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Abstract

This paper considers the identification and estimation of network models with

agents interacting in multiple activities. We establish the model identification us-

ing both linear and quadratic moment conditions. The quadratic moment conditions

exploit the correlation of individual decisions within and across different activities, and

provide an additional channel to identify peer effects. Combining linear and quadratic

moment conditions, we propose a general GMM framework for the estimation of si-

multaneous equations network models. The GMM estimator improves the asymptotic

effi ciency of the existing IV-based linear estimators in the literature. Simulation ex-

periments show that the GMM estimator performs well in finite samples.
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1 Introduction

Tremendous progress has been made in understanding the identification of peer effects since

the seminal work by Manski (1993) (see Blume et al., 2011, for a review). However, until re-

cently, little attention has been paid to the modeling and identification of peer effects when

economic agents interact in multiple activities. In a recent paper, Cohen-Cole et al. (2018)

develop a simultaneous equations network model and suggest an estimation procedure by

extending the generalized spatial 2SLS and 3SLS estimators proposed by Kelejian and

Prucha (2004). Following the insight of Bramoullé et al. (2009), the identification strategy

in Cohen-Cole et al. (2018) exploits exclusion restrictions from intransitivity of network

connections. Liu (2014) considers the identification of the simultaneous equations network

model when the adjacency matrix that represents network topology has non-constant row

sums. In this case, Liu (2014) shows that the Bonacich centrality (Bonacich, 1987) provides

additional information to identify peer effects and can be used as an instrumental variable

(IV) to improve estimation effi ciency. As Cohen-Cole et al. (2018) and Liu (2014) focus

on IV-based linear estimators, the corresponding identification strategy only utilizes linear

moment conditions.

For single-equation spatial econometric models, quadratic moment conditions captur-

ing spatial correlation of cross-sectional units are often used for identification when the

model cannot be identified through linear moment conditions (see, e.g., Kelejian and

Prucha, 1999; Lee, 2007). In this paper, we propose quadratic moment conditions based

on the correlation of individual choices within and across equations for the identification

of simultaneous equations network models. The idea of identifying peer effects by the cor-

relation of individual choices traces back to Glaeser et al. (1996) and is later developed to

the method of variance contrasts by Graham (2008). In the method of variance contrasts,

identification is achieved through the differences in intergroup outcome variances when
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there are at least two groups with different sizes (Durlauf and Tanaka, 2008). By contrast,

the identification strategy in this paper exploits the correlation of individual choices in

different activities within a group, and thus does not rely on variation in group sizes.

Combining linear and quadratic moment conditions, we propose a generalized method

of moments (GMM) framework for the identification and estimation of simultaneous equa-

tions network models. The GMM estimator improves the asymptotic effi ciency of the

IV-based linear estimators proposed by Liu (2014). Compared to the quasi-maximum like-

lihood estimator proposed by Yang and Lee (2017) for the simultaneous equations spatial

autoregressive model, the GMM estimator is computationally simple and remains tractable

with group fixed effects.1 Liu and Saraiva (2015, 2019) also consider GMM estimation of

the simultaneous equations spatial autoregressive model. Liu and Saraiva (2015) focus on

the special case with a triangular system of equations, and Liu and Saraiva (2019) propose

a robust GMM estimator under heteroskedasticity of unknown form. Compared with Liu

and Saraiva (2015, 2019), this paper emphasizes the group structure of network data and

studies the identification and asymptotic properties of the GMM estimator in the presence

of group fixed effects.

The rest of the paper is organized as follows. Sections 2 introduces the econometric

model. The GMM estimator is described in Section 3, with its identification conditions

and asymptotic properties studied in Sections 4 and 5 respectively. Section 6 provides

Monte Carlo evidence on the finite sample performance of the proposed estimator. Section

7 briefly concludes. The proofs are collected in the appendix.

Throughout the paper, we adopt the following notation. For an n×n matrix A = [aij ],

1For a network model with group fixed effects, if the adjacency matrix has non-constant row sums,
the fixed effects cannot be eliminated by the within transformation (see Section 2) from the reduced form
equations. Therefore, the quasi-maximum likelihood estimator needs to estimate the fixed effects together
with other model parameters, and thus could suffer the “incidental parameter” problem (Neyman and
Scott, 1948).
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let A(s) = A + A′, vecD(A) = (a11, · · · , ann)′, and ρ(A) denote the spectral radius of A.

