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We analyze a model of R&D alliance networks where firms are engaged in R&D collab-

orations that lower their production costs while competing on the product market. We

provide a complete characterization of the Nash equilibrium and determine the optimal
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R&D subsidy program that maximizes total welfare. We then structurally estimate this

model using a unique panel of R&D collaborations and annual company reports. We

use our estimates to study the impact of targeted vs. non-discriminatory R&D subsidy

policies and empirically rank firms according to the welfare-maximizing subsidies they

should receive.
Key words: R&D networks, innovation, spillovers, optimal subsidies, industrial policy

JEL: D85, L24, O33

1. Introduction

R&D collaborations have become a widespread phenomenon especially in industries with

a rapid technological development such as the pharmaceutical, chemical and computer in-

dustries [cf. Hagedoorn, 2002]. Through such collaborations firms generate R&D spillovers

not only to their direct collaboration partners but also indirectly to other firms that are

connected to them within a complex network of R&D collaborations. At the same time

an increasing number of countries have resorted to various financial policies to stimu-

late R&D investments by private firms [cf. e.g. Czarnitzki et al., 2007]. In particular,

OECD countries spend more than 50 billion dollars per year on such R&D policies [cf.

Takalo et al., 2017], including direct R&D subsidies and R&D tax credits. The aim of

this paper is to develop and structurally estimate an R&D network model and to empir-

ically evaluate different R&D subsidy policies that take spillovers in R&D networks into

account.

In particular, we consider a general model of competition à la Cournot where firms

choose both, their R&D expenditures and output levels. Firms can reduce their costs

of production by exerting R&D efforts. We characterize the Nash equilibrium of this

game for any type of R&D collaboration network as well as for any type of competition

structure between firms (Proposition 1). We show that there exists a key trade-off faced

by firms between the technology (or knowledge) spillover effect of R&D collaborations

and the product rivalry effect of competition. The former effect captures the positive
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impact of R&D collaborations on output and profit while the latter captures the negative

impact of competition and market stealing effects.

Due to the existence of externalities through technology spillovers and competition

effects that are not internalized in the R&D decisions of firms, the social benefits of R&D

differ from the private returns of R&D. This creates an environment where government

funding programs that aim at fostering firms’ R&D activities can be welfare improving.

We analyze the optimal design of such R&D subsidy programs (where a planner can

subsidize a firm’s R&D effort) that take into account the network externalities in our

model. We derive an exact formula for any type of network and competition structure

that determines the optimal amount of subsidies per unit of R&D effort that should be

given to each firm. We discriminate between homogeneous subsidies (Proposition 2),

where each firm obtains the same amount of subsidy per unit of R&D effort and targeted

subsidies (Proposition 3), where subsidies can be firm specific.

We then bring the model to the data by using a unique panel of R&D collaborations

and annual company reports over different sectors, regions and years. We adopt an

instrumental variable (IV) strategy to estimate the best-response function implied by

the theoretical model to identify the technology (or knowledge) spillover effect of R&D

collaborations and the product rivalry effect of competition in a panel data model with

both firm and time fixed effects. In particular, following Bloom et al. [2013], we use

changes in the firm-specific tax price of R&D to construct IVs for R&D expenditures.

Furthermore, to address the potential endogeneity of R&D networks, we use predicted

R&D networks based on predetermined dyadic characteristics to construct IVs to identify

the casual effect of R&D spillovers. As predicted by the theoretical model, we find that

the spillover effect has a positive and significant impact on output and profit while the

competition effect has a negative and significant impact.

Using our estimates and following our theoretical results, we then empirically deter-

mine the optimal subsidy policy, both for the homogenous case where all firms receive

the same subsidy per unit of R&D effort, and for the targeted case, where the subsidy

per unit of R&D effort may vary across firms. The targeted subsidy program turns out
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to have a much higher impact on total welfare as it can improve welfare by up to 80%,

while the homogeneous subsidies can improve total welfare only by up to 4%. We then

empirically rank firms according to the welfare-maximizing subsidies that they receive by

the planner. We find that the firms that should be subsidized the most are not necessarily

the ones that have the highest market share, the largest number of patents or the most

central position in the R&D network. Indeed, these measures can only partially explain

the ranking of firms that we find, as the market share is more related to the product

market rivalry effect, while the R&D network and the patent stocks are more related

to the technology spillover effect, and both effects are incorporated in the design of the

optimal subsidy program.

The rest of the paper is organized as follows. In Section 2, we compare our contribu-

tion to the existing literature. In Section 3, we develop our theoretical model, characterize

the Nash equilibrium of this game, and define the total welfare. Section 4 discusses op-

timal R&D subsidies. Section 5 describes the data. Section 6 is divided into four parts.

In Section 6.1, we define the econometric specification of our model while, in Section

6.2, we highlight our identification strategy. The estimation results are given in Section

6.3. Section 6.4 provides a robustness check. The policy results of our empirical analysis

are given in Section 7. We discuss our main assumptions in Section 8. Finally, Section

9 concludes. In the Online Appendix, we provide the proofs of the propositions (Ap-

pendix A), introduce the network definitions and characterizations used throughout the

paper (Appendix B), highlight the contribution of our model with respect to the liter-

ature on games on networks (Appendix C), discuss the Herfindahl concentration index

(Appendix D), perform an analysis in terms of Bertrand competition instead of Cournot

competition (Appendix E), provide a theoretical model of direct and indirect technol-

ogy spillovers (Appendix F), determine market failures due to technological externalities

that are not internalized by the firms and investigate the optimal network structure of

R&D collaborations (Appendix G), give a detailed description of how we construct and

combine our different datasets for the empirical analysis (Appendix H), provide a numer-

ical algorithm for computing optimal subsidies (Appendix I) and, finally, provide some
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additional robustness checks for the empirical analysis (Appendix J).

2. Related Literature

Our theoretical model analyzes a game with strategic complementarities where firms

decide about production and R&D effort by treating the network as exogenously given.

Thus, it belongs to a particular class of games known as games on networks [cf. Jackson

and Zenou, 2015].1 Compared to this literature, we develop an R&D network model

where competition between firms is explicitly modeled, not only within the same product

market but also across different product markets (see Proposition 1). We also provide an

explicit welfare characterization and perform a policy analysis of R&D subsidies.

In the industrial organization literature, there is a long tradition of models that ana-

lyze product and price competition with R&D collaborations (see, e.g. D’Aspremont and

Jacquemin [1988]). The first paper that provides an explicit analysis of R&D networks is

that by Goyal and Moraga-Gonzalez [2001]. The authors introduce a strategic Cournot

oligopoly game in the presence of externalities induced by a network of R&D collabora-

tions. Even though we do not study network formation as in Goyal and Moraga-Gonzalez

[2001], we are able to provide results for all possible networks with an arbitrary number

of firms and a complete characterization of equilibrium output and R&D effort choices

in multiple interdependent markets.

From an econometric perspective, there has been recently a significant progress in the

literature on identification and estimation of social network models (see Chandrasekhar

[2016], for a recent survey). One of the most popular models in applied research is the

linear social network models. Bramoullé et al. [2009] provide identification conditions for

this model based on the intransitivities in the network structure and propose an IV-based

estimation strategy exploiting exogenous characteristics of indirect connections. Yet, the

validity of the IVs relies on the assumption that the network structure captured by the

1The economics of networks is a growing field. For recent surveys of the literature, see

Jackson [2008] and Jackson et al. [2017].
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adjacency matrix is exogenous. If the adjacency matrix depends on some unobserved

variables that are correlated with the error term of the social interaction regression, then

the adjacency matrix is endogenous and this IV-based estimator would be inconsistent.

In this paper, taking advantage of the panel data structure in the empirical analysis, we

introduce both firm and time fixed effects into the linear social network model to attenuate

the potential asymptotic bias caused by the endogenous adjacency matrix. To further

reduce this potential bias, we use the predicted adjacency matrix based on predetermined

dyadic characteristics (instead of the observed adjacency matrix) to construct IVs for this

model. This allows us to estimate the causal impact of R&D spillovers.

There is a large empirical literature on technology spillovers [see e.g. Bloom et al.,

2013], and R&D collaborations [see e.g. Hanaki et al., 2010]. There is also an extensive

literature that estimates the effect of R&D subsidies on private R&D investments and

other measures of innovative performance (see e.g. Bloom et al. [2002], and, for a survey,

see Klette et al. [2000]). However, to the best of our knowledge, our paper is the first

that provides a ranking of firms according to the welfare maximizing subsidies that they

should receive.

3. Theoretical Framework

3.1. Network Game

We consider a general Cournot oligopoly game where a set of firms N = {1, . . . , n} is par-

titioned in M ≥ 1 heterogeneous product markets Mm, m = 1, . . . ,M . Let |Mm| denote

the size of market Mm. We allow for consumption goods to be imperfect substitutes (and

thus differentiated products) by adopting the consumer utility maximization approach of

Singh and Vives [1984]. We first consider qi the demand for the good produced by firm

i in market Mm. A representative consumer in market Mm obtains the following gross

utility from consumption of the goods {qi}i∈Mm

Ūm({qi}i∈Mm
) = αm

∑
i∈Mm

qi −
1

2

∑
i∈Mm

q2i −
ρ

2

∑
i∈Mm

∑
j∈Mm,j ̸=i

qiqj.
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In this formulation, the parameter αm captures the heterogeneity in market sizes, whereas

ρ ∈ [0, 1) measures the degree of substitutability between products. In particular, ρ → 1

depicts a market of perfectly substitutable goods, while ρ = 0 represents the case of local

monopolies. The consumer maximizes net utility Um = Ūm−
∑

i∈Mm
piqi, where pi is the

price of good i. This gives the inverse demand function for firm i

pi = ᾱi − qi − ρ
∑

j∈Mm,j ̸=i

qj, (1)

where ᾱi =
∑M

m=1 αm1{i∈Mm}. In the model, we will study both the general case where

ρ > 0 but also the special case where ρ = 0. The latter case is when firms are local

monopolists so that the price of the good produced by each firm i is only determined by

its own quantity qi (and the size of the market) but not by the quantities of other firms,

i.e. pi = ᾱi − qi.

Firms can reduce their production costs by investing in R&D as well as by benefiting

from an R&D collaboration with another firm. The amount of this cost reduction depends

on the R&D effort ei of firm i and the R&D efforts of the R&D collaboration partners of

firm i. Given the effort level ei, the marginal cost ci of firm i is given by:2

ci = c̄i − ei − φ
n∑

j=1

aijej, (2)

The network of R&D collaborations, G, can be represented by a symmetric n×n adjacency

matrix A. Its elements aij ∈ {0, 1} indicate whether there exists a link between nodes i

and j.3 In the context of our model, aij = 1 if firms i and j have an R&D collaboration

and aij = 0 otherwise. As a normalization, we set aii = 0. In Equation (2), the total

cost reduction for firm i stems from its own research effort ei and the research effort of

all other collaborating firms (via knowledge spillovers), which is captured by the term

2We assume that the R&D effort independent marginal cost c̄i is large enough such

that marginal costs, ci, are always positive for all firms i ∈ N .
3See Online Appendix B.1 for definitions and characterizations of networks.
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∑n
j=1 aijej, where φ ≥ 0 is the marginal cost reduction due to a collaborator’s R&D

effort. We assume that R&D effort is costly. In particular, the cost of R&D effort is

given by 1
2
e2i , which is increasing in effort and exhibits decreasing returns. Firm i’s profit

is then given by

πi = (pi − ci)qi −
1

2
e2i . (3)

Inserting the inverse demand from Equation (1) and the marginal cost from Equation (2)

into Equation (3) gives the following strictly quasi-concave profit function for firm i

πi = (ᾱi − c̄i)qi − q2i − ρ
n∑

j=1

bijqiqj + qiei + φqi

n∑
j=1

aijej −
1

2
e2i , (4)

where bij = 1 if firms i and j operate in the same market and bij = 0 otherwise. Conse-

quently, the market structure can be represented by an n×n competition matrixB = [bij].

If we arrange firms by markets they operate in, the competition matrix B will be a block

diagonal matrix with a zero diagonal and blocks of sizes |Mm|, m = 1, . . . ,M .

3.2. Nash Equilibrium

We consider quantity competition among firms à la Cournot.4 The following proposition

establishes the Nash equilibrium where each firm i simultaneously chooses both its output

qi and R&D effort ei in an arbitrary network of R&D collaborations represented by the

adjacency matrix A and an arbitrary market structure represented by the competition

matrix B. Throughout the paper, denote by I the n × n identity matrix, ι the n × 1

vector of ones, and λmax(A) the largest eigenvalue of A. Denote by µi ≡ ᾱi − c̄i for

all i ∈ N , and µ the corresponding n × 1 vector with components µi. Denote also by

µ = mini {µi | i ∈ N} and µ = maxi {µi | i ∈ N}, with 0 < µ ≤ µ. Finally, denote

by bµ(G, ϕ) ≡ (I − ϕA)−1µ the vector of µ-weighted Katz-Bonacich centralities, and

4In Online Appendix E, we show that the same functional forms for best response

quantities and efforts can be obtained for price setting firms under Bertrand competition

as we find them in the case of Cournot competition.
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bι(G, ϕ) ≡ (I− ϕA)−1ι the vector of unweighted Katz-Bonacich centralities, where ϕ =

φ/(1− ρ). 5

Proposition 1. Consider the n-player simultaneous-move game with the payoff given by

Equation (4), where φ ≥ 0, 0 ≤ ρ < 1 and 0 < µ ≤ µi ≡ ᾱi − c̄i ≤ µ.

(i) If φ = 0 or

φλmax(A) + ρ max
m=1,...,M

{|Mm| − 1} < 1 (5)

then there exists a unique Nash equilibrium with the equilibrium R&D efforts e∗ and

outputs q∗ given by

e∗ = q∗ = (I− φA+ ρB)−1µ. (6)

and the equilibrium profits π∗
i given by

π∗
i =

1

2
(q∗i )

2, ∀i ∈ N . (7)

(ii) If ϕ ≡ φ/(1 − ρ) < λmax(A)−1, then there exists a unique Nash equilibrium in the

case that all firms operate in a single market (i.e., M = 1), with the equilibrium R&D

efforts e∗ and outputs q∗ given by

e∗ = q∗ =
1

1− ρ

(
bµ(G, ϕ)−

ρ ∥bµ(G, ϕ)∥1
(1− ρ) + ρ ∥bι(G, ϕ)∥1

bι(G, ϕ)

)
. (8)

In addition, if

ϕλmax (A) +
nρ

1− ρ

(
µ

µ
− 1

)
< 1 (9)

then, e∗ = q∗ > 0.

(iii) If φ < λmax(A)−1, then there exists a unique Nash equilibrium in the case that goods

are non-substitutable (i.e., ρ = 0), with the equilibrium R&D efforts e∗ and outputs q∗

given by e∗ = q∗ = bµ(G,φ) = (I− φA)−1µ > 0.

5The proof of Proposition 1 is given in Online Appendix A. See the Online Appendix

B.3 for a precise definition of the Bonacich centrality used in the proposition.
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(iv) If the conditions stated in (i)-(iii) hold, then q∗ ≥ q∗ ≥ q∗ > 0, where q∗ is the vector

of equilibrium outputs in the general case given by Equation (6).

Proposition 1 (i) characterizes the Nash equilibrium for the most general case with

a general R&D network and product market structure, while (ii) and (iii) characterize

the equilibria of two special cases, namely, the case where all firms operate in the same

market and the case where goods are non-substitutable, which provide the lower and

upper bounds for the equilibrium in the general case as shown in (iv).

The first-order condition of profit maximization with respect to the R&D effort leads

to ei = qi, while the first-order condition with respect to the output leads to

qi = µi + φ
n∑

j=1

aijqj − ρ
n∑

j=1

bijqj, (10)

or, in matrix form, q = µ+φAq−ρBq. If φ = 0 and 0 ≤ ρ < 1, or if the condition given

by Equation (5) holds, the matrix I−φA+ρB is positive definite, and thus there exists a

unique Nash equilibrium characterized by Equation (6). This result generalizes those of

Ballester et al. [2006], Calvó-Armengol et al. [2009] and Bramoullé et al. [2014] to allow

agents to make multivariate choices on R&D effort and output levels in the presence of

both network effects and competition effects.6

The key insight of Proposition 1 is the interaction between the network effect, through

the adjacency matrix A, and the market effect, through the competition matrix B, and

this is why the first-order condition with respect to qi given by Equation (10) takes both

of them into account.

6In the Online Appendix C, we highlight the contribution of our model with respect

to the literature on games on networks by, first, shutting the network effects, second, the

competition effects, and then comparing our model to that of Ballester et al. [2006] and

Bramoullé et al. [2014].
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3.3. Welfare

We next turn to analyzing welfare in the economy. Inserting the inverse demand from

Equation (1) into net utility Um of the consumer in market Mm shows that

Um =
1

2

∑
i∈Mm

q2i +
ρ

2

∑
i∈Mm

∑
j∈Mm,j ̸=i

qiqj.

The total consumer surplus is then given by U =
∑M

m=1 Um. The producer surplus is given

by aggregate profits Π =
∑n

i=1 πi. As a result, the total welfare is equal to W = U + Π.

Inserting profits as a function of equilibrium outputs from Equation (7) leads to the total

welfare in the Nash equilibrium given by

W =
n∑

i=1

(q∗i )
2 +

ρ

2

n∑
i=1

n∑
j=1

bijq
∗
i q

∗
j = q∗⊤q∗ +

ρ

2
q∗⊤Bq∗. (11)

As welfare in Equation (11) is increasing in the output levels of the firms, it is clear that

the higher the production levels of the firms, the higher is welfare.7

4. R&D Subsidy Policies

Because of the externalities generated by R&D activities, market resource allocation will

typically not be socially optimal. In Online Appendix G.1, we show that, indeed, there

is a generic problem of under-investment in R&D, as the private returns from R&D are

lower than the social returns from R&D. A policy intervention can correct this market

failure through R&D subsidy or tax programs. We extend our framework by considering

an optimal R&D subsidy program that reduces the firms’ R&D costs. For our analysis,

we first assume that all firms obtain a homogeneous subsidy per unit of R&D effort

spent. Then, we proceed by allowing the social planner to differentiate between firms

7A discussion of how welfare is affected by the network structure can be found in the

Online Appendix G.2. In particular, we investigate which network structure maximizes

welfare.
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and implement firm-specific R&D subsidies.8

4.1. Homogeneous R&D Subsidies

Following Spencer and Brander [1983], an government (or planner) is introduced that can

provide a subsidy, s ∈ [0, s̄] per unit of R&D effort for some s̄ > 0. It is assumed that

each firm receives the same per unit R&D subsidy. With a homogeneous R&D subsidy,

the profit of firm i given by Equation (4) becomes:

πi = (ᾱi − c̄i)qi − q2i − ρqi

n∑
j=1

bijqj + qiei + φqi

n∑
j=1

aijej −
1

2
e2i + sei. (12)

The game consists of two stages. In the first stage, the planner sets a subsidy rate on

R&D effort, and in the second stage, the firms choose outputs and R&D efforts given

the subsidy rate set in the first stage. The optimal R&D subsidy s∗ determined by the

planner is found by maximizing the total welfare W (G, s) less the cost of the subsidy

s
∑n

i=1 ei, taking into account the fact that firms choose outputs and R&D efforts for a

given subsidy rate by maximizing profits in Equation (12). If we define the net welfare

as W (G, s) ≡ W (G, s)− s
∑n

i=1 ei, the social planner’s problem is then given by

s∗ = argmaxs∈[0,s̄]W (G, s).

Proposition 2. Consider the n-player simultaneous-move game with the payoff given

by Equation (12), where φ ≥ 0, 0 ≤ ρ < 1 and 0 < µ ≤ µi ≡ ᾱi − c̄i ≤ µ. Let

R = (I− φA+ ρB)−1(I+ φA) and H = I+R+R⊤ − 2R⊤R− ρR⊤BR.

(i) If φ = 0 or the condition given by Equation (5) holds, then there exists a unique Nash

8We would like to emphasize that, as we have normalized the cost of R&D to one in the

profit function of Equation (3), the absolute values of R&D subsidies are not meaningful

in the subsequent analysis, but rather relative comparisons across firms are.
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equilibrium with the equilibrium outputs given by

q∗ = (I− φA+ ρB)−1µ+ sRι, (13)

the equilibrium R&D efforts given by

e∗i = q∗i + s, ∀i ∈ N , (14)

and the equilibrium profits given by

π∗
i =

(q∗i )
2 + s2

2
, ∀i ∈ N . (15)

(ii) If ι⊤Hι > 0, the optimal subsidy level is given by

s∗ =
ι⊤(2R+ ρBR− I)⊤(I− φA+ ρB)−1µ

ι⊤Hι
, (16)

provided that 0 < s∗ < s̄.

In part (i) of Proposition 2, we solve the second stage of the game where firms decide

their outputs and R&D efforts given the homogenous subsidy s. In part (ii) of the

proposition, we solve the first stage of the game where the planner optimally determines

the subsidy rate.

4.2. Targeted R&D Subsidies

We now consider the case where the planner can offer different subsidy rates to different

firms, so that firm i, for all i = 1, . . . , n, receives a subsidy si ∈ [0, s̄] per unit of R&D

effort. Let s be an n × 1 vector with components si. With target R&D subsidies, the

profit of firm i given by Equation (4) becomes:

πi = (ᾱi − c̄i)qi − q2i − ρqi

n∑
j=1

bijqj + qiei + φqi

n∑
j=1

aijej −
1

2
e2i + siei. (17)
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If we define the net welfare as W (G, s) ≡ W (G, s) −
∑n

i=1 eisi, then the solution to the

social planner’s problem is given by

s∗ = argmaxs∈[0,s̄]nW (G, s).

Proposition 3. Consider the n-player simultaneous-move game with the payoff given

by Equation (17), where φ ≥ 0, 0 ≤ ρ < 1 and 0 < µ ≤ µi ≡ ᾱi − c̄i ≤ µ. Let

R = (I− φA+ ρB)−1(I+ φA) and H = I+R+R⊤ − 2R⊤R− ρR⊤BR.

(i) If φ = 0 or the condition given by Equation (5) holds, then there exists a unique Nash

equilibrium with the equilibrium outputs given by

q∗ = (I− φA+ ρB)−1µ+Rs, (18)

the equilibrium R&D efforts given by

e∗ = q∗ + s, (19)

and the equilibrium profits given by

π∗
i =

(q∗i )
2 + s2i
2

, ∀i ∈ N . (20)

(ii) If the matrix H is positive definite, the optimal subsidy levels are given by

s∗ = H−1(2R+ ρBR− I)⊤(I− φA+ ρB)−1µ, (21)

provided that 0 < s∗i < s̄ for all i = 1, . . . , n.

This proposition provides us with an exact value of the targeted subsidy that needs

to be given to each firm in order to maximize total (net) welfare.

13



5. Data

To obtain a comprehensive picture of R&D alliances, we use data on interfirm R&D

collaborations stemming from two sources that have been widely used in the literature

[cf. Schilling, 2009]. The first one is the Cooperative Agreements and Technology Indi-

cators (CATI) database [cf. Hagedoorn, 2002]. This database only records agreements

for which a combined innovative activity or an exchange of technology is at least part

of the agreement. The second source is the Thomson Securities Data Company (SDC)

alliance database. SDC collects data from the U.S. Securities and Exchange Commission

(SEC) filings (and their international counterparts), trade publications, wires, and news

sources. We include only alliances from SDC that are classified explicitly as R&D collab-

orations. The Online Appendix H.1 provides more information about the different R&D

collaboration databases used for this study.

We then merged the CATI database with the Thomson SDC alliance database. For

the matching of firms across datasets we used the name matching algorithm developed

as part of the NBER patent data project [Atalay et al., 2011; Trajtenberg et al., 2009].9

The merged datasets allow us to study patterns in R&D partnerships in several industries

over an extended period of several decades. Observe that because of our IV strategy (See

Section 6.2.3 below), which is based on R&D tax credits in the U.S., we only consider

U.S. firms as in Bloom et al. [2013].

The systematic collection of inter-firm alliances started in 1987 and ended in 2006

for the CATI database. However, information about alliances prior to 1987 is available

in both databases, and we use all information available starting from the year 1963 and

ending in 2006. We construct the R&D alliance network by assuming that an alliance

lasts 5 years. In the Online Appendix (Section J.1), we conduct robustness checks with

different specifications of alliance durations.

Some firms might be acquired by other firms due to mergers and acquisitions (M&A)

over time, and this will impact the R&D collaboration network [cf. e.g. Hanaki et al.,

9See https://sites.google.com/site/patentdataproject.
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2010]. We account for M&A activities by assuming that an acquiring firm inherits all the

R&D collaborations of the target firm. We use two complementary data sources to obtain

comprehensive information about M&As. The first is the Thomson Reuters’ SDC M&A

database, which has historically been the reference database for empirical research in the

field of M&As. The second database for M&As is Bureau van Dijk’s Zephyr database,

which is an alternative to the SDC M&As database. A comparison and more detailed

discussion of the two M&As databases can be found in the Online Appendix H.2.

The combined CATI-SDC database provides the names for each firm in an alliance,

but does not contain balance sheet information. We thus matched the firms’ names

in the CATI-SDC database with the firms’ names in Standard & Poor’s Compustat

U.S. annual fundamentals database, as well as Bureau van Dijk’s Osiris database, to

obtain information about their balance sheets and income statements. Compustat and

Osiris only contain firms listed on the stock market, so they typically exclude smaller

firms. However, they should capture the most R&D intensive firms, as R&D is typically

concentrated in publicly listed firms [cf. e.g. Bloom et al., 2013]. The Online Appendix

H.3 provides additional details about the accounting databases used in this study.

For the purpose of matching firms across databases, we again use the above mentioned

name matching algorithm. We could match roughly 26% of the firms in the alliance data

(considering only firms with accounting information available). From our match between

the firms’ names in the alliance database and the firms’ names in the Compustat and

Osiris databases, we obtained a firm’s sales and R&D expenditures. Individual firms’ out-

put levels are computed from deflated sales using 2-SIC digit industry-year specific price

deflators from the OECD-STAN database [cf. Gal, 2013]. Furthermore, we use informa-

tion on R&D expenditures to compute R&D capital stocks using a perpetual inventory

method with a 15% depreciation rate (following Bloom et al. [2013]). Considering only

firms with non-missing observations on sales, output and R&D expenditures we end up

with a sample of 1, 186 firms and a total of 1010 collaborations over the years 1967 to

2006.10 Basic summary statistics can be found in Table 1.

10See the Online Appendix H for a discussion about the representativeness of our data
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[Insert Table 1 here]

6. Econometric Analysis

6.1. Econometric Specification

In this section, we introduce the econometric equivalent to the equilibrium quantity

produced by each firm given in Equation (10). Our empirical counterpart of the marginal

cost cit of firm i from Equation (2) at period t has a fixed cost equal to c̄it = η∗i −ϵit−xitβ,

and thus we get

cit = η∗i − ϵit − βxit − eit − φ
n∑

j=1

aij,tejt, (22)

where xit is a measure for the productivity of firm i, η∗i captures the unobserved (to the

econometrician) time-invariant characteristics of the firm, and ϵit captures the remaining

unobserved (to the econometrician) characteristics of the firm.

Following Equation (1), the inverse demand function for firm i is given by

pit = ᾱm + ᾱt − qit − ρ
n∑

j=1

bijqjt, (23)

where bij = 1 if i and j are in the same market and zero otherwise. In this equation,

ᾱm indicates the market-specific fixed effect and ᾱt captures the time fixed effect due to

exogenous demand shifters that affect consumer income, number of consumers, consumer

taste and preferences, and expectations over future prices of complements and substitutes

and future income.

Denote by κt ≡ ᾱt and ηi ≡ ᾱm − η∗i . Observe that κt captures the time fixed

effect while ηi, which includes both ᾱm and η∗i , captures the firm fixed effect. Adding

subscript t for time and using Equations (22) and (23), the econometric equivalent to the

sample, and Online Appendix J.5 for a discussion about the impact of missing data on

our estimation results.
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best-response quantity in Equation (10) is given by:

qit = φ
n∑

j=1

aij,tqjt − ρ
n∑

j=1

bijqjt + βxit + ηi + κt + ϵit. (24)

Observe that the econometric specification in Equation (24) has a similar specification

as the product competition and technology spillover production function estimation in

Bloom et al. [2013] where the estimation of φ will give the intensity of the technology (or

knowledge) spillover effect of R&D, while the estimation of ρ will give the intensity of

the product rivalry effect. However, as opposed to that paper, we explicitly model the

technology spillovers stemming from R&D collaborations using a network approach.

In vector-matrix form, we can write Equation (24) as

qt = φAtqt − ρBqt + xtβ + η + κtιn + ϵt, (25)

where qt = (q1t, · · · , qnt)⊤, At = [aij,t], B = [bij], xt = (x1t, · · · , xnt)
⊤, η = (η1, · · · , ηn)⊤,

ϵt = (ϵ1t, · · · , ϵnt)⊤, and ιn is an n-dimensional vector of ones.

For the T periods, Equation (25) can be written as

q = φdiag{At}q− ρ(IT ⊗B)q+ xβ + ιT ⊗ η + κ⊗ ιn + ϵ, (26)

where q = (q⊤
1 , · · · ,q⊤

T )
⊤, x = (x⊤

1 , · · · ,x⊤
T )

⊤, κ = (κ1, · · · , κT )
⊤, and ϵ = (ϵ⊤1 , · · · , ϵ⊤T )⊤.

The vectors q, x and ϵ are of dimension (nT×1), where T is the number of years available

in the data.

In terms of data, our main variables will be measured as follows. Output qit is cal-

culated using sales divided by the year-industry price deflators from the OECD-STAN

database. The network data stems from the combined CATI-SDC databases and we set

aij,t = 1 if there exists an R&D collaboration between firms i and j in the last s years

before time t, where s is the duration of an alliance. The exogenous variable xit is the

firm’s time-lagged R&D stock at the time t − 1. Finally, we measure bij as in the the-

oretical model so that bij = 1 if firms i and j are the same industry (measured by the
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industry SIC codes at the 4-digit level) and bij = 0 otherwise.

6.2. Identification Issues

We adopt a structural approach in the sense that we estimate the first-order condition of

the firms’ profit maximization problem in terms of output and R&D effort, which leads

to Equation (24) or (25). The best-response quantity in Equation (25) then corresponds

to a higher-order Spatial Auto-Regressive (SAR) model with two spatial lags, Atqt and

Bqt [cf. Lee and Liu, 2010].

There are several potential identification problems in the estimation of Equation (24)

or (25). We face, actually, four sources of potential bias arising from (i) correlated or

common-shock effects, (ii) simultaneity of qit and qjt, (iii) endogeneity of the R&D stock,

and (iv) endogeneity of the R&D alliance matrix.

6.2.1. Correlated or Common-Shock Effects

Correlated or common-shock effects arise in network models due to the fact that there

may be common environmental factors that cause the firms in the same network to behave

in a similar manner. They may be confounded with the network effects (i.e. φ and ρ) we

are trying to identify. To alleviate this problem, we incorporate both firm and time fixed

effects (i.e. ηi and κt) to Equation (24).

6.2.2. Simultaneity of Product Outputs

We use instrumental variables when estimating our outcome Equation (24) to deal with

the issue of simultaneity between qit and qjt. Indeed, the output of firm i at time t, qit, is

a function of the total output of all firms collaborating in R&D with firm i at time t, i.e.

q̄a,it ≡
∑n

j=1 aij,tqjt, and the total output of all firms that operate in the same market as

firm i, i.e. q̄b,it ≡
∑n

j=1 bijqjt. Due the feedback effect, qjt also depends on qit and, thus,

q̄a,it and q̄b,it are endogenous.

Recall that xit denotes the time-lagged R&D stock of firm i at the time t − 1. To

deal with this issue, we instrument q̄a,it by the time-lagged total R&D stock of all firms
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with an R&D collaboration with firm i, i.e.
∑n

j=1 aij,txjt, and instrument q̄b,it by the

time-lagged total R&D stock of all firms that operate in the same industry as firm i, i.e.∑n
j=1 bijxjt. The rationale for this IV strategy is that the time-lagged total R&D stock

of R&D collaborators and product competitors of firm i directly affects the total output

of these firms but only indirectly affects the output of firm i through the total output of

these same firms.

More formally, to estimate Equation (26), first we transform it with the projection

matrix J = (IT − 1
T
ιT ι

⊤
T )⊗ (I− 1

n
ιnι

⊤
n ). The transformed Equation (26) is

Jq = φJdiag{At}q− ρJ(IT ⊗B)q+ Jxβ + Jϵ, (27)

where the firm and time fixed effects η and κ have been eliminated by the projec-

tion matrix.11 Let Q1 = J[diag{At}x, (IT ⊗ B)x,x] denote the IV matrix and Z =

J[diag{At}q, (IT ⊗B)q,x] denote the matrix of regressors in Equation (27). As there is

a single exogenous variable in Equation (27), the model is just-identified. The IV estima-

tor of parameters (φ,−ρ, β)⊤ is given by (Q⊤
1 Z)

−1Q⊤
1 q. With the estimated (φ,−ρ, β)⊤,

one can recover η and κ by the least squares dummy variables method.

Obviously, the above IV-based identification strategy is valid only if the time-lagged

R&D stock, xi,t−1, and the R&D alliance matrix, At = [aij,t], are exogenous. In Section

6.2.3 we address the potential endogeneity of the time-lagged R&D stock, while the

endogeneity of the R&D alliance matrix is discussed in Section 6.2.4.

6.2.3. Endogeneity of the R&D Stock

The R&D stock depends on past R&D efforts, which could be correlated with the error

term of Equation (24). However, as the R&D stock is time-lagged and fixed effects are

included, the existing literature has argued that the correlation between the (time-lagged)

R&D stock and the error term of Equation (24) is likely to be weak. To further alleviate

11For unbalanced panels, the firm and time fixed effects can be eliminated by a projec-

tion matrix given in Wansbeek and Kapteyn [1989].
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the potential endogeneity issue of the time-lagged R&D stock, we use supply side shocks

from tax-induced changes to the user cost of R&D to construct IVs as in Bloom et al.

[2013]. To be more specific, we use changes in the firm-specific tax price of R&D to

construct instrumental variables for R&D expenditures. Let wit denote the time-lagged

R&D tax credit firm i received at time t−1.12 We instrument q̄a,it by the time-lagged total

R&D tax credits of all firms having R&D collaborations with firm i, i.e.
∑n

j=1 aij,twjt,

instrument q̄b,it by the time-lagged total R&D tax credits of all firms that operate in the

same industry as firm i, i.e.
∑n

j=1 bijwjt, and instrument the time-lagged R&D stock xit

by the time-lagged R&D tax credit wit. The rationale for this IV strategy is that the

time-lagged total R&D credits of R&D collaborators and product competitors of firm i

directly affects the total output of these firms but only indirectly affects the output of

firm i through the total output of these same firms.

More formally, let Q2 = J[diag{At}w, (IT ⊗B)w,w], where w = (w⊤
1 , · · · ,w⊤

T )
⊤ and

wt = (w1t, · · · , wnt)
⊤, denote the IV matrix, and Z = J[diag{At}q, (IT ⊗B)q,x] denote

the matrix of regressors in Equation (27). The IV estimator of parameters (φ,−ρ, β)⊤ is

given by (Q⊤
2 Z)

−1Q⊤
2 q.

6.2.4. Endogeneity of the R&D Alliance Matrix

The R&D alliance matrix At = [aij,t] is endogenous if there exists an unobservable factor

that affects both the outputs, qit and qjt, and the R&D alliance, indicated by aij,t. If

the unobservable factor is firm-specific, then it is captured by the firm fixed-effect ηi.

If the unobservable factor is time-specific, then it is captured by the time fixed-effect

κt. Therefore, the fixed effects in the panel data model are helpful for attenuating the

potential endogeneity of At.

However, it may still be that there are some unobservable firm-specific time-varying

factors that affect the formation of R&D collaborations and thus make the R&D alliance

matrix At endogenous. To deal with this issue, we run a two-stage IV estimation as in

12See Appendix B.3 in the Supplementary Material of Bloom et al. [2013] for details on

the specification of wit.
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Kelejian and Piras [2014] where, in the first stage, we obtain a predicted R&D alliance

matrix based on predetermined dyadic characteristics, and, in the second stage, we employ

the IV strategy explained above using IVs constructed with the predicted adjacency

matrix from the first stage.

Let us now explain how to obtain a predicted R&D alliance matrix in the first stage.

We estimate a logistic regression model with the corresponding log-odds ratio as a function

of predetermined dyadic characteristics:

log

(
P
(
aij,t = 1 | (Aτ )

t−s−1
τ=1 , fij,t−s−1, cityij,marketij

)
1− P

(
aij,t = 1 | (Aτ )

t−s−1
τ=1 , fij,t−s−1, cityij,marketij

))

= γ0 + γ1 max
τ=1,...,t−s−1

aij,τ + γ2 max
τ=1,...,t−s−1

k=1,...,n

aik,τakj,τ + γ3fij,t−s−1 + γ4f
2
ij,t−s−1 + γ5cityij + γ6marketij,

(28)

In this model, maxτ=1,...,t−s−1 aij,τ is a dummy variable, which is equal to 1 if firms i and

j had an R&D collaboration before time t − s (s is the duration of an alliance) and 0

otherwise; maxτ=1,...,t−s−1;k=1,...,n aik,τakj,τ is a dummy variable, which is equal to 1 if firms

i and j had a common R&D collaborator before time t−s and 0 otherwise; fij,t−s−1 is the

time-lagged technological proximities between firms i and j, measured here by either the

Jaffe or the Mahalanobis patent similarity indices at time t− s− 1;13 cityij is a dummy

13 We matched the firms in our alliance data with the owners of patents recorded in

the Worldwide Patent Statistical Database (PATSTAT). This allowed us to obtain the

number of patents and the patent portfolio held for about 36% of the firms in the alliance

data. From the firms’ patents, we then computed their technological proximity following

Jaffe [1986] as fJ
ij =

P⊤
i Pj√

P⊤
i Pi

√
P⊤

j Pj

, where Pi represents the patent portfolio of firm i and is

a vector whose k-th component Pik counts the number of patents firm i has in technology

category k divided by the total number of technologies attributed to the firm. As an

alternative measure for technological similarity we also use the Mahalanobis proximity

index fM
ij introduced in Bloom et al. [2013]. The Online Appendix H.5 provides further

details about the match of firms to their patent portfolios and the construction of the
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variable, which is equal to 1 if firms i and j are located in the same city and 0 otherwise;

and marketij is a dummy variable, which is equal to 1 if firms i and j are in the same

market and 0 otherwise.

The rationale for this IV solution is as follows. Take, for example, the dummy variable,

which is equal to 1 if firms i and j had a common R&D collaborator before time t − s,

and 0 otherwise. This means that, if firms i and j had a common collaborator in the

past (i.e. before time t − s), then they are more likely to have an R&D collaboration

in period t, i.e. aij,t = 1, but, conditional on the firm and time fixed effects, having a

common collaborator in the past should not directly affect the outputs of firms i and j

in period t (i.e. the exclusion restriction is satisfied). A similar argument can be made

for the other variables in Equation (28). As a result, using IVs based on the predicted

adjacency matrix Ât should alleviate the concern of invalid IVs due to the endogeneity

of the adjacency matrix At.

Formally, let Q3 = J[diag{Ât}x, (IT ⊗ B)x,x] denote the IV matrix based on the

predicted R&D alliance matrix and Z = [diag{At}q, (IT ⊗B)q,x] denote the matrix of

regressors in Equation (27). Then, the estimator of the parameters (φ,−ρ, β)⊤ with IVs

based on the predicted adjacency matrix is given by (Q⊤
2 Z)

−1Q⊤
3 q.

6.3. Estimation Results

6.3.1. Main results

Table 2 reports the parameter estimates of Equation (25) with time fixed effects (Model

A) and with both firm and time fixed effects (Model B). We see that, with both firm

and time fixed effects, there is a significant and positive technology spillover effect, which

indicates that the higher a firm’s production level (or R&D effort) is, the more its R&D

collaborator produces. That is, there exist strategic complementarities between allied

firms in production and R&D effort. On the other hand, there is a significant and negative

product rivalry effect, which indicates that the higher a firm’s production level (or R&D

technology proximity measures fk
ij, k ∈ {J,M}.
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effort) is, the less its product competitors in the same market produce. Furthermore, this

table also shows that a firm’s productivity captured by its own time-lagged R&D stock

has a positive and significant impact on its own production level. Finally, the Cragg-

Donald Wald F statistics for both models are well above the conventional benchmark for

weak IVs [cf. Stock and Yogo, 2005].

[Insert Table 2 here]

6.3.2. Endogeneity of R&D Stocks and Tax-Credit Instruments

Table 3 reports the parameter estimates of Equation (25) with tax credits as IVs for the

time-lagged R&D stock as discussed in Section 6.2.3. Similarly to the benchmark results

reported in Section 6.3.1, with both firm and time fixed effects, the estimated parameters

in Model D are statistically significant with the expected signs, i.e., the technology (or

knowledge) spillover effect is positive while the product rivalry effect is negative.

[Insert Table 3 here]

6.3.3. Endogeneity of the R&D Alliance Matrix

We also consider IVs based on the predicted R&D alliance matrix, i.e. Âtxt, as discussed

in Section 6.2.3. First, we obtain the predicted alliance-formation probability âij,t from

the logistic regression given by Equation (28). The logistic regression result, using either

the Jaffe or Mahalanobis patent similarity measures, is reported in Table 4. The estimated

coefficients are all statistically significant with expected signs. Interestingly, having a

past collaboration or a past common collaborator, being established in the same city,

or operating in the same industry/market increases the probability that two firms have

an R&D collaboration in the current period. Furthermore, being close in technology

(measured by either the Jaffe or Mahalanobis patent similarity measure) in the past also

increases the chance of having an R&D collaboration in the current period.

Next, we estimate Equation (25) with IVs based on the predicted alliance matrix.
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The estimates are reported in Table 5. We find that the estimates of both the technology

spillovers and the product rivalry effect are still significant with the expected signs. Com-

pared to Table 2, the estimate of the technology spillovers (i.e. the estimation of φ) has,

however, a larger value and a larger standard error. Finally, the reported Cragg-Donald

Wald F statistics suggest the IVs based on the predicted alliance matrix are informative.

[Insert Tables 4 and 5 here]

6.3.4. Robustness Analysis

In the Online Appendix J, we perform some additional robustness checks. First, in

Online Appendix J.1, we estimate our model for alliance durations ranging from 3 to

7 years. Second, in Online Appendix J.2, we consider a model where the spillover and

competition coefficients are not identical across markets. We perform a robustness check

using two major divisions in our data, namely the manufacturing and services sectors

that cover, respectively, 76.8% and 19.3% firms in our sample. Third, in Online Appendix

J.3, we conduct a robustness analysis by directly controlling for potential input-supplier

effects. Fourth, in Online Appendix J.4, we consider three alternative specifications of

the competition matrix. Finally, in Online Appendix J.5, we discuss the issue of possible

biases due to sampled network data. We find that the estimates are robust to all these

extensions.

6.4. Direct and Indirect Technology Spillovers

In this section, we extend our empirical model of Equation (24) by allowing for both,

direct (between firms with an R&D alliance) and indirect (between firms without an

R&D alliance) technology spillovers. The generalized model is given by14

qit = φ

n∑
j=1

aij,tqjt + χ

n∑
j=1

fij,tqjt − ρ

n∑
j=1

bijqjt + βxit + ηi + κt + ϵit, (29)

14The theoretical foundation of Equation (29) can be found in the Online Appendix F.
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where fij,t are weights characterizing alternative channels for technology spillovers (mea-

sured by the technological proximity between firms using either the Jaffe or the Maha-

lanobis patent similarity measures; see Bloom et al. [2013] and Online Appendix H.5)

other than R&D collaborations, and the coefficients φ and χ capture the direct and the

indirect technology spillover effects, respectively. In vector-matrix form, we then have

qt = φAtqt + χFtqt − ρBqt + xtβ + η + κtιn + ϵt. (30)

The results of a fixed-effect panel regression of Equation (30) are shown in Table 6. Both

technology spillover coefficients, φ and χ, are positive, while only the direct spillover effect

is significant. This suggests R&D network alliances are the main channel for technology

spillovers.

[Insert Table 6 here]

7. Empirical Implications for the R&D Subsidy Policy

With our estimates from the previous sections – using Model B in Table 2 as our baseline

specification – we are now able to empirically determine the optimal subsidy policy, both

for the homogenous case, where all firms receive the same subsidy per unit of R&D (see

Proposition 2), and for the targeted case, where the subsidy per unit of R&D may vary

across firms (see Proposition 3).15

As our empirical analysis focuses on U.S. firms, the central planner that would imple-

ment such an R&D subsidy policy could be the U.S. government or a U.S. governmental

agency. In the U.S., R&D policies have been widely used to foster the firms’ R&D

activities. In particular, as of 2006, 32 states in the U.S. provided a tax credit on gen-

eral, company funded R&D [cf. Wilson, 2009]. Moreover, another prominent example in

15Additional details about the numerical implementation of the optimal subsidies pro-

gram can be found in Online Appendix I.
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the U.S. is the Advanced Technology Program (ATP), which was administered by the

National Institute of Standards and Technology (NIST) [cf. Feldman and Kelley, 2003].

Observe that we provide a network-contingent subsidy program, that is, each time an

R&D subsidy policy is implemented, it takes into account the prevalent network structure.

In other words, we determine how, for any observed network structure, the R&D policy

should be specified (short-run perspective). The rationale for this approach is that, in an

uncertain and highly dynamic environment such as the R&D intensive industries that we

consider, an optimal contingent policy is typically preferable over a fixed policy [see, e.g.

Buiter, 1981]. In the following we will then calculate the optimal subsidy for each firm

in every year that the network is observed.

[Insert F igure 2 here]

In Figure 1, in the top panel, we calculate the optimal homogenous subsidy times

R&D effort over time, using the subsidies in the year 1990 as the base level (top left

panel), and the percentage increase in welfare due to the homogenous subsidy over time

(top right panel). The total subsidized R&D effort more than doubled over the time

between 1990 and 2005. In terms of welfare, the highest increase (around 3.5 %) is

obtained in the year 2001, while the increase in welfare in 1990 is smaller (below 2.5 %).

The bottom panel of Figure 1 performs the same exercise for the targeted subsidy policy.

The targeted subsidy program turns out to have a much higher impact on total welfare,

as it can improve welfare by up to 80 %, while the homogeneous subsidies can improve

total welfare only by up to 3.5 %. Moreover, the optimal subsidy levels show a strong

variation over time.

We can compare the optimal subsidy level predicted from our model with the R&D tax

subsidies actually implemented in the United States and selected other countries between

1979 to 1997 [see Bloom et al., 2002]. While these time series typically show a steady

increase of R&D subsidies over time, they do not seem to incorporate the cyclicality that

we obtain for the optimal subsidy levels. Our analysis thus suggests that policy makers

should adjust R&D subsidies to these cycles.
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We next proceed by providing a ranking of firms in terms of targeted subsidies. Such

a ranking can guide a planner that wants to maximize total welfare by introducing an

R&D subsidy program and identify which firms should receive the highest subsidies. The

ranking of the first 25 firms by their optimal subsidy levels in 1990 can be found in Table

7 while the one for 2005 is shown in Table 8.16 We see that the ranking of firms in terms

of subsidies does not correspond to other rankings in terms of network centrality, patent

stocks or market share.

There is also volatility in the ranking since many firms that are ranked in the top 25

in 1990 are no longer there in 2005 (for example TRW Inc., Alcoa Inc., Schlumberger Ltd.

Inc., etc.). Figure 2 shows the change in the ranking of the 25 highest subsidized firms

(Table 7) from 1990 to 2005.

A comparison of market shares, R&D stocks, the number of patents, the degree (i.e.

the number of R&D collaborations), the homogeneous subsidy and the targeted subsidy

shows a high correlation between the R&D stock and the number of patents, with a

(Spearman) correlation coefficient of 0.65 for the year 2005. A high correlation can

also be found for the homogeneous subsidy and the targeted subsidy, with a correlation

coefficient of 0.75 for the year 2005. We also find that highly subsidized firms tend to

have a larger R&D stock, and also a larger number of patents, degree and market share.

However, these measures can only partially explain the subsidies ranking of the firms, as

the market share is more related to the product market rivalry effect, while the R&D and

patent stocks are more related to the technology spillover effect, and both enter into the

computation of the optimal subsidy program.

Observe that our subsidy rankings typically favor larger firms as they tend to be

better connected in the R&D network than small firms. This adds to the discussion of

whether large or small firms are contributing more to the innovativeness of an economy,

16The network statistics shown in these tables correspond to the full CATI-SDC net-

work dataset, prior to dropping firms with missing accounting information. See Online

Appendix H.1 for more details about the data sources and construction of the R&D

alliances network.
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by adding another dimension along which larger firms can have an advantage over small

ones, namely by creating R&D spillover effects that contribute to the overall productivity

of the economy. While studies such as Spencer and Brander [1983] and Acemoglu et al.

[2012] find that R&D should often be taxed rather than subsidized, we find that R&D

subsidies can have a significantly positive effect on welfare. The reason why our results

differ from that of these studies is that we take into account the consumer surplus when

deriving the optimal R&D subsidy. Moreover, in contrast to Acemoglu et al. [2012], we do

not focus on entry and exit but incorporate the network of R&D collaborating firms. This

allows us to take into account the R&D spillover effects of incumbent firms, which are

typically ignored in studies of the innovative activity of incumbent firms versus entrants.

[Insert Tables 7 and 8 here]

8. Discussion

In this section we discuss some assumptions of our model and their implications on the

empirical and policy analyses.

Inertia of R&D networks One of the underlying assumptions of our model is that the

R&D network exhibits inertia. That is, compared to making adjustments to production

and R&D expenditures, it is relatively costly – both in terms of money and time – to form

new alliances in the R&D network. Therefore, we consider a short-run policy analysis,

where we treat the R&D network as given and design the optimal subsidy program

by taking into account the equilibrium production and R&D investment decisions of the

firms. In the long run, the R&D network might itself also respond to the subsidy program,

and thus, the design of a long-run subsidy program should take the evolution of the R&D

network into account. However, such a dynamic forward looking network formation game

would be very hard to solve. For this reason, we focus on a short-run policy analysis in

this paper, leaving the long-run policy analysis for future work.
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Independent markets In our basic model, we consider independent markets, i.e.,

firms only compete against firms in the same product market, but not against firms from

different product markets. This assumption can be relaxed, however, in our theoretical

framework. In Proposition 1 we characterize the Nash equilibrium with a single product

market (i.e., M = 1), where all firms compete against each other. Furthermore, by

allowing the elements of the competition matrix B to take arbitrary weights instead of

the binary values 0 or 1, the competition matrix can be flexibly specified to represent

more general market structures.

Based on these ideas, we conduct a robustness analysis for our empirical results with

alternative specifications of the competition matrix. First, in Section J.2 of the Online

Appendix, we re-estimate Equation (26) using two major sectors in our data, namely the

manufacturing and services sectors, that, respectively, cover 76.8% and 19.3% firms in

our sample. The estimated spillover and competition parameters of these two sectors are

largely the same as those in our benchmark specification.

Next, in Section J.4 of the Online Appendix, we consider a richer specification of the

B matrix. This extension follows Bloom et al. [2013] by considering three alternative

specifications for the competition matrix based on the primary and secondary industry

classification codes that can be found in (i) the Compustat Segments database, (ii) the

Orbis database [cf. Bloom et al., 2013], or (iii) the Hoberg-Phillips product similarity

database [cf. Hoberg and Phillips , 2016]. These alternative competition matrices capture

(in a reduced form) the product portfolio of a firm by taking into account the different

industries a firm is operating in. We find that irrespective of what type of competition

matrix is being used, the estimated technology spillover effect is positively significant,

with the magnitude similar to that obtained in the benchmark model. Moreover, the

product rivalry effect with alternative specifications of the competition matrix is also

statistically significant with the expected sign.

No input-output linkages Our theoretical model considers horizontally related firms,

while it does not incorporate the possible vertical relationships of firms through input-

output linkages. To test for potential R&D spillovers between vertically related firms,
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we conduct a robustness analysis by directly controlling for potential input-supplier ef-

fects. We obtain information about firms’ buyer-supplier relationships from two data

sources. The first is the Compustat Segments database [cf. e.g. Atalay et al., 2011].

Compustat Segments provides business details, product information and customer data

for over 70% of the companies in the Compustat North American database, with firms’

coverage starting in the year 1976. We also use as a second datasource the Capital IQ

Business Relationships database [Mizuno et al., 2014]. The Capital IQ data includes

any customers/suppliers that are mentioned in the firms’ annual reports, news, websites

surveys etc, with firms coverage starting in the year 1990. We then merged these two

datasources to obtain a more complete picture of the potential buyer-supplier linkages

between the firms in our R&D network. Aggregated over all years we obtained a total of

2, 573 buyer-supplier relationships for the firms matched with our R&D network dataset.

Using these data on firms’ buyer-supplier relationships, we find that, after controlling

for the input-supplier effect, the spillover and competition effects remain statistically

significant with the expected signs.

No market entry and exit As we focus on a short-run policy analysis in this paper,

we consider only incumbent firms and abstract from the complication of market entry and

exit. This allows us to study the R&D spillover effects using a network approach, which

are typically ignored in studies of innovative activities of incumbent firms versus entrants

as for example Acemoglu et al. [2012]. Therefore, we see our analysis as complementary to

that of Acemoglu et al. [2012], and we show that R&D subsidies can trigger considerable

welfare gains when technology spillovers through R&D alliances are taken into account.

No foreign firms Another possible extension of the current model is to partition the

firms into domestic firms and foreign firms, and consider a subsidy program that only

subsidizes domestic firms. This extension would be possible under our current framework

as our targeted subsidy program is very flexible. In particular, it is allowed to assign zero

subsidies to certain firms (e.g. foreign firms). However, we do not pursue this extension

in this paper as in the data we only consider U.S. firms.
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9. Conclusion

In this paper, we have developed a model where firms benefit form R&D collaborations

(networks) to lower their production costs while at the same time competing on the prod-

uct market. We have highlighted the positive role of the network in terms of technology

spillovers and the negative role of product rivalry in terms of market competition. We

have also determined the importance of targeted subsidies on the total welfare of the

economy.

Using a panel of R&D alliance networks and annual reports, we have then tested

our theoretical results and first showed that both, the technology spillover effect and

the market competition effect have the expected signs and are significant. We have

also identified the firms in our data that should be subsidized the most to maximize

welfare in the economy. Finally, we have drawn some policy conclusions about optimal

R&D subsidies from the results obtained over different sectors, as well as their temporal

variation.

We believe that the methodology developed in this paper offers a fruitful way of

analyzing the existence of R&D spillovers and their policy implications in terms of firms’

subsidies across and within different industries. We also believe that putting forward

the role of networks in terms of R&D collaborations is important to understanding the

different aspects of these markets.
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Table 1: Summary statistics computed across the years 1967 to 2006.

Variable Obs. Mean Std. Dev. Min. Max. Compustat Mean

Sales [106] 21,067 2,101.56 7,733.29 9.98×10−8 168,055.80 1,085.05
Empl. 19,709 16,694.82 51,299.36 1 876,800.00 4,322.08
Capital [106] 20,873 1,629.29 7,388.32 3.82×10−8 170,437.40 663.44
R&D Exp. [106] 18,629 70.75 287.42 5.56×10−4 6,621.19 14.71
R&D Exp. / Empl. 17,203 20,207.79 55,887.27 3.37 2,568,507.00 4,060.12
R&D Stock [106] 17,584 406.87 1,520.97 5.58×10−3 22,292.97 33.13
Num. Patents 12,177 2,588.31 7,814.59 1 76,644.00 14.39

Notes: Values for sales, capital and R&D expenses are in U.S. dollars with 1983 as the base

year. Compustat means are computed across all firms in the Compustat U.S. fundamentals

annual database over all non-missing observations over the years 1967 to 2006.
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Table 2: Parameter estimates from a panel regression of Equation

(25).

Model A Model B

φ -0.0118 (0.0075) 0.0106** (0.0051)
ρ 0.0114*** (0.0015) 0.0189*** (0.0028)
β 0.0053*** (0.0002) 0.0027*** (0.0002)

# firms 1186 1186
# observations 16924 16924
Cragg-Donald Wald F stat. 6454.185 7078.856

firm fixed effects no yes
time fixed effects yes yes

*** Statistically significant at 1% level.

** Statistically significant at 5% level.

* Statistically significant at 10% level.
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Table 3: Parameter estimates from a panel regression of Equation

(25) with IVs based on time-lagged tax credits.

Model C Model D

φ -0.0133 (0.0114) 0.0128* (0.0069)
ρ 0.0182*** (0.0018) 0.0156** (0.0076)
β 0.0054*** (0.0004) 0.0023*** (0.0006)

# firms 1186 1186
# observations 16924 16924
Cragg-Donald Wald F stat. 138.311 78.791

firm fixed effects no yes
time fixed effects yes yes

*** Statistically significant at 1% level.

** Statistically significant at 5% level.

* Statistically significant at 10% level.
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Table 4: Link formation regression results. The de-

pendent variable aij,t indicates if an R&D alliance

exists between firms i and j at time t.

technological similarity Jaffe Mahalanobis

Past collaboration 0.5981*** 0.5920***
(0.0150) (0.0149)

Past common collaborator 0.1162*** 0.1164***
(0.0238) (0.0236)

fij,t−s−1 13.6977*** 6.0864***
(0.6884) (0.3323)

f2
ij,t−s−1 -20.4083*** -3.9194***

(1.7408) (0.4632)
cityij 1.1283*** 1.1401***

(0.1017) (0.1017)
marketij 0.8451*** 0.8561***

(0.0424) (0.0422)

# observations 3,964,120 3,964,120
McFadden’s R2 0.0812 0.0813

*** Statistically significant at 1% level.

** Statistically significant at 5% level.

* Statistically significant at 10% level.
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Table 5: Parameter estimates from a panel regression of Equation

(25) with endogenous R&D alliance matrix.

technological similarity Jaffe Mahalanobis

φ 0.0582* (0.0343) 0.0593* (0.0341)
ρ 0.0197*** (0.0031) 0.0197*** (0.0031)
β 0.0024*** (0.0002) 0.0024*** (0.0002)

# firms 1186 1186
# observations 16924 16924
Cragg-Donald Wald F stat. 48.029 49.960

firm fixed effects yes yes
time fixed effects yes yes

*** Statistically significant at 1% level.

** Statistically significant at 5% level.

* Statistically significant at 10% level.
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Table 6: Parameter estimates from a panel regression of Equation (30)

technological similarity Jaffe Mahalanobis

φ 0.0102** (0.0049) 0.0102** (0.0049)
χ 0.0063 (0.0052) 0.0043 (0.0030)
ρ 0.0189*** (0.0028) 0.0192** (0.0028)
β 0.0027*** (0.0002) 0.0027*** (0.0002)

# firms 1190 1190
# observations 17105 17105
Cragg-Donald Wald F stat. 4791.308 4303.563

firm fixed effects yes yes
time fixed effects yes yes

*** Statistically significant at 1% level.

** Statistically significant at 5% level.

* Statistically significant at 10% level.
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Figure 1: (Top left panel) The total optimal subsidy payments, s∗∥e∥1, in the homogeneous

case over time, using the subsidies in the year 1990 as the base level. (Top right panel) The

percentage increase in welfare due to the homogeneous subsidy, s∗, over time. (Bottom

left panel) The total subsidy payments, e⊤s∗, when the subsidies are targeted towards

specific firms, using the subsidies in the year 1990 as the base level. (Bottom right panel)

The percentage increase in welfare due to the targeted subsidies, s∗, over time.
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Figure 2: Change in the ranking of the 25 highest subsidized firms (Table 7) from 1990 to

2005.
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