, Nv =

∪i
j=1Dk+1−j if i = 1, . . . ,

⌊
k
2

⌋
if i = 1, . . . , k, while

Nv =
∪i

j=1Dk+1−j \ {v} if i =
⌊
k
2

⌋
+ 1, . . . , k.

In a complete graph Kn, every node is adjacent to every other node. The graph in which no
pair of nodes is adjacent is the empty graph Kn. A clique Kn′ , n′ ≤ n, is a complete subgraph
of the network G. A graph is k-regular if every node i has the same number of links di = k for
all i ∈ N . The complete graph Kn is (n− 1)-regular. The cycle Cn is 2-regular. In a bipartite
graph there exists a partition of the nodes in two disjoint sets S1 and S2 such that each link
connects a node in S1 to a node in S2. S1 and S2 are independent sets with cardinalities n1 and
n2, respectively. In a complete bipartite graph Kn1,n2 each node in S1 is connected to each other
node in S2. The star K1,n−1 is a complete bipartite graph in which n1 = 1 and n2 = n− 1.

The complement of a graph G is a graph G with the same nodes as G such that any two
nodes of G are adjacent if and only if they are not adjacent in G. For example the complement
of the complete graph Kn is the empty graph Kn.

Let A be the symmetric n×n adjacency matrix of the network G. The element aij ∈ {0, 1}
indicates if there exists a link between nodes i and j such that aij = 1 if (i, j) ∈ E and
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aij = 0 if (i, j) /∈ E . The k-th power of the adjacency matrix is related to walks of length
k in the graph. In particular,

(
Ak
)
ij

gives the number of walks of length k from node i

to node j. The eigenvalues of the adjacency matrix A are the numbers λ1, λ2, . . . , λn such
that Avi = λivi has a nonzero solution vector vi, which is an eigenvector associated with
λi for i = 1, . . . , n. Since the adjacency matrix A of an undirected graph G is real and
symmetric, the eigenvalues of A are real, λi ∈ R for all i = 1, . . . , n. Moreover, if vi and vj

are eigenvectors for different eigenvalues, λi ̸= λj, then vi and vj are orthogonal, i.e. v⊤
i vj = 0

if i ̸= j. In particular, Rn has an orthonormal basis consisting of eigenvectors of A. Since A
is a real symmetric matrix, there exists an orthogonal matrix S such that S⊤S = SS⊤ = I
(that is S⊤ = S−1) and S⊤AS = D, where D is the diagonal matrix of eigenvalues of A
and the columns of S are the corresponding eigenvectors. The Perron-Frobenius eigenvalue
λPF(G) is the largest real eigenvalue of A associated with G, i.e. all eigenvalues λi of A satisfy
|λi| ≤ λPF(G) for i = 1, . . . , n and there exists an associated nonnegative eigenvector vPF ≥ 0
such that AvPF = λPF(G)vPF. For a connected graph G the adjacency matrix A has a unique
largest real eigenvalue λmax(G) and a positive associated eigenvector vPF > 0. The largest
eigenvalue λmax(G) has been suggested to measure the irregularity of a graph [Bell, 1992], and
the components of the associated eigenvector vPF are a measure for the centrality of a node
in the network. A measure Cv : G → [0, 1] for the centralization of the network G has been
introduced by Freeman [1979] for generic centrality measures v. In particular, the centralization
Cv of G is defined as Cv(G) ≡

∑
i∈G (vi∗ − vi) /maxG′∈Gn

∑
j∈G′ (vj∗ − vj), where i∗ and j∗ are

the nodes with the highest values of centrality in the networks G, G′, respectively, and the
maximum in the denominator is computed over all networks G′ ∈ Gn with the same number n
of nodes. There also exists a relation between the number of walks in a graph and its eigenvalues.
The number of closed walks of length k from a node i in G to herself is given by

(
Ak
)
ii

and the
total number of closed walks of length k in G is tr

(
Ak
)
=
∑n

i=1

(
Ak
)
ii
=
∑n

i=1 λ
k
i . We further

have that tr (A) = 0, tr (A2) gives twice the number of links in G and tr (A3) gives six times
the number of triangles in G.

A nested split graph is characterized by a stepwise adjacency matrix A, which is a symmetric,
binary (n × n)-matrix with elements aij satisfying the following condition: if i < j and aij = 1

then ahk = 1 whenever h < k ≤ j and h ≤ i. Both, the complete graph, Kn, as well as the star
K1,n−1, are particular examples of nested split graphs. Nested split graphs are also the graphs
which maximize the largest eigenvalue, λmax(G), [Brualdi and Solheid, 1986], and they are the
ones that maximize the degree variance [Peled et al., 1999].3

The cores of a graph are defined as follows: Given a network G, the induced subgraph
Gk ⊆ G is the k-core of G if it is the largest subgraph such that the degree of all nodes in Gk is
at least k. Note that the cores of a graph are nested such that Gk+1 ⊆ Gk. Cores can be used
as a measure of centrality in the network G, and the largest k-core centrality across all nodes in
the graph is called the degeneracy of G. Note that k-cores can be obtained by a simple pruning
algorithm: at each step, we remove all nodes with degree less than k. We repeat this procedure
until there exist no such nodes or all nodes are removed. We define the coreness of each node
as follows: The coreness of node i, cori, is k if and only if i ∈ Gk and i /∈ Gk+1. We have that
cori ≤ di. However, there is no other relation between the degree and coreness of nodes in a
graph.

B.2. Walk Generating Functions

Denote by ι = (1, . . . , 1)⊤ the n-dimensional vector of ones and define M(G, ϕ) = (I− ϕA)−1.
Then, the quantity NG(ϕ) = ι⊤M(G, ϕ)ι is the walk generating function of the graph G [cf.

3See for example König et al. [2014] for a discussion of further properties of nested split graphs.
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Cvetkovic et al., 1995]. Let Nk denote the number of walks of length k in G. Then we can
write Nk as follows

Nk =
n∑

i=1

n∑
j=1

a
[k]
ij = ι⊤Akι,

where a
[k]
ij is the ij-th element of Ak. The walk generating function is then defined as

NG(ϕ) ≡
∞∑
k=0

Nkϕ
k = ι⊤

(
∞∑
k=0

ϕkAk

)
ι = ι⊤ (I− ϕA)−1 ι = ι⊤M(G, ϕ)ι.

For a k-regular graph Gk, the walk generating function is equal to

NGk
(ϕ) =

n

1− kϕ
.

For example, the cycle Cn on n nodes (see Figure B.1, left panel) is a 2-regular graph and its
walk generating function is given by NCn(ϕ) = 1

1−2ϕ
. As another example, consider the star

K1,n−1 with n nodes (see Figure B.1, middle panel). Then the walk generating function is given
by

NK1,n−1(ϕ) =
n+ 2(n− 1)ϕ

1− (n− 1)ϕ2
.

In general, it holds that NG(0) = n, and one can show that NG(ϕ) ≥ 0. We further have
that

M(G, ϕ) = (I− ϕA)−1 =
∞∑
k=0

ϕkAk =
∞∑
k=0

ϕkSΛkS⊤,

where Λ ≡ diag(λ1, . . . , λn) is the diagonal matrix containing the eigenvalues of the real,
symmetric matrix A, and S is an orthogonal matrix with columns given by the orthogonal
eigenvectors of A (with S⊤ = S−1), and we have used the fact that A = SΛS⊤ [Horn and
Johnson, 1990]. The eigenvectors vi have the property that Avi = λivi and are normalized
such that v⊤

i vi = 1. Note that A = SΛS⊤ is equivalent to A =
∑n

i=1 λiviv
⊤
i . It then follows

that
ι⊤M(G, ϕ)ι = ι⊤S

∞∑
k=0

ϕkΛkS⊤ι,

where
S⊤ι =

(
ι⊤v1, . . . , ι

⊤vn

)⊤
,

and

Λk =


λk
1 0 . . . 0
0 λk

2 . . . 0
... . . . ...
0 . . . λk

n

 = λk
1


1 0 . . . 0

0
(

λ2

λ1

)k
. . . 0

... . . . ...
0 . . .

(
λn

λ1

)k

 .
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We then can write

ι⊤M(G, ϕ)ι =
∞∑
k=0

ϕkλk
1

(
ι⊤v1, . . . , ι

⊤vn

)

1 0 . . . 0

0
(

λ2

λ1

)k
. . . 0

... . . . ...
0 . . .

(
λn

λ1

)k


(
ι⊤v1, . . . , ι

⊤vn

)⊤
,

which gives

ι⊤M(G, ϕ)ι =
∞∑
k=0

ϕkλk
1

(
(ι⊤v1)

2 +

(
λ2

λ1

)k

(ι⊤v2)
2 + . . .+

(
λn

λ1

)k

(ι⊤vn)
2

)

=
n∑

i=1

(ι⊤vi)
2

∞∑
k=0

ϕkλk
i

=
n∑

i=1

(ι⊤vi)
2

1− ϕλi

.

The above computation also shows that

Nk = ι⊤Akι =
n∑

i=1

(ι⊤vi)
2λk

i .

Hence, we can write the walk generating function as follows

NG(ϕ) = ι⊤M(G, ϕ)ι =
∞∑
k=0

Nkϕ
k =

n∑
i=1

(v⊤
i u)

2

1− λiϕ
.

If λ1 is much larger than λj for all j ≥ 2, then we can approximate

NG(ϕ) ≈ (ι⊤v1)
2

∞∑
k=0

ϕkλk
1 =

(ι⊤v1)
2

1− ϕλ1

.

Moreover, there exists the following relationship between the largest eigenvalue λmax of the
adjacency matrix and the number of walks of length k in G [cf. Van Mieghem, 2011, p. 47]

λmax(G) ≥
(
Nk(G)

n

) 1
k

,

and, in particular,

lim
k→∞

(
Nk(G)

n

) 1
k

= λmax(G).

Hence, we have that nλmax(G)k ≥ Nk(G), and

NG(ϕ) =
∞∑
k=0

Nkϕ
k ≤ n

∞∑
k=0

(λmax(G)ϕ)k =
n

1− ϕλmax(G)
. (B.11)

To derive a lower bound, note that for ϕ ≥ 0, NG(ϕ) is increasing in ϕ, so that NG(ϕ) ≥
N0 + ϕN1 + ϕ2N2. Using the fact that N0 = n, N1 = 2m = nd̄ and N2 =

∑n
i=1 d

2
i = n(d̄2 + σ2

d),
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we then get the lower bound

NG(ϕ) ≥ n+ 2mϕ+ n(d̄2 + σ2
d)ϕ

2. (B.12)

Finally, Cvetkovic et al. [1995, p. 45] have found an alternative expression for the walk gener-
ating function given by

NG(ϕ) =
1

ϕ

(−1)n
cAc

(
− 1

ϕ
− 1
)

cA

(
1
ϕ

) − 1

 ,

where cA(ϕ) ≡ det (A− ϕIn) is the characteristic polynomial of the matrix A, whose roots
are the eigenvalues of A. It can be written as cA(ϕ) = ϕn − a1ϕ

n−1 + . . . + (−1)nan, where
a1 = tr(A) and an = det(A). Furthermore, Ac = ιι⊤ − I−A is the complement of A, and ιι⊤

is an n×n matrix of ones. This is a convenient expression for the walk generating function, as
there exist fast algorithms to compute the characteristic polynomial [Samuelson, 1942].

B.3. Bonacich Centrality

In the following we introduce a network measure capturing the centrality of a firm in the
network due to Katz [1953] and later extended by Bonacich [1987]. Let A be the symmetric
n × n adjacency matrix of the network G and λPF its largest real eigenvalue. The matrix
M(G, ϕ) = (I−ϕA)−1 exists and is non-negative if and only if ϕ < 1/λPF.4 Then

M(G, ϕ) =
∞∑
k=0

ϕkAk. (B.13)

The Bonacich centrality vector is given by

bι(G, ϕ) = M(G, ϕ) · ι, (B.14)

where ι = (1, . . . , 1)⊤. We can write the Bonacich centrality vector as

bι(G, ϕ) =
∞∑
k=0

ϕkAk · ι = (I− ϕA)−1 · ι.

For the components bι,i(G, ϕ), i = 1, . . . , n, we get

bι,i(G, ϕ) =
∞∑
k=0

ϕk(Ak · ι)i =
∞∑
k=0

ϕk

n∑
j=1

(
Ak
)
ij
. (B.15)

The sum of the Bonacich centralities is then exactly the walk generating function we have
introduced in Section B.2

n∑
i=1

bι,i(G, ϕ) = ι⊤bu(G, ϕ) = ι⊤M(G, ϕ)ι = NG(ϕ).

Moreover, because
∑n

j=1

(
Ak
)
ij

counts the number of all walks of length k in G starting from
i, bu,i(G, ϕ) is the number of all walks in G starting from i, where the walks of length k

4The proof can be found e.g. in Debreu and Herstein [1953].
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Figure B.1: Illustration of a cycle C6, a star K1,6 and a complete graph, K6.

are weighted by their geometrically decaying factor ϕk. In particular, we can decompose the
Bonacich centrality as follows

bi(G, ρ) = bii(G, ϕ)︸ ︷︷ ︸
closed walks

+
∑
j ̸=i

bij(G, ϕ)︸ ︷︷ ︸
out-walks

, (B.16)

where bii(G, ϕ) counts all closed walks from firm i to i and
∑

j ̸=i bij(G, ϕ) counts all the other
walks from i to every other firm j ̸= i. Similarly, Ballester et al. [2006] define the intercentrality
of firm i ∈ N as

ci(G, ϕ) =
bi(G, ϕ)2

bii(G, ϕ)
, (B.17)

where the factor bii(G, ϕ) measures all closed walks starting and ending at firm i, discounted by
the factor ϕ, whereas bi(G, ϕ) measures the number of walks emanating at firm i, discounted by
the factor ϕ. The intercentrality index hence expresses the ratio of the (square of the) number
of walks leaving a firm i relative to the number of walks returning to i.

We give two examples in the following to illustrate the Bonacich centrality. The graphs
used in these examples are depicted in Figure B.1. First, consider the star K1,n−1 with n nodes
(see Figure B.1, middle panel) and assume w.l.o.g. that 1 is the index of the central node with
maximum degree. We now compute the Bonacich centrality for the star K1,n−1. We have that

M(K1,n−1, ϕ) = (I− ϕA)−1 =



1 −ϕ · · · · · · −ϕ
−ϕ 1 0 0
... 0

. . . . . . ...

. . . ...
... ... 0

−ϕ 0 · · · 0 1



−1

=
1

1− (n− 1)ϕ2



1 ϕ · · · · · · ϕ
ϕ 1− (n− 2)ϕ2 ϕ2 ϕ2

... ϕ2 . . . . . . ...
. . . ...

... ... ϕ2

ϕ ϕ2 · · · ϕ2 1− (n− 2)ϕ2


.

Since b = M · ι we then get

b(K1,n−1, ϕ) =
1

1− (n− 1)ϕ2
(1 + (n− 1)ϕ, 1 + ϕ, . . . , 1 + ϕ)⊤ . (B.18)

11



Next, consider the complete graph Kn with n nodes (see Figure B.1, right panel). We have

M(Kn, ϕ) = (I− ϕA)−1 =



1 −ϕ · · · · · · −ϕ
−ϕ 1 −ϕ −ϕ
... −ϕ

. . . . . . ...

. . . ...
... ... −ϕ

−ϕ −ϕ · · · −ϕ 1



−1

=
1

1− (n− 2)ϕ− (n− 1)ϕ2



1− (n− 2)ϕ ϕ · · · · · · ϕ
ϕ 1− (n− 2)ϕ ϕ ϕ
... ϕ

. . . . . . ...

. . . ...
... ... ϕ
ϕ ϕ · · · ϕ 1− (n− 2)ϕ


.

With b = M · ι we then have that

b(Kn, ϕ) =
1

1− (n− 1)ϕ
(1, . . . , 1)⊤ . (B.19)

The Bonacich matrix of Equation (B.13) is also a measure of structural similarity of the
firms in the network, called regular equivalence. Leicht et al. [2006] define a similarity score
bij, which is high if nodes i and j have neighbors that themselves have high similarity, given
by bij = ϕ

∑n
k=1 aikbkj + δij. In matrix-vector notation this reads M = ϕAM+ I. Rearranging

yields M = (I − ϕA)−1 =
∑∞

k=0 ϕ
kAk, assuming that ϕ < 1/λPF. We hence obtain that the

similarity matrix M is equivalent to the Bonacich matrix from Equation (B.13). The average
similarity of firm i is 1

n

∑n
j=1 bij = 1

n
bι,i(G, ϕ), where bι,i(G, ϕ) is the Bonacich centrality of i.

It follows that the Bonacich centrality of i is proportional to the average regular equivalence
of i. Firms with a high Bonacich centrality are then the ones which also have a high average
structural similarity with the other firms in the R&D network.

The interpretation of eingenvector-like centrality measures as a similarity index is also im-
portant in the study of correlations between observations in principal component analysis and
factor analysis [cf. Rencher and Christensen, 2012]. Variables with similar factor loadings can be
grouped together. This basic idea has also been used in the economics literature on segregation
[e.g. Ballester and Vorsatz, 2013].

There also exists a connection between the Bonacich centrality of a node and its coreness
in the network (see Appendix B.1). The following result, due to Manshadi and Johari [2010],
relates the Nash equilibrium to the k-cores of the graph: If cori = k then bi(G, ϕ) ≥ 1

1−ϕk
,

where the inequality is tight when i belongs to a disconnected clique of size k+1. The coreness
of networks of R&D collaborating firms has also been studied empirically in Kitsak et al. [2010]
and Rosenkopf and Schilling [2007]. In particular, Kitsak et al. [2010] find that the coreness of
a firm correlates with its market value. We can easily explain this from our model because we
know that firms in higher cores tend to have higher Bonacich centrality, and therefore higher
sales and profits (cf. Proposition 1).
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C. Games on Networks: The contribution of our model
In this section, we show how our model embeds standard models of games on networks. Our
profit function is given by Equation (4), that is

πi = µi qi − q2i − ρ

n∑
j=1

bijqiqj + qiei + φqi

n∑
j=1

aijej −
1

2
e2i ,

where µi = αi − ci.

C.1. A Model without Network Effects

Let us consider a model with the product market alone, i.e. φ = 0. In that case, the profit
function in Equation (4) of firm i reduces to

πi = µi qi − q2i − ρ

n∑
j=1

bijqiqj + qiei −
1

2
e2i . (C.20)

This is, for example, a model that is commonly used in the industrial organization literature to
study product differentiation [cf. Singh and Vives, 1984]. In that case, the first-order condition
with respect to ei leads to ei = qi, while the first-order condition with respect to qi can be
written as:

qi = µi − ρ

n∑
j=1

bijqj .

Let µ be the n× 1 vector of µi’s.

Lemma 1. Consider the profit function in Equation (C.20). If
(
µ
µ − 1

)
< 1−ρ

nρ then there exists a
unique interior Nash equilibrium, which is given by

q = (I+ ρB)−1µ.

Proof of Lemma 1 First, the condition for existence and uniqueness of the Nash equilibrium is
that the matrix I+ ρB has to be positive definite. A sufficient condition is that all eigenvalues of this
matrix are positive, which is guaranteed by λmin (B) > −1/ρ. Since λmin (B) = −1, this is equivalent
to ρ < 1, which is always true by assumption. Second, Equation (9) in part (ii) of Proposition 1 requires
that the inequality nρ

1−ρ

(
µ
µ − 1

)
< 1 is satisfied for an interior solution to exist.

We can see that this is a special case of our Proposition 1, when φ = 0.

C.2. A Model without Competition Effects

Let us now consider a model with no competition effect so that ρ = 0. In that case, the profit
function in Equation (4) of firm i reduces to:

πi = µi qi − q2i + qiei + φqi

n∑
j=1

aijej −
1

2
e2i .

The first-order with respect to ei leads to: ei = qi while that with respect to qi is given by:

µi − 2qi + ei + φ

n∑
j=1

aijej = 0.
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Using the fact that ei = qi, we easily obtain:

qi = µi + φ

n∑
j=1

aijqj .

If φλmax(A) < 1, there exists a unique Nash equilibrium given by

q∗ = bµ (G,φ) ≡ (I− φA)−1µ,

where bµ (G,φ) is the µ-weighted Katz-Bonacich centrality. This is part (iii) of our Proposition
1.

C.3. Comparison of our model with Ballester et al. [2006] and Bramoullé et al.
[2014]

Ballester et al. [2006] (BCZ) consider a single market (i.e., M = 1) without R&D investment
decisions. They also assume that firms are ex ante homogenous with µi = µ. The equilibrium
best response function in their case is given by

qi = µ− ρ

n∑
j=1,j ̸=i

qj + φ

n∑
j=1

aijqj .

This is a special case of part (ii) of our Proposition 1 when µi = µ.
Bramoullé et al. [2014] generalize Ballester et al. [2006] by allowing for ex ante heterogeneity.

5 However, they still assume a single market (i.e., M = 1), and abstract away from R&D
investment decisions. Their equilibrium best response function is

qi = µi − ρ

n∑
j=1,j ̸=i

qj + φ

n∑
j=1

aijqj .

In that case, their main result (their Proposition 3) corresponds to part (ii) of our Proposition
1.6

D. Herfindahl Index and Market Concentration

The Herfindahl-Hirschman industry concentration index is defined as H =
∑n

i=1 s
2
i , where the

market share of firm i is given by si =
qi∑n

j=1 qj
[cf. e.g. Hirschman, 1964; Tirole, 1988]. Hence,

we can write

H =
n∑

i=1

(
qi∑n
j=1 qj

)2

=
∥q∥22
∥q∥21

, (D.21)

5See also Calvó-Armengol et al. [2009].
6The condition for existence and uniqueness of equilibrium in Bramoullé et al. [2014] is slightly different since

it involves λmin (A), the lowest eigenvalue of A, rather than λmax (A), the largest eigenvalue of A. Observe that,
in our paper, it can be seen from the proof of Proposition 1 that we have another condition for the existence and
uniqueness of equilibrium, which is given by: λmin (ρB−φA)+1 > 0, which is similar to that of Bramoullé et al.
[2014]. We then write an equivalent condition in terms of λmax (A). Also, in most of their paper, Bramoullé
et al. [2014] assume that ρ = 0 so that they do not have to worry about the interiority of the solution.
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With q = bι(G, ϕ) = M(G, ϕ)ι in the Nash equilibrium (see Proposition 1), we can write the
Herfindahl index of Equation (D.21) as follows

H(G) =
ι⊤M(G, ϕ)2ι

(ι⊤M(G, ϕ)ι)2
=

∥b∥22
∥b∥21

=

∑n
i=1 b

2
i

(
∑n

i=1 |bi|)
2 = γ(b)−1,

which is the inverse of the participation ratio γ(·). The participation ratio γ(x) measures the
number of elements of x which are dominant. We have that 1 ≤ γ(x) ≤ n, where a value
of γ(x) = n corresponds to a fully homogenous case, while γ(x) = 1 corresponds to a fully
concentrated case (note that, if all xi are identical then γ(x) = n, while if one xi is much larger
than all others we have γ(x) = 1). Moreover, γ(x) is scale invariant, that is, γ(αx) = γ(x)
for any α ∈ R+. The participation ratio γ(x) is further related to the coefficient of variation
cv(x) =

σ(x)
µ(x)

, where σ(x) is the standard deviation and µ(x) the mean of the components of x,
via the relationship cv(x)

2 = n
γ(x)

− 1. This implies that

H(G) =
ι⊤M(G, ϕ)2ι

(ι⊤M(G, ϕ)ι)2
=

cv(b)
2 + 1

n
∼ cv(b)

2

n
.

Hence, the Herfindhal index is maximized for the graph G with the highest coefficient of varia-
tion in the components of the Bonacich centrality bι(G, ϕ). Finally, as for small values of ϕ the
Bonacich centrality becomes proportional to the degree, the variance of the Bonacich centrality
will be determined by the variance of the degree. It is known that the graphs that maximize
the degree variance are nested split graphs [cf. Peled et al., 1999].

E. Bertrand Competition

In the case of price setting firms we obtain from the profit function in Equation (3) the FOC
with respect to price pi for firm i

∂πi

∂pi
= (pi − ci)

∂qi
∂pi

− qi = 0.

When i ∈ Mm, then observe that from the inverse demand in Equation (1) we find that

qi =
αm(1− ρm)− (1− (nm − 2)ρm)pi + ρm

∑
j∈Mm,j ̸=i pj

(1− ρ)(1 + (nm − 1)ρm)
,

where nm ≡ |Mm|. It then follows that

∂qi
∂pi

= − 1− (nm − 2)ρm
(1− ρm)(1 + (nm − 1)ρm)

.

Inserting into the FOC with respect to pi gives

qi = − 1− (nm − 2)ρm
(1− ρm)(1 + (nm − 1)ρm)

(pi − ci).
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Inserting Equations (1) and (2) yields

qi =
(1− (nm − 2)ρm)(αm − c̄i)

ρm(4− (2− ρm)nm − ρm)
− 1− (nm − 2)ρm

4− (2− ρm)nm − ρm

∑
j∈Mm,j ̸=i

qj

+
(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm
ei +

(1− (nm − 2)ρm)φ

ρm(4− (2− ρm)nm − ρm

n∑
j=1

aijej.

The FOC with respect to R&D effort is the same as in the case of perfect competition, so that
we get ei = qi. Inserting equilibrium effort and rearranging terms gives

qi =
(1− (nm − 2)ρm)(αm − c̄i)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)

− ρm(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)

∑
j∈Mm,j ̸=i

qj

+
φ(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)

n∑
j=1

aijqj.

If we denote by

µi ≡
(1− (nm − 2)ρm)(αm − c̄i)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)
,

ρ ≡ ρm(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)
,

λ ≡ φ(1− (nm − 2)ρm)

ρm(4− (2− ρm)nm − ρm)− 1(1− (nm − 2)ρm)
.

Then we can write equilibrium quantities as follows

qi = µi − ρ
n∑

j=1

bijqj + λ
n∑

j=1

aijqj. (E.22)

Observe that the reduced form Equation (E.22) is identical to the Cournot case in Equation
(10).

F. Equilibrium Characterization with Direct and Indirect Technology
Spillovers

We extend our model by allowing for direct (between collaborating firms) and indirect (between
non-collaborating firms) technology spillovers. The profit of firm i ∈ N is still given by πi =

(pi − ci)qi − 1
2e

2
i , where the inverse demand is pi = ᾱi − qi − ρ

∑n
j=1 bijqj. The main change is in

the marginal cost of production, which is now equal to7

ci = c̄i − ei − φ

n∑
j=1

aijej − χ

n∑
j=1

wijej , (F.23)

7See also Eq. (1) in Goyal and Moraga-Gonzalez [2001].
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where wij are weights characterizing alternative channels for technology spillovers than R&D
collaborations (representing for example a patent cross-citation, a flow of workers, or technolog-
ical proximity measured by the matrix Pij introduced in Footnote 28). Inserting this marginal
cost of production into the profit function gives

πi = (ᾱi − c̄i)qi − q2i − ρqi

n∑
j=1

bijqj + qiei + φqi

n∑
j=1

aijej + χqi

n∑
j=1

wijej −
1

2
e2i .

As above, from the first-order condition with respect to R&D effort, we obtain ei = qi. Inserting
this optimal effort into the first-order condition with respect to output, we obtain

qi = ᾱi − c̄i − ρ

n∑
j=1

bijqj + φ

n∑
j=1

aijqj + χ

n∑
j=1

wijqj .

Denoting by µi ≡ ᾱi − c̄i, we can write this as

qi = µi − ρ

n∑
j=1

bijqj + φ

n∑
j=1

aijqj + χ

n∑
j=1

wijqj . (F.24)

If the matrix I+ ρB− φA− χW is invertible, this gives us the equilibrium quantities

q = (I+ ρB− φA− χW)−1µ.

Let us now write the econometric equivalent of Equation (F.24). Proceeding as in Section 6.1,
using Equations (23) and (24) and introducing time t, we get

µit = x⊤
itβ + ηi + κt + ϵit.

Plugging this value of µit into Equation (F.24), we obtain

qit = φ

n∑
j=1

aij,tqjt + χ

n∑
j=1

wij,tqjt − ρ

n∑
j=1

bijqjt + x⊤
itβ + ηi + κt + ϵit.

This is Equation (30) in Section 6.4.

G. Additional Results on Welfare and Efficiency
In the following sections we illustrate how the private returns from R&D can be lower than the
social returns (Appendix G.1), and we show which network structures are efficient (Appendix
G.2).

G.1. Private vs. Social Returns to R&D

The aim of this section is to show that the choice of qi by each firm i at the Nash equilibrium
is not efficient so that the private returns of R&D effort and output are different from the social
returns of R&D effort and output.

Let us first calculate the Nash equilibrium as in the main text in Section 3. The profit
function is given by Equation (4), that is

πi = µi qi − q2i − ρ

n∑
j=1

bijqiqj + qiei + φqi

n∑
j=1

aijej −
1

2
e2i , (G.25)
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where µi := αi − ci. The first-order condition with respect to ei yields qi = ei, so that the
first-order condition with respect to qi leads to:

qi = µi − ρ

n∑
j=1

bijqj + φ

n∑
j=1

aijqj . (G.26)

In part (i) and (ii) of Proposition 1, we showed that if Equations (5) and (9) hold, then there
exists a unique interior Nash equilibrium, which is given by Equation (G.26). Under these
conditions we can write the output levels as

qNE = (I+ ρB− φA)−1µ, (G.27)

where the superscript NE refers to the “Nash equilibrium ”. Let us now show that the Nash
equilibrium defined by Equation (G.27) is not efficient. For this purpose we consider a planner
who chooses both R&D efforts, e ∈ Rn

+, and output levels, q ∈ Rn
+, in order to maximize welfare

W , defined as the sum of producer and consumer surplus, U and Π, respectively. Consumer
surplus is given by U = 1

2

∑n
i=1 q

2
i +

ρ
2

∑n
i=1

∑n
j=1 bijqiqj while producer surplus is defined as the

sum of firms’ profits, Π =
∑n

i=1 πi, with πi given by Equation (G.25). That is, the planner
solves the following program:8

max
e,q∈Rn

+

W = max
e,q∈Rn

+

(U +Π)

= max
e,q∈Rn

+

n∑
i=1

1

2
q2i +

ρ

2

n∑
j=1

bijqiqj + µi qi − q2i − ρ

n∑
j=1

bijqiqj + qiei + φqi

n∑
j=1

aijej −
1

2
e2i


= max

e,q∈Rn
+

n∑
i=1

µi qi −
1

2
q2i −

ρ

2

n∑
j=1

bijqiqj + qiei + φqi

n∑
j=1

aijej −
1

2
e2i


= max

e,q∈Rn
+

 n∑
i=1

(
µi qi −

1

2
q2i + qiei −

1

2
e2i

)
− ρ

2

n∑
i=1

n∑
j=1

bijqiqj + φ

n∑
i=1

n∑
j=1

aijqiej

 .

From the first-order condition with respect to R&D effort, ei, given by

∂W

∂ei
= qi − ei + φ

n∑
j=1

aijqj = 0,

we see that
ei = qi + φ

n∑
j=1

aijqj . (G.28)

Compared to the Nash equilibrium effort levels (ei = qi) we see that firms do not spend enough
on R&D as compared to what is socially optimal. This is because they do not take into account
the spillovers they generate on other connected firms (captured by the term φ

∑n
j=1 aijqj in

Equation (G.28)). That is, there is a generic problem of under-investment in R&D, as the private
returns from R&D are lower than the social returns from R&D. This motivates policies for
fostering R&D investments as we have introduced them in Section 4 in the paper.

8We consider an interior solution such that the conditions in the proof of Proposition 1 are implicitly assumed
to be satisfied.
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Similarly, the first-order condition with respect to output is given by

∂W

∂qi
= µi − qi + ei − ρ

n∑
j=1

bijqj + 2φ

n∑
j=1

aijej = 0.

Inserting the socially optimal R&D effort levels from Equation (G.28) yields

µi − qi + qi + φ

n∑
j=1

aijqj − ρ

n∑
j=1

bijqj + 2φ

n∑
j=1

aij

(
qj + φ

n∑
k=1

ajkqk

)
= 0.

This can be written as follows

µi + 3φ

n∑
j=1

aijqj − ρ

n∑
j=1

bijqj + 2φ2
n∑

j=1

aij

n∑
k=1

ajkqk = 0.

In vector-matrix notation this is

µ+ 3φAq− ρBq+ 2φ2A2q = 0,

or equivalently
µ =

(
ρB− 3φA− 2φ2A2

)
q = 0.

When the matrix ρB− 3φA− 2φ2A2 is invertible, we get

qO =
(
ρB− 3φA− 2φ2A2

)−1
µ, (G.29)

where the superscript O refers to the “social optimum”. An examination of (G.27) and (G.29)
shows that the two solutions differ and that the Nash equilibrium in such a game is inefficient,
as there are negative and positive externalities in output (and R&D efforts) due to competition
and spillover effects that are not internalized by the firms.

G.2. Efficient Network Structure

The aim of this section is to determine the optimal network structure, i.e. the network structure
that maximizes total welfare. We will assume in the following that there is only a single market
(with M = 1, bij = 0 for i ̸= j and bii = 1 for all i, j ∈ N ) and make the homogeneity assumption
that µi = µ for all i ∈ N . Then, welfare can be written as follows

W (G) =
2− ρ

2
∥q∥22 +

ρ

2
∥q∥21,

where ∥q∥p ≡ (
∑n

i=1 q
p
i )

1

p is the Lp-norm of q. Further, note that the Herfindahl-Hirschman
industry concentration index is given by9

H =

n∑
i=1

(
qi∑n
j=1 qj

)2

=
∥q∥22
∥q∥21

,

9For more discussion of the Herfindahl index in the Nash equilibrium see Appendix D.
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Figure G.2: (Left panel) The upper and lower bounds of Equation (G.31) with n = 50, ρ = 0.25 for varying
values of φ. (Right panel) The upper and lower bounds of Equation (G.31) with n = 50, φ = 0.015 for varying
values of ρ.

and denoting total output by Q = ∥q∥1, we can write welfare as follows

W (G) =
1

2
∥q∥21

(
(2− ρ)

∥q∥22
∥q∥21

+ ρ

)
=

Q2

2
((2− ρ)H + ρ) . (G.30)

One can show that total output Q is largest in the complete graph [cf. Ballester et al., 2006].
However, as welfare depends on both, output Q and industry concentration H, it is not obvious
that the complete graph (where H = 1/n is small) is also maximizing welfare. As the following
proposition illustrates, we can conclude that the complete graph is welfare maximizing (i.e.
efficient) when externalities are weak, but this may no longer be the case when ρ or φ are high.

Proposition 4. Assume that µi = µ for all i = 1, . . . , n, and let ρ, µ, φ and ϕ satisfy the restrictions of
Proposition 1. Denote by Gn the class of graphs with n nodes, Kn ∈ Gn the complete graph, K1,n−1 ∈ Gn

the star network, and let the efficient graph be denoted by G∗ = argmaxG∈Gn W (G).

(i) Welfare of the efficient graph G∗ can be bounded from above and below as follows:

µ2n(2 + (n− 1)ρ)

2(1 + (n− 1)(ρ− φ))2
≤ W (G∗) ≤

µ2n
(
(1− ρ)2(2 + (n− 1)ρ)− n(n− 1)2ρφ2

)
2((1 + (n− 1)(ρ− φ))2 ((1− ρ)2 − (n− 1)2φ2)

. (G.31)

(ii) In the limit of independent markets, when ρ → 0, the complete graph is efficient, Kn = G∗.

(iii) In the limit of weak R&D spillovers, when φ → 0, the complete graph is efficient, Kn = G∗.

(iv) There exists a φ∗(n, ρ) > 0 (which is decreasing in ρ) such that W (Kn) < W (K1,n−1) for all
φ > φ∗(n, ρ), and the complete graph is not efficient, Kn ̸= G∗.

Proof of Proposition 4 (ii) Assuming that µi = µ for all i = 1, . . . , n, at the Nash equilib-
rium, and that ρ = 0, we have that q = µM(G,φ)ι, where we have denoted by M(G,φ) ≡
(I − φA)−1.10 We then obtain W (G) = q⊤q = µ2ι⊤M(G,φ)2ι. Observe that the quan-
tity ι⊤M(G,φ)ι is the walk generating function, NG(φ), of G that we defined in detail in

10Note that there exists a relationship between the matrix M(G,φ) with elements mij(G,φ) and the length
of the shortest path ℓij(G) between nodes i and j in the network G. Namely ℓij(G) = limφ→0

∂ lnmij(G,φ)
∂ lnφ =

limφ→0
φ

mij(G,φ)
∂mij(G,φ)

∂φ . See also Newman [2010, Chap. 6]. This means that the length of the shortest path
between i and j is given by the relative percentage change in the weighted number of walks between nodes i
and j in G with respect to a relative percentage change in φ in the limit of φ → 0.
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Appendix B.2. Using the results of Appendix B.2, we obtain

ι⊤M(G,φ)2ι = ι⊤

(
∞∑
k=0

φkAk

)2

ι

= ι⊤

(
∞∑
k=0

k∑
l=0

φlAlφk−lAk−l

)
ι

=
∞∑
k=0

(k + 1)φkι⊤Akι

= NG(φ) +
∞∑
k=0

kφkι⊤Akι.

Alternatively, we can write
∞∑
k=0

(k + 1)φkι⊤Akι =
∞∑
k=0

(k + 1)Nkφ
k =

d

dφ
(φNG(φ)),

so that
ι⊤M(G,φ)2ι =

d

dφ
(φNG(φ)) = NG(φ) + φ

d

dφ
NG(φ).

In the k-regular graph Gk it holds that NG(φ) =
n

1−kφ
and d

dφ
(φNG(φ)) = NG(φ) + φ d

dφ
=

NG(φ) = n
1−kφ

+ nkφ
(1−kφ)2

= n
1−kφ

(
1 + kφ

1−kφ

)
= n

(1−kφ)2
. Using the fact that the number of

links in a k-regular graph is given by m = nk
2

we obtain a lower bound on welfare in the
efficient graph given by µ2n

(1− 2m
n

φ)2
≤ W (G∗). This lower bound is highest for the complete

graph Kn where m = n(n− 1)/2, so that11

µ2n

(1− (n− 1)φ)2
≤ W (G∗).

In order to derive an upper bound, observe that

ι⊤Akι =
n∑

i=1

(ι⊤vi)
2λk

i ,

NG(φ) =
n∑

i=1

(v⊤
i ι)

2

1− λiφ
,

11 Using Rayleigh’s inequality, one can show that d
dφ (φNG(φ)) ≥ 1

λ1

d
dφ [Van Mieghem, 2011, p. 51]. From

this we can obtain a lower bound on welfare given by W (G) ≥ µ2 1
λ1

d
dφ (NG(φ)).
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so that we can write

ι⊤M(G,φ)2ι =
n∑

i=1

(v⊤
i ι)

2

1− λiφ
+

n∑
i=1

(ι⊤vi)
2

∞∑
k=0

kφkλk
i

=
n∑

i=1

(v⊤
i ι)

2

1− λiφ
+

n∑
i=1

(ι⊤vi)
2φλi

(1− φλi)2

=
n∑

i=1

(ι⊤vi)
2

1− φλi

(
1 +

φλi

1− φλi

)
=

n∑
i=1

(ι⊤vi)
2

(1− φλi)2
.

From the above it follows that welfare can also be written as

W (G) = µ2 d

dφ
(φNG(φ)) = µ2

n∑
i=1

(ι⊤vi)
2

(1− φλi)2
.

This expression shows that gross welfare is highest in the graph where λ1 approaches 1/φ.
We then can upper bound welfare as follows12

W (G) = µ2

n∑
i=1

(ι⊤vi)
2

(1− φλi)2
≤ µ2

∑n
i=1(ι

⊤vi)
2

(1− φλ1)2
≤ µ2 n

(1− φλ1)2
,

where we have used the fact that NG(0) =
∑n

i=1(ι
⊤vi)

2 = n so that (ι⊤v1)
2 < n. Note

that the largest eigenvalue λ1 is upper bounded by the largest eigenvalue of the complete
graph Kn, where it is equal to n− 1. In this case, upper and lower bounds coincide, and the
efficient graph is therefore complete, that is Kn = argmaxG∈Gn W (G).

(i) Welfare can be written as

W (G) =
2− ρ

2

µ2

ρ2

ι⊤M(G, ϕ)2ι+ ρ
2−ρ

(ι⊤M(G, ϕ)ι)2(
1−ρ
ρ

+ ι⊤M(G, ϕ)ι
)2 .

For the k-regular graph Gk we have that

ι⊤M(G, ϕ)ι =
n

1− (k − 1)ϕ
,

ι⊤M(G, ϕ)2ι =
n

(1− (k − 1)ϕ)2
,

and welfare is given by

W (Gk) =
µ2n((n− 1)ρ+ 2)

2(ρ(kϕ+ n− 1)− kϕ+ 1)2
.

12An alternative proof uses the fact that λ1 ≥
(

Nk(G)
n

) 1
k [cf. Van Mieghem, 2011, p. 47], so that

d
dφ (φNG(φ)) =

∑∞
k=0 φ

k(k + 1)Nk(φ) ≤ n
∑∞

k=0(λ1φ)
k(k + 1) = n

∑∞
k=0(λ1φ)

k + n
∑∞

k=0 k(λ1φ)
k =

n
(

1
1+φλ1

+ φλ1

(1+φλ1)2

)
= n

(1+φλ1)2
.
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As k = 2m/n this is

W (Gk) =
µ2n3((n− 1)ρ+ 2)

2(2m(ρ− 1)ϕ+ (n− 1)nρ+ n)2
.

Together with the definition of the average degree d̄ = 2m
n

this gives us the lower bound on
welfare for all graphs with m links. For the complete graph Kn we get

ι⊤M(G, ϕ)ι =
n

1− (n− 1)ϕ
,

ι⊤M(G, ϕ)2ι =
n

(1− (n− 1)ϕ)2
,

so that we obtain for welfare in the complete graph

W (Kn) =
µ2n(2 + (n− 1)ρ)

2((n− 1)ρ(ϕ+ 1)− (n− 1)ϕ+ 1)2
.

Using the fact that ϕ = φ
1−ρ

we can write this as follows

W (Kn) =
µ2n(2 + (n− 1)ρ)

2((n− 1)ρ− (n− 1)φ+ 1)2
.

This gives us the lower bound on welfare W (Kn) ≤ W (G∗). To obtain an upper bound, note
that welfare can be written as

W (G) =
µ2

2ρ2

(2− ρ) ι⊤M(G,ϕ)2ι
(ι⊤M(G,ϕ)ι)2

+ ρ

( 1−ρ
ρ

+ι⊤M(G,ϕ)ι)
2

(ι⊤M(G,ϕ)ι)2

.

Next, observe that(
1−ρ
ρ

+ ι⊤M(G, ϕ)ι
)2

(ι⊤M(G, ϕ)ι)2
=

(
1 +

1− ρ

ρ

1

ι⊤M(G, ϕ)ι

)2

≥
(
1 +

1− ρ

ρ

1− λ1ϕ

n

)2

,

where we have used the fact that ι⊤M(G, ϕ)ι = NG(ϕ) ≤ n
1−λ1ϕ

. This implies that

W (G) ≤ µ2

2ρ2

(2− ρ) ι⊤M(G,ϕ)2ι
(ι⊤M(G,ϕ)ι)2

+ ρ(
1 + 1−ρ

ρ
1−λ1ϕ

n

)2 (G.32)

Next, observe that the Herfindahl industry concentration index is defined as H =
∑n

i=1 s
2
i ,

where the market share of firm i is given by si =
qi∑n

j=1 qj
[cf. e.g. Tirole, 1988]. Using our

equilibrium characterization from Equation (8) we can write

H(G) =
n∑

i=1

(
qi∑n
j=1 qj

)2

=

∑n
i=1 bi (G, ϕ)2(∑n
j=1 bj (G, ϕ)

)2 =
b (G, ϕ)⊤ b (G, ϕ)

(ι⊤b (G, ϕ))2
=

ι⊤M(G, ϕ)2ι

(ι⊤M(G, ϕ)ι)2
.

(G.33)

23



ρ=0.05

ρ=0.1

ρ=0.25

ρ=0.5

ρ=0.99

0 1000 2000 3000 4000 5000

0.5

1

5

10

m

W

Figure G.3: The RHS in Equation (G.35) with varying values of m ∈ {0, 1, . . . , n(n − 1)/2} for n = 100,
φ = 0.9(1− ρ)/n and ρ ∈ {0.05, 0.1, 0.25, 0.5, 0.99}.

The upper bound for welfare can then be written more compactly as follows

W (G) ≤ µ2

2ρ2
(2− ρ)H(G) + ρ(
1 + 1−ρ

ρ
1−λ1ϕ

n

)2 . (G.34)

Further, we have that

H(G) =
ι⊤M2(G, ϕ)ι

(ι⊤M(G, ϕ)ι)2
=

d
dϕ

(ϕNG(ϕ))

NG(ϕ)2
=

∑n
i=1

(ι⊤vi)
2

(1−ϕλi)2(∑n
i=1

(ι⊤vi)2

1−ϕλi

)2 ≤
1

1−ϕλ1

∑n
i=1

(ι⊤vi)
2

1−ϕλi(∑n
i=1

(ι⊤vi)2

1−ϕλi

)2
=

1

(1− ϕλ1)NG(ϕ)
≤ 1

(1− ϕλ1)(n+ 2mϕ)
≤ 1

(1− ϕ
√

2m(n−1)
n

)(n+ 2mϕ)
,

where we have used the fact that NG(ϕ) ≥ n+ 2mϕ for ϕ ∈ [0, 1/λ1), and the upper bound
λ1 ≤

√
2m(n−1)

n
[cf. Van Mieghem, 2011, p. 52]. Inserting into the upper bound in Equation

(G.32) and substituting ϕ = (1− ρ)/φ gives

W (G∗) ≤ µ2n2

2

ρ+ (2− ρ) (1−ρ)2

(n(1−ρ)+2mφ)

(
1−ρ−φ

√
2m(n−1)

n

)
(
1 + (n− 1)ρ− φ

√
2m(n−1)

n

)2 . (G.35)

The RHS in Equation (G.35) is increasing in m (see Figure G.3) and attains its maximum
at m = n(n− 1)/2, where we get

W (G∗) ≤ µ2n ((ρ− 1)2((n− 1)ρ+ 2)− (n− 1)2nρφ2)

2((n− 1)ρ− nφ+ φ+ 1)2 ((ρ− 1)2 − (n− 1)2φ2)
.

(iii) Assuming that µi = µ for all i = 1, . . . , n, we have that

q =
µ

1 + ρ(ι⊤M(G, ϕ)ι− 1)
M(G, ϕ)ι,
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with M(G, ϕ) ≡ (I− ϕA)−1, and we can write

W (G) =
µ2

2(1 + ρ(ι⊤M(G, ϕ)ι− 1))2
(
(2− ρ)ι⊤M(G, ϕ)2ι+ ρ(ι⊤M(G, ϕ)ι)2

)
.

Using the fact that ι⊤M(G, ϕ)ι = NG(ϕ) and ι⊤M(G, ϕ)2ι = d
dϕ

(ϕNG(ϕ)), we then can
write welfare in terms of the walk generating function NG(ϕ) as

W (G) =
µ2

2(1 + ρ(NG(ϕ)− 1))2

(
(2− ρ)

d

dϕ
(ϕNG(ϕ)) + ρNG(ϕ)

2

)
.

Next, observe that
NG(ϕ) = N0 +N1ϕ+N2ϕ

2 +O(ϕ3),

and consequently
d

dϕ
(ϕNG(ϕ)) = N0 + 2N1ϕ+ 3N2ϕ

2 +O(ϕ3).

Inserting into welfare gives

W (G) =
µ2N0((N0 − 1)ρ+ 2)

2((N0 − 1)ρ+ 1)2
− µ2N1(ρ− 1)((N0 − 1)ρ+ 2)

((N0 − 1)ρ+ 1)3
ϕ+O(ϕ)2.

Using the fact that N0 = n and N1 = 2m we get

W (G) =
µ2n((n− 1)ρ+ 2)

2((n− 1)ρ+ 1)2
+

2µ2m(1− ρ)(2 + (n− 1)ρ)

(1 + (n− 1)ρ)3
ϕ+O(ϕ)2.

Up to terms linear in ϕ this is an increasing function of m, and hence is largest in the
complete graph Kn.

(iv) Welfare can be written as

W (G) =
µ2
(
(ι⊤M(G, ϕ)ι)2ρ+ ι⊤M(G, ϕ)2ι(2− ρ)

)
2((ι⊤M(G, ϕ)ι− 1)ρ+ 1)2

.

For the complete graph we obtain

ι⊤M(Kn, ϕ)ι =
n

1− (n− 1)ϕ
,

ι⊤M(Kn, ϕ)
2ι =

n

(1− (n− 1)ϕ)2
.

With ϕ = φ
1−ρ

welfare in the complete graph is given by

W (Kn) =
µ2n((n− 1)ρ+ 2)

2((n− 1)ρ− nφ+ φ+ 1)2
,

For the star K1,n−1

ι⊤M(K1,n−1, ϕ)ι =
2(n− 1)ϕ+ n

1− (n− 1)ϕ2
,

ι⊤M(K1,n−1, ϕ)
2ι =

(n− 1)nϕ2 + 4(n− 1)ϕ+ n

((n− 1)ϕ2 − 1)2
.
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Inserting ϕ = φ
1−ρ

, welfare in the star is then given by

W (K1,n−1)

=
µ2 ((n− 1)φ2(n(3ρ+ 2)− 4ρ)− 4(n− 1)(ρ− 1)φ((n− 1)ρ+ 2) + n(ρ− 1)2((n− 1)ρ+ 2))

2 (−2(n− 1)ρφ+ (ρ− 1)((n− 1)ρ+ 1) + (n− 1)φ2)2
.

(G.36)

Welfare of the star K1,n−1 for varying values of ρ can be seen in Figure G.4, right panel. For
the ratio of welfare in the complete graph and the star we then obtain

W (Kn)

W (K1,n−1)
= n(2 + (n− 1)ρ)

(
2(n− 1)ρφ+ (1− ρ)((n− 1)ρ+ 1)− (n− 1)φ2

)2
×
(
(1 + (n− 1)ρ− (n− 1)φ)2

(
(n− 1)φ2(n(3ρ+ 2)− 4ρ)

+4(n− 1)(1− ρ)φ((n− 1)ρ+ 2) + n(1− ρ)2((n− 1)ρ+ 2)
))−1

.

This ratio equals one when φ = φ∗(n, ρ), which is given by

φ∗(n, ρ) =
1

6A(n− 1)((n− 1)ρ+ n)

×
(

3
√
2A2 + 2A(n− 1)(2− ρ(3(n− 1)ρ+ 5)) + 22/3(n− 1)

)
×
(
6n2 − (n− 1)(15(n− 2)n+ 8)ρ2 + (n(3(n− 16)n+ 76)− 16)ρ− 32n+ 8

)
,

where we have denoted by

A =
(
−3(n− 1)2

(
n
(
3n
(
6n2 − 33n+ 86

)
− 248

)
+ 32

)
×ρ2 − 27(n− 2)(n− 1)4nρ4 + (n− 1)3(9(n− 2)n(3n− 19)− 32)ρ3

+3
√
3B − 12n(n(5n(3(n− 5)n+ 31)− 153) + 66)ρ− 16n(n(n(9n− 29) + 33)− 15) + 96ρ− 32

) 1
3
,

and

B =
(
(n− 2)(n− 1)3n((n− 1)ρ+ n)2

×
(
27(n− 2)(n− 1)3nρ6 − 2(n− 1)2(9(n− 2)n(6n− 19)− 32)ρ5

+(n− 1)(n(n(2n(37n− 526) + 3283)− 3046) + 384)ρ4

+2(n(n(n(n(n+ 242)− 1936) + 4384)− 3264) + 448)ρ3

+4((n− 2)n(n(3n+ 302)− 786)− 256)ρ2 + 24(n− 2)(n(n+ 56)− 12)ρ+ 16(n(n+ 34)− 8)
)) 1

2 .

We then have that W (Kn) > W (K1,n−1) if φ < φ∗(n, ρ) and W (Kn) < W (K1,n−1) otherwise.
An illustration can be seen in Figure G.4, left panel.

The upper and lower bounds of case (i) in Proposition 4 on welfare can be seen in Figure G.2.
The bounds indicate that welfare is typically increasing in strength of technology spillovers, φ,
and decreasing in the degree of competition, ρ, at least when these are not too high. The
figure is also consistent with cases (ii) and (iii), where it is shown that for weak spillovers
the complete graph is efficient. However, Proposition 4, case (iv), shows that in the presence
of stronger externalities through R&D spillovers and competition, the star network generates
higher welfare than the complete network. This happens when the welfare gains through
concentration, which enter the welfare function through the Herfindahl index H in Equation
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Figure G.4: (Left panel). The ratio of welfare in the complete graph, Kn, and the star, K1,n−1, for n = 10,
ρ = 0.981 and varying values of φ (< ((1 − ρ)/λmax(Kn) = 0.002) (Right panel) Welfare in the star, K1,n−1,
with varying values of ρ for n = 10 and φ = 0.001 (< (1− ρ)/λmax(K1,n−1) for all values of ρ considered).

(G.30), dominate the welfare gains through maximizing total output Q.
While total output Q (and total R&D) is increasing with the degree of competition, mea-

sured by ρ (Schumpeterian effect; see e.g. Aghion et al. [2014]), this may not necessarily hold for
welfare. This is illustrated in the right panel in Figure G.4 where welfare for the star is shown
for varying values of ρ. The presence of externalities through R&D spillovers and business
stealing effects through market competition in highly centralized networks can thus give rise to
a non-monotonic relationship between competition and welfare [cf. Aghion et al., 2005]. The
centralization of the network structure, however, seems to be important for this result, as for
example in a regular graph (such as the complete graph) welfare is decreasing monotonically
with increasing ρ.13

H. Data
In the following appendices we give a detailed account on how we constructed our data sample.
In Appendix H.1 we describe the two raw datasources we have used to obtain information
on R&D collaborations between firms. In Appendix H.2 we explain how we complemented
these data with information about mergers and acquisitions, while Appendix H.3 explains how
we supplemented the alliance information with firms’ balance sheet statements. Moreover,
Appendix H.4 discusses the geographic distribution of the firms in our data sample. Finally,
Appendix H.5 provides the details on how we complemented the alliance data with the firms
patent portfolios and computed their technological proximities.

H.1. R&D Network

To get a comprehensive picture of alliances we use data on interfirm R&D collaborations stem-
ming from two sources which have been widely used in the literature [cf. Schilling, 2009]. The
first is the Cooperative Agreements and Technology Indicators (CATI) database [cf. Hagedoorn,
2002]. The database only records agreements for which a combined innovative activity or an
exchange of technology is at least part of the agreement. Moreover, only agreements that
have at least two industrial partners are included in the database, thus agreements involving
only universities or government labs, or one company with a university or lab, are disregarded.
The second is the Thomson Securities Data Company (SDC) alliance database. SDC collects

13Decreasing welfare with increasing competition is a feature not only of the standard Cournot model (without
externalities) but also of many traditional models in the literature including Aghion and Howitt [1992], and
Grossman and Helpman [1991].
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data from the U. S. Securities and Exchange Commission (SEC) filings (and their international
counterparts), trade publications, wires, and news sources. We include only alliances from
SDC which are classified explicitly as research and development collaborations. A comparative
analysis of these two databases (and other alternative databases) can be found in Schilling
[2009].

We then merged the CATI database with the Thomson SDC alliance database. For the
matching of firms across datasets we adopted the name matching algorithm developed as part
of the NBER patent data project [Trajtenberg et al., 2009] and developed further by Atalay
et al. [2011].14 From the firms in the CATI database and the firms in the SDC database we
could match 21% of the firms appearing in both databases. Considering only firms without
missing observations on sales, output and R&D expenditures (see also Appendix H.3 below on
how we obtained balance sheet and income statement information), gives us a sample of 1, 186
firms and a total of 1010 collaborations over the years 1967 to 2006.15 The average degree of
the firms in this sample is 1.68 with a standard deviation of 4.83 and the maximum degree is
63 attained by Motorola Inc.. Figure H.5 shows the largest connected component of the R&D
collaboration network with all links accumulated up to the year 2005 (see Appendix B.1). The
figure indicates two clusters appearing which are related to the different industries in which
firms are operating. This may indicate specialization in R&D alliance partnerships.

Figure H.6 shows the average clustering coefficient, C, the relative size of the largest con-
nected component, max{H⊆G} |H|/n, the average path length, ℓ, and the eigenvector centraliza-
tion Cv (relative to a star network of the same size) over the years 1990 to 2005 (see Wasserman
and Faust [1994] and Appendix B.1 for the definitions). We observe that the network shows the
highest degree of clustering in the year 1990 and the largest connected component around the
year 1997, an average path length of around 5, and a centralization index Cv between 0.3 and
0.7. Moreover, comparing our subsample and the original network (where firms have not been
dropped because of missing accounting information) we find that both exhibit similar trends
over time. This seems to suggest that the patterns found in the subsample are representative
for the overall patterns in the data (see also Section J.5). Further, the clustering coefficient
and the size of the largest connected component exhibit a similar trend as the number of firms
and the average number of collaborations that we have seen already in Figure 2.

Figure H.7 shows the degree distribution, P (d), the average nearest neighbor connectivity,
knn(d), the clustering degree distribution, C(d), and the component size distribution, P (s) across
different years of observation [cf. e.g. König, 2016]. The degree distribution decays as a power
law, the average nearest neighbor degree is weakly increasing with the degree, indicating a
weakly assortative network, the clustering degree distribution is decreasing with the degree and
the component size distribution indicates a large connected component (see also Figure H.5)
with smaller components decaying as a power law.

Figure H.8 and Tables H.1 and H.2 illustrate the industrial composition of our sample of
R&D collaborating firms at the main 2-digit and 4-digit standard industry classification (SIC)
levels, respectively. At the 2-digit level, the chemicals and allied products sectors make up for
the largest fraction (22.43%) of firms in our data, followed by business services and electronic
equipment. This sectoral composition is similar to the one provided in Schilling [2009], who
identifies the biotech and information technology sectors as the most prominent in the CATI
and SDC R&D collaboration databases.

14See https://sites.google.com/site/patentdataproject. We would like to thank Enghin Atalay and
Ali Hortacsu for sharing their name matching algorithm with us.

15This is the sample that we have used for our empirical analysis in Section 6.
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Figure H.5: The largest connected component of the R&D collaboration network with all links accumulated
until the year 2005. The nodes’ colors indicate sectors according to 4-digit SIC codes while the nodes’ sizes
indicate the number of collaborations of a firm.
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Figure H.6: The average clustering coefficient, C, the relative size of the largest connected component,
max{H⊆G} |H|/n, the average path length, ℓ, and the eigenvector centralization Cv (relative to a star net-
work of the same size) over the years 1990 to 2005 (see Appendix B.1). Dashed lines indicate the corresponding
quantities for the original network (where firms have not been dropped because of missing accounting infor-
mation), while solid lines indicate the subsample with 1, 186 firms that we have used in the empirical Section
6.

Table H.1: The 20 largest sectors at the 2-digit SIC level.

Sector 2-dig SIC # firms % of tot. Rank

Chemical and Allied Products 28 266 22.43 1
Business Services 73 198 16.69 2
Electronic and Other Electric Equipment 36 187 15.77 3
Instruments and Related Products 38 154 12.98 4
Industrial Machinery and Equipment 35 150 12.65 5
Transportation Equipment 37 47 3.96 6
Engineering and Management Services 87 25 2.11 7
Primary Metal Industries 33 18 1.52 8
Fabricated Metal Products 34 15 1.26 9
Oil and Gas Extraction 13 14 1.18 10
Communications 48 14 1.18 11
Rubber and Miscellaneous Plastics Products 30 10 0.84 12
Paper and Allied Products 26 9 0.76 13
Petroleum and Coal Products 29 9 0.76 14
Health Services 80 9 0.76 15
Food and Kindred Products 20 8 0.67 16
Miscellaneous Manufacturing Industries 39 7 0.59 17
Electric Gas and Sanitary Services 49 6 0.51 18
Textile Mill Products 22 5 0.42 19
Stone Clay and Glass Products 32 5 0.42 20
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Figure H.7: The degree distribution, P (d), the average nearest neighbor connectivity, knn(d), the clustering
degree distribution, C(d), and the component size distribution, P (s).

Chemical and Allied Products

Business Services

Electronic and Other Electric Equipment

Instruments and Related Products

Industrial Machinery and Equipment

Transportation Equipment

Engineering and Management Services
Primary Metal Industries

Fabricated Metal Products
Oil and Gas Extraction

Services-Prepackaged Software

Pharmaceutical Preparations

Semiconductors and Related Devices

Biological Products (No Diagnostic Substances)

Telephone and Telegraph Apparatus

Electromedical and Electrotherapeutic Apparatus

Electronic Computers

In Vitro and In Vivo Diagnostic Substances

Computer Peripheral Equipment NEC
Surgical and Medical Instruments and Apparatus

Figure H.8: The shares of the ten largest sectors at the 2-digit (left panel) and 4-digit (right panel) SIC levels.
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Table H.2: The 20 largest sectors at the 4-digit SIC level.

Sector 4-dig SIC # firms % of tot. Rank

Services-Prepackaged Software 7372 163 13.74 1
Pharmaceutical Preparations 2834 129 10.88 2
Semiconductors and Related Devices 3674 79 6.66 3
Biological Products (No Diagnostic Substances) 2836 74 6.24 4
Telephone and Telegraph Apparatus 3661 39 3.29 5
Electromedical and Electrotherapeutic Apparatus 3845 28 2.36 6
Electronic Computers 3571 26 2.19 7
In Vitro and In Vivo Diagnostic Substances 2835 24 2.02 8
Computer Peripheral Equipment NEC 3577 22 1.85 9
Surgical and Medical Instruments and Apparatus 3841 22 1.85 10
Special Industry Machinery NEC 3559 21 1.77 11
Laboratory Analytical Instruments 3826 20 1.69 12
Services-Computer Integrated Systems Design 7373 20 1.69 13
Radio and TV Broadcasting and Communications Equipment 3663 18 1.52 14
Motor Vehicle Parts and Accessories 3714 18 1.52 15
Instruments For Meas and Testing of Electricity and Elec Signals 3825 17 1.43 16
Computer Storage Devices 3572 15 1.26 17
Computer Communications Equipment 3576 14 1.18 18
Search Detection Navigation Guidance Aeronautical Sys 3812 14 1.18 19
Services-Commercial Physical and Biological Research 8731 14 1.18 20

H.2. Mergers and Acquisitions

Some firms might be acquired by other firms due to mergers and acquisitions (M&A) over time,
and this will impact the R&D collaboration network [cf. Hanaki et al., 2010].

To get a comprehensive picture of the M&A activities of the firms in our dataset, we use two
extensive datasources to obtain information about M&As. The first is the Thomson Reuters’
Securities Data Company (SDC) M&A database, which has historically been the most widely
used database for empirical research in the field of M&As. Data in SDC dates back to 1965 with
a slightly more complete coverage of deals starting in the early 1980s. The second database
with information about M&As is Bureau van Dijk’s (BvD) Zephyr database, which is a recent
alternative to the SDC M&As database. The history of deals recorded in Zephyr goes back
to 1997. In 1997 and 1998 only European deals are recorded, while international deals are
included starting from 1999. According to Huyghebaert and Luypaert [2010], Zephyr “covers
deals of smaller value and has a better coverage of European transactions”. A comparison and
more detailed discussion of the two databases can be found in Bollaert and Delanghe [2015]
and Bena et al. [2008].

We merged the SDC and Zephyr databases (with the above mentioned name matching
algorithm; see also Atalay et al. [2011]; Trajtenberg et al. [2009]) to obtain information on M&As
of 116, 641 unique firms. Using the same name matching algorithm we could identify 43.08%

of the firms in the combined CATI-SDC alliance database that also appear in the combined
SDC-Zephyr M&As database. We then account for the M&A activities of these matched firms
when constructing the R&D collaboration network by assuming that an acquiring firm in a
M&A inherits all the R&D collaborations of the target firm, and we remove the target firm
form from the network.

H.3. Balance Sheet Statements

The combined CATI-SDC alliance database provides the names for each firm in an alliance,
but it does not contain information about the firms’ output levels or R&D expenses. We there-
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fore matched the firms’ names in the combined CATI-SDC database with the firms’ names
in Standard & Poor’s Compustat U.S. fundamentals annual database and Bureau van Dijk
(BvD)’s Osiris database, to obtain information about their balance sheets and income state-
ments.16 These databases contain only firms listed on the stock market, so they typically
exclude smaller private firms, but this is inevitable if one is going to use market value data.
Nevertheless, R&D is concentrated in publicly listed firms, and our data sources thus cover
most of the R&D activities in the economy [cf. e.g. Bloom et al., 2013]. Compustat contains
financial data extracted from company filings.

Compustat North America is a database of U.S. and Canadian fundamental and market
information on active and inactive publicly held companies. It provides more than 300 annual
and 100 quarterly income statements, balance sheets and statement of cash flows. The Compu-
stat database covers 99% of the total market capitalization with annual company data history
available back to 1950.

Osiris is owned by Bureau van Dijk (BvD) and it contains a wide range of accounting and
other items for firms from over 120 countries. Osiris contains financial information on globally
listed public companies with coverage for up to 20 years on over 62, 191 companies by major
international industry classifications. It claims to cover all publicly listed companies worldwide.
In addition, it covers major non-listed companies when they are primary subsidiaries of pub-
licly listed companies, or in certain cases, when clients request information from a particular
company.

For a detailed comparison and discussion of the Compustat and Osiris databases see Dai
[2012] and Papadopoulos [2012].

For the matching of firms across datasets we adopted the name matching algorithm devel-
oped as part of the NBER patent data project [Atalay et al., 2011; Trajtenberg et al., 2009].
We could match 25.53% of the firms in the combined CATI-SDC database with the combined
Compustat-Osiris database (where accounting information was available). For the matched
firms we obtained their sales and R&D expenditures. We adjusted for inflation using the con-
sumer price index of the Bureau of Labor Statistics (BLS), averaged annually, with 1983 as
the base year. Individual firms’ output levels are computed from deflated sales using 2-SIC
digit industry-year specific price deflators from the OECD-STAN database [cf. Gal, 2013]. We
then dropped all firms with missing information on sales, output and R&D expenditures. This
pruning procedure left us with a subsample of 1, 186, on which the empirical analysis in Section
6 is based.17

The empirical distributions for sales, P (s), output, P (q), R&D expenditures, P (e), and the
patent stocks, P (k), across different years ranging from 1990 to 2005 (using a logarithmic binning
of the data with 100 bins [cf. McManus et al., 1987]) are shown in Figure H.9. All distributions
are highly skewed, indicating a large degree of inequality in firms’ sizes and patent activities.

H.4. Geographic Location and Distance

In order to determine the locations of the firms in our data we have added the longitude and
latitude coordinates associated with the city of residence of each firm in our data. Among
the matched cities in our dataset 93.67% could be geo-localized using ArcGIS [cf. e.g. Dell,

16We chose to use two alternative database for firm level accounting data to get as much information as
possible about balance sheets and income statements for the firms in the R&D collaboration database. The
accounting databases used here are complementary, as Compustat features a greater coverage of large companies,
while BvD Osiris contains a higher number of small firms and tends to have a better coverage of European firms
[cf. Dai, 2012].

17Section J.5 discusses how sensitive our empirical results are with respect to subsampling (i.e. missing data).
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Figure H.9: The sales distribution, P (s), the output distribution, P (q), the R&D expenditures distribution,
P (e), and the patent stock distribution, P (k), across different years ranging from 1990 to 2005 using a loga-
rithmic binning of the data [McManus et al., 1987].

2009] and the Google Maps Geocoding API.18 We then used Vincenty’s algorithm to compute
the distances between pairs of geo-localized firms [cf. Vincenty, 1975]. The mean distance, d,
and the distance distribution, P (d), across collaborating firms are shown in Figure I.11, while
Figure H.10 shows the locations (at the city level) of firms in the database and the collaborations
between them. The largest distance between collaborating firms appears around the turn of the
millennium, while the distance distribution is heavily skewed. We find that R&D collaborations
tend to be more likely between firms that are close, showing that geography matters for R&D
collaborations and spillovers, in line with previous empirical studies [cf. Lychagin et al., 2010].

H.5. Patents

We identified the patent portfolios of the firms in our dataset using the EPO Worldwide Patent
Statistical Database (PATSTAT) [Hall et al., 2001; Jaffe and Trajtenberg, 2002]. The creation
of this worldwide statistical patent database was initiated by the OECD task force on patent
statistics. It includes bibliographic details on patents filed to 80 patent offices worldwide,
covering more than 60 million documents. Hence filings in all major countries and at the World
International Patent Office are covered. We matched the firms in our data with the assignees
in the PATSTAT database using the above mentioned name matching algorithm [Atalay et al.,
2011; Trajtenberg et al., 2009]. We only consider granted patents (or successful patents), as
opposed to patents applied for, as they are the main drivers of revenue derived from R&D
expenditures [cf. Copeland and Fixler, 2012]. Using our name matching algorithm we obtained

18See https://developers.google.com/maps/documentation/geocoding/intro.
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Figure H.10: The locations (at the city level) of firms and their R&D alliances in the combined CATI-SDC
databases.

matches for 36.05% of the firms in our data with patent information. The distribution of the
number of patents is shown in Figure H.9. The technology classes were identified using the
main international patent classification (IPC) numbers at the 4-digit level.

From the firms’ patents, we then computed the technological proximity of firm i and j as

fJ
ij =

P⊤
i Pj√

P⊤
i Pi

√
P⊤

j Pj

, (H.37)

where, for each firm i, Pi is a vector whose k-th component, Pik, counts the number of patents
firm i has in technology category k divided by the total number of technologies attributed to
the firm [cf. Bloom et al., 2013; Jaffe, 1989]. Thus, Pi represents the patent portfolio of firm i.
We use the three-digit U.S. patent classification system to identify technology categories [Hall
et al., 2001]. We denote by FJ the (n× n) matrix with elements (fJ

ij)1≤i,j≤n.
We next consider the Mahalanobis technology proximity measure introduced by Bloom et al.

[2013]. To construct this metric, we need to introduce some additional notation. Let N be the
number of technology classes, n the number of firms, and let T be the (N × n) patent shares
matrix with elements

Tji =
1∑n

k=1 Pki
Pji,

for all 1 ≤ i ≤ n and 1 ≤ j ≤ N . Further, we construct the (N × n) normalized patent shares
matrix T̃ with elements

T̃ji =
1√∑N
k=1 T

2
ki

Tji,

and the (n×N) normalized patent shares matrix across firms is defined by x̃ with elements

X̃ik =
1√∑N
i=1 T

2
ki

Tki.

Let Ω = x̃⊤x̃. Then the (n × n) Mahalanobis technology similarity matrix with elements
(fM

ij )1≤i,j≤n is defined as
FM = T̃⊤ΩT̃. (H.38)

Figure I.12 shows the average patent proximity across collaborating firms using the Jaffe metric
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fJ
ij of Equation (H.37) or the Mahalanobis metric fM

ij of Equation (H.38). Both are monotonic
increasing over almost all years of observations. This suggests that R&D collaborating firms
tend to become more similar over time.

I. Numerical Algorithm for Computing the Optimal Subsidies
The Nash equilibrium output levels, q ∈ [0, q̄]n, in the presence of the subsidy, s ∈ [0, s̄]n, satisfy

qi = 0, if − µi + qi + ρ

n∑
j=1

bijqj − φ

n∑
j=1

aijqj − si − φ

n∑
j=1

aijsj > 0,

qi = µi − ρ
∑
j ̸=i

bijqj + φ

n∑
j=1

aijqj + si + φ

n∑
j=1

aijsj , if − µi + qi + ρ

n∑
j=1

bijqj − φ

n∑
j=1

aijqj − si − φ

n∑
j=1

aijsj = 0,

qi = q̄, if − µi + qi + ρ

n∑
j=1

bijqj − φ

n∑
j=1

aijqj − si − φ

n∑
j=1

aijsj < 0.

(I.39)

The problem of finding a vector q such that the conditions in (I.39) hold is known as the
bounded linear complementarity problem [cf. Byong-Hun, 1983].

The bounded linear complementarity problem (LCP) of Equation (I.39) is equivalent to the
Kuhn-Tucker optimality conditions of the following quadratic programming (QP) problem with
box constraints

min
q∈[0,q̄]n

{
−ν(s)⊤q+

1

2
q⊤ (I+ ρB− φA)q

}
, (I.40)

where ν(s) ≡ µ+ (I+ φA)s. Moreover, net welfare is given by

W (G, s) =

n∑
i=1

(
q2i
2

+ πi − siei

)
= µ⊤q− q⊤

(ρ
2
B− φA

)
q+ φq⊤As− 1

2
s⊤As.

Finding the optimal subsidy program s∗ ∈ [0, s̄]n is then equivalent to solving the following
bilevel optimization problem [cf. Bard, 2013]

max
s∈[0,s̄]n

W (G, s) = µ⊤q∗(s)− q∗(s)⊤
(ρ
2
B− φA

)
q∗(s) + φq∗(s)⊤As− 1

2
s⊤As

s.t. q∗(s) = min
q∈[0,q̄]n

{
−ν(s)⊤q+

1

2
q⊤ (I+ ρB− φA)q

}
.

(I.41)

The bilevel optimization problem of Equation (I.41) can be implemented in MATLAB following
a two-stage procedure. First, one computes the Nash equilibrium output levels q∗(s) as a
function of the subsidies s by solving a quadratic programming problem, for example using
the MATLAB function quadprog, or the nonconvex quadratic programming problem solver with
box constraints QuadProgBB introduced in Chen and Burer [2012].19 Second, one can apply
an optimization routine to this function calculating the subsidies which maximize net welfare
W (G, s), for example using MATLAB’s function fminsearch (which uses a Nelder-Mead algorithm).

This bilevel optimization problem can be formulated more efficiently as a mathematical pro-

19However, in the data that we have analyzed in this paper the quadratic programming subproblem of
determining the Nash equilibrium outptut levels always turned out to be convex, and therefore we always
obtained a unique Nash equilibrium.
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Figure I.11: The mean distance, d, and the distance distribution, P (d), across collaborating firms in the
combined CATI-SDC database.
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Figure I.12: The mean patent proximity across collaborating firms using the Jaffe metric fJ
ij of Equation (H.37)

or the Mahalanobis metric fM
ij of Equation (H.38).

gramming problem with equilibrium constraints (MPEC; see also Luo et al. [1996]). While in the
above procedure the quadprog algorithm solves the quadratic problem with high accuracy for
each iteration of the fminsearch routine, MPEC circumvents this problem by treating the
equilibrium conditions as constraints. This method has recently been proposed to structural
estimation problems following the seminal paper by Su and Judd [2012]. The MPEC approach
can be implemented in MATLAB using a constrained optimization solver such as fmincon.20

Finally, to initialize the optimiziation algorithm we can use the theoretical optimal subsidies
from Propositions 2 and 3, by setting the output levels of the firms which would produce at
negative quantities under these policies to zero (if there are any), and then apply a bounded
quadratic programming algorithm to determine the Nash equilibrium quantities under these
subsidy policies.

20Su and Judd [2012] further recommend to use the KNITRO version of MATLAB’s fmincon function to improve
speed and accuracy.
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Table J.3: Parameter estimates from a panel regression of Equation (26) with both firm and
time fixed effects. The duration of an alliance ranges from 3 to 7 years. The dependent
variable is output obtained from deflated sales. Standard errors (in parentheses) are robust to
arbitrary heteroskedasticity and allow for first-order serial correlation using the Newey-West
procedure. The estimation is based on the observed alliances in the years 1967–2006.

alliance duration 3 years 4 years 5 years 6 years 7 years

φ 0.0131** 0.0119** 0.0106** 0.0089* 0.0077*
(0.0055) (0.0053) (0.0051) (0.0047) (0.0044)

ρ 0.0188*** 0.0188*** 0.0189*** 0.0189*** 0.0189***
(0.0028) (0.0028) (0.0028) (0.0028) (0.0028)

β 0.0027*** 0.0027*** 0.0027*** 0.0027*** 0.0027***
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

# firms 1186 1186 1186 1186 1186
# observations 16924 16924 16924 16924 16924
Cragg-Donald Wald F stat. 7064.104 7071.522 7078.856 7084.185 7096.780

firm fixed effects yes yes yes yes yes
time fixed effects yes yes yes yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

J. Additional Robustness Checks
In the following sections we perform some additional robustness checks related to the duration
of an alliance (Appendix J.1), heterogeneous competition and spillover effects across different
sectors (Appendix J.2), input-supplier effects (Appendix J.3), alternative specifications of the
competition matrix based on the product mix of the firms (Appendix J.4) and the impact of
missing data on our estimates (Appendix J.5).

J.1. Time Span of Alliances

In Section 6.3, we assume the duration of a R&D alliance is 5 years. Here, we analyze the impact
of different durations of an R&D alliance on the estimated spillover effect. The estimation
results for alliance durations ranging from 3 to 7 years are shown in Table J.3. We find that
the estimates are robust over the different durations considered.

However, our assumption that the duration is the same for all alliances may seem restric-
tive. As a further robustness check, we randomly draw a life span for each alliance from an
exponential distribution with the mean ranging from 3 to 7 years. The estimation results are
shown in Table J.4. We find that the estimates are still robust.

J.2. Heterogeneous Spillover and Competition Effects

In keeping with the literature such as Bloom et al. [2013], the spillover effect and competition
coefficients are assumed to be identical across markets in Equation (25). Here, we conduct
a robustness analysis using two major divisions in our data, namely the manufacturing and
services sectors that cover, respectively, 76.8% and 19.3% firms in our sample, in order to
re-estimate Equation (25). The estimation results are reported in Table J.5. The estimated
spillover and competition parameters for these two sectors are largely the same, supporting the
assumption of homogeneous spillover and competition effects as in the benchmark specifciation.
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Table J.4: Parameter estimates from a panel regression of Equation (26) with both firm and
time fixed effects. The duration of an alliance follows an exponential distribution with the
mean ranging from 3 to 7 years. The dependent variable is output obtained from deflated
sales. Standard errors (in parentheses) are robust to arbitrary heteroskedasticity and allow
for first-order serial correlation using the Newey-West procedure. The estimation is based on
the observed alliances in the years 1967–2006.

average alliance duration 3 years 4 years 5 years 6 years 7 years

φ 0.0106** 0.0139*** 0.0113** 0.0140** 0.0074
(0.0046) (0.0046) (0.0052) (0.0057) (0.0048)

ρ 0.0186*** 0.0188*** 0.0187*** 0.0188*** 0.0187***
(0.0028) (0.0028) (0.0028) (0.0028) (0.0028)

β 0.0027*** 0.0027*** 0.0027*** 0.0027*** 0.0027***
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

# firms 1186 1186 1186 1186 1186
# observations 16924 16924 16924 16924 16924
Cragg-Donald Wald F stat. 7046.331 7063.207 7081.713 7080.294 7045.043

firm fixed effects yes yes yes yes yes
time fixed effects yes yes yes yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

Table J.5: Parameter estimates from a panel regression of Equation (25) for
the manufacturing and services sectors with both firm and time fixed effects.
The dependent variable is output obtained from deflated sales. Standard
errors (in parentheses) are robust to arbitrary heteroskedasticity and allow for
first-order serial correlation using the Newey-West procedure. The estimation
is based on the observed alliances in the years 1967–2006.

Manufacturing Services

φ 0.0111* (0.0061) 0.0099** (0.0040)
ρ 0.0178*** (0.0030) 0.0164*** (0.0040)
β 0.0027*** (0.0002) 0.0027*** (0.0002)

# firms 911 229
# observations 14352 2073
Cragg-Donald Wald F stat. 6817.740 2196.649

firm fixed effects yes yes
time fixed effects yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.
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J.3. Input-output Linkages

If a firm is an input supplier of another firm, then their output levels are likely to be corre-
lated. Here, we conduct a robustness analysis by directly controlling for potential input-supplier
effects. More specifically, we estimate an extended version of Equation (25) given by

qit = φ

n∑
j=1

aij,tqjt + λ

n∑
j=1

cij,tqjt − ρ

n∑
j=1

bijqjt + βxit + ηi + κt + ϵit, (J.42)

where cij,t are indicator variables such that cij,t = 1 if firm j is an input supplier of firm i in
period t and cij,t = 0 otherwise.

We obtain information about firms’ buyer-supplier relationships from two data sources. The
first is the Compustat Segments database [cf. e.g. Atalay et al., 2011; Barrot and Sauvagnat,
2016]. Compustat Segments provides business details, product information and customer data
for over 70% of the companies in the Compustat North American database, with firms coverage
starting in the year 1976. However, this dataset suffers from a truncation bias as firms only
report customers which make up more than 10% of their total sales. We therefore use as a second
datasource the Capital IQ Business Relationships database [Barrot and Sauvagnat, 2016; Lim,
2016; Mizuno et al., 2014]. The Capital IQ data includes any customers/suppliers that are
mentioned in the firms’ annual reports, news, websites surveys etc, with firms coverage starting
in the year 1990.21 We then merged these two datasources to obtain a more complete picture
of the potential buyer-supplier linkages between the firms in our R&D network.22 Aggregated
over all years we obtained a total of 2, 573 buyer-supplier relationships for the firms matched
with our R&D network dataset.

As the data on the input-output linkages is only available in more recent years, the esti-
mation is based on years from 1980 to 2006. The estimation results are reported in Table J.6.
We find that, after controlling for input-supplier effects, the spillover and competition effects
remain statistically significant with the expected signs.

Furthermore, having a firm as an input supplier might increase the probability to form
an R&D alliance. We use the information on input-output linkages as an additional predic-
tor in the link formation regression of Equation (29), and use the predicted link-formation
probability to construct IVs as explained in Section 6.2.4. The estimation results of the link
formation regression Equations (29) and (25) are reported in Tables J.7 and J.8, respectively.
As expected, having an input-output linkage increases the likelihood of forming an R&D col-
laboration. Moreover, controlling for input-output linkages gives qualitatively the same result
as in the baseline specification.

J.4. Alternative Specifications of the Competition Matrix

In the empirical model estimated in Section 6.3, the entries of the competition matrix, B = [bij ],
are specified as indicator variables such that bij = 1 if firms i and j are the same industry
(measured by the industry SIC codes at the 4-digit level) and bij = 0 otherwise. Here, we
consider three alternative specifications of the competition matrix based on the primary and
secondary industry classification codes that can be found in the Compustat Segments and

21About 23.37% of the observations come with information about the date of the relationship in Capital IQ.
This gives a total of 38, 513 potential links.

22Note that it is possible to merge the firms in the Compustat Segments database with the Capital IQ database
using common firm identifiers (there exists a correspondence table for Capital IQ firm id’s with Compustat’s
gvkeys).
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Table J.6: Parameter estimates from a panel regres-
sion of Equation (J.42) with both firm and time fixed
effects. The dependent variable is output obtained
from deflated sales. Standard errors (in parentheses)
are robust to arbitrary heteroskedasticity and allow
for first-order serial correlation using the Newey-West
procedure. The estimation is based on the observed
alliances in the years 1980–2006.

φ 0.0126*** (0.0048)
λ 0.6933*** (0.1172)
ρ 0.0146*** (0.0021)
β 0.0022*** (0.0002)

# firms 1251
# observations 15463
Cragg-Donald Wald F stat. 2668.988

firm fixed effects yes
time fixed effects yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

Table J.7: Link formation regression results with input-
output linkage information. Technological similarity, fij , is
measured using either the Jaffe or the Mahalanobis patent
similarity measures. The dependent variable aij,t indicates
if an R&D alliance exists between firms i and j at time
t. The estimation is based on the observed alliances in the
years 1980–2006.

technological similarity Jaffe Mahalanobis

Past collaboration 0.5715*** 0.5682***
(0.0144) (0.0143)

Past common collaborator 0.1753*** 0.1779***
(0.0216) (0.0214)

Input supplier 4.0606*** 4.0215***
(0.1370) (0.1374)

fij,t−s−1 10.4884*** 4.3003***
(0.6798) (0.3212)

f2
ij,t−s−1 -15.5768*** -2.4457***

(1.6995) (0.4379)
cityij 1.0794*** 1.0922***

(0.1030) (0.1030)
marketij 0.9417*** 0.9501***

(0.0421) (0.0419)

# observations 2,776,488 2,776,488
McFadden’s R2 0.0856 0.0854

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.
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Table J.8: Parameter estimates from a panel regression of Equation (26) with
endogenous R&D alliance matrix. The IVs are based on the predicted links
from the logistic regression reported in Table J.7, where technological simi-
larity is measured using either the Jaffe or the Mahalanobis patent similarity
measures. The dependent variable is output obtained from deflated sales.
Standard errors (in parentheses) are robust to arbitrary heteroskedasticity
and allow for first-order serial correlation using the Newey-West procedure.
The estimation is based on the observed alliances in the years 1980–2006.

technological similarity Jaffe Mahalanobis

φ 0.0317** (0.0148) 0.0323** (0.0148)
ρ 0.0200*** (0.0028) 0.0201*** (0.0028)
β 0.0026*** (0.0002) 0.0026*** (0.0002)

# firms 1245 1245
# observations 15296 15296
Cragg-Donald Wald F stat. 191.866 192.407

firm fixed effects yes yes
time fixed effects yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

Orbis databases [cf. Bloom et al., 2013],23 or the Hoberg-Phillips product similarity measures
[cf. Hoberg and Phillips , 2016].24

The estimation results of Equation (26) with alternative specifications of the competition
matrix are reported in Table J.9. The estimated technology spillover effect is positively signifi-
cant, with the magnitude similar to that reported in Table 2, suggesting that the estimation of
the spillover effect is robust with respect to different specifications of the competition matrix.
The magnitude of the product rivalry effect reported in Table J.9, on the other hand, is more
difficult to compare with that reported in Table 2, as they are based on different competition
matrices. Nevertheless, the estimated product rivalry effect with alternative specifications of
the competition matrix remains statistically significant with the expected sign.

J.5. Sampled Networks

The balance sheet data we used for the empirical analysis covers only publicly listed firms. It is
now well known that the estimation with sampled network data could lead to biased estimates
[see, e.g. Chandrasekhar and Lewis, 2011]. To investigate the direction and magnitude of
the bias due to the sampled network data, we conduct a limited simulation experiment. In
the experiment, we randomly drop 10%, 20%, and 30% of the firms (and the R&D alliances
associated with the dropped firms) in our data (corresponding to the sampling rate of 90%,
80%, and 70%). For each sampling rate, we randomly draw 500 subsamples and re-estimate
Equation (26) for each subsample. We report the empirical mean and standard deviation of
the estimates for each sampling rate in Table J.10. As the sampling rate reduces, the standard
deviation of the estimates increases while the mean remains roughly the same. This simulation
result alleviates the concern on the estimation bias due to sampling (i.e. missing data).

23Our definition of the pairwise competition intensity is calculated as the Jaffe similarity score of the com-
bined vectors of primary and secondary industry codes (see also Footnote 28), and follows the product market
proximity index suggested in Bloom et al. [2013].

24The Hoberg-Phillips product similarity measures are based on firm pairwise similarity scores from text anal-
ysis of the firms’ 10K product descriptions. See Hoberg and Phillips [2016] for further details and explanation.
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Table J.9: Parameter estimates from a panel regression of Equation (26) with both firm and time
fixed effects. The competition matrix is based on the Compustat Segments, Orbis or Hoberg-Phillips
industry/product similarity measures. The dependent variable is output obtained from deflated sales.
Standard errors (in parentheses) are robust to arbitrary heteroskedasticity and allow for first-order
serial correlation using the Newey-West procedure. The estimation is based on the observed alliances
in the years 1967–2006.

competition matrix Compustat Orbis Hoberg-Phillips

φ 0.0089* (0.0049) 0.0110** (0.0051) 0.0096** (0.0048)
ρ 0.0526*** (0.0088) 0.0438*** (0.0077) 0.4753*** (0.0761)
β 0.0029*** (0.0002) 0.0027*** (0.0002) 0.0026*** (0.0002)

# firms 1199 1199 1199
# observations 17433 17433 17433
Cragg-Donald Wald F stat. 3638.903 3079.453 1.1 ×104

firm fixed effects yes yes yes
time fixed effects yes yes yes

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

Table J.10: Parameter estimates from a panel regres-
sion of Equation (26) with both firm and time fixed
effects using a random subsample of the firms under
different sampling rates. The dependent variable is
output obtained from deflated sales. The empirical
mean and standard deviation (in parentheses) of the
estimates from 500 random subsamples are reported.
The estimation is based on the observed alliances in
the years 1967–2006.

sampling rate 90% 80% 70%

φ 0.0109 0.0114 0.0113
(0.0035) (0.0059) (0.0084)

ρ 0.0185 0.0187 0.0191
(0.0021) (0.0031) (0.0043)

β 0.0027 0.0027 0.0027
(0.0001) (0.0002) (0.0002)

firm fixed effects yes yes yes
time fixed effects yes yes yes
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