The row (or column) sums of an n×n matrix A are uniformly bounded (in absolute value)

if maxi=1,··· ,n
∑n

j=1 |aij | (or maxj=1,··· ,n
∑n

i=1 |aij |) is bounded as n → ∞. For an n ×m

matrix B = [bij ], the vectorization of B is denoted by vec(B) = (b11, b21, · · · , bnm)′,2 and

the Euclidean matrix norm of B is denoted by ||B|| =
√

tr(B′B). Let diag{Bj} denote a

“generalized”block diagonal matrix with a typical diagonal block being an nj×mj matrix

Bj . Let In denote the n × n identity matrix with its kth column denoted by in,k. Let ιn

denote an n× 1 vector of ones.

2 Econometric Model

Suppose a population of n individuals is partitioned into g non-overlapping groups, with

ng individuals in the gth group. Individuals in the same group interact in m activities

through a network. The network topology of the gth group is captured by an ng × ng

zero-diagonal adjacency matrix W(g). The (i, j)th element of W(g) is a known nonnegative

constant representing the proximity of individuals i and j in the network.

For the gth group, the choices of ng individuals in m activities are given by a system

of m equations:

Y(g) = Y(g)Φ0 +W(g)Y(g)Λ0 +X(g)B0 +W(g)X(g)Γ0 + ιngη(g) + U(g), (2.1)

where Y(g) is an ng×m matrix of observations onm endogenous variables, X(g) is an ng×kx

matrix of observations on kx exogenous variables, U(g) is an ng×m matrix of disturbances,

and η(g) is a 1 ×m vector of group fixed effects. Φ0 = [φlk,0],Λ0 = [λlk,0], B0 and Γ0 are,

respectively, m ×m,m ×m, kx ×m and kx ×m matrices of true parameters in the data

2 If A, B, C are conformable matrices, then vec(ABC) = (C′⊗A)vec(B), where ⊗ denotes the Kronecker
product.
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generating process (DGP). As a normalization, φkk,0 = 0 for all k. We assume that each

row of U(g) is an i.i.d. random vector with a zero mean and an m ×m covariance matrix

Σ = [σkl]. Thus, the disturbances of the same individual are allowed to be correlated across

different activities.

The econometric model is motivated by the best response function of a multiple-activity

network game introduced by Liu (2014) and Cohen-Cole et al. (2018). In model (2.1),

there are three types of endogenous effects, namely, the simultaneity effect (given by φlk,0),

wherein an individual’s choice in a certain activity is affected by her own choices in related

activities; the within-activity peer effect (given by λkk,0), wherein an individual’s choice in a

certain activity is affected by her peers’choices in the same activity; and the cross-activity

peer effect (given by λlk,0, l 6= k), wherein an individual’s choice in a certain activity

is affected by her peers’ choices in related activities. In addition to these endogenous

effects, Γ0 represents the contextual effect, wherein an individual’s choice is affected by

the exogenous characteristics of her peers, and η(g) captures the correlated effect, wherein

agents in the same network may behave similarly as they have similar unobserved individual

characteristics or they face similar institutional environment (Manski, 1993).

Let Y = [Y ′(1), · · · , Y
′
(g)]
′, X = [X ′(1), · · · , X

′
(g)]
′, U = [U ′(1), · · · , U

′
(g)]
′, W = diag{W(g)},

and L = diag{ιng}. Then, for all the g groups,

Y = Y Φ0 + Y Λ0 +XB0 +XΓ0 + Lη + U, (2.2)

where Y = WY , X = WX, and η = [η′(1), · · · , η
′
(g)]
′.

In general, the identification of simultaneous equations models requires exclusion re-

strictions. Let Yk, Y k, Xk and Xk denote the matrices containing columns of Y, Y ,X and

X that appear in the kth equation under some exclusion restrictions, and let φk,0, λk,0, βk,0

and γk,0 denote the corresponding vectors of true parameters. Then, the kth equation of
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model (2.2) is

yk = Ykφk,0 + Y kλk,0 +Xkβk,0 +Xkγk,0 + Lηk + uk, (2.3)

where yk, ηk and uk are respectively the kth columns of Y, η and U . Let Zk = [Yk, Y k, Xk, Xk]

and θk,0 = (φ′k,0, λ
′
k,0, β

′
k,0, γ

′
k,0)
′. Equation (2.3) can be written more compactly as

yk = Zkθk,0 + Lηk + uk. (2.4)

We allow η to depend on W and X by treating η as a g × m matrix of unknown

parameters. When the number of network g is large, we may have the “incidental pa-

rameter” problem (Neyman and Scott, 1948). To avoid this problem, we eliminate the

group fixed effects using the “deviation from group mean”projector J = diag{J(g)} where

J(g) = Ing − n−1g ιng ι
′
ng . This transformation is analogous to the within transformation for

the fixed-effect panel data model. As JL = 0, the kth equation of the within-transformed

model is

Jyk = JZkθk,0 + Juk.

We maintain the following assumptions regarding the DGP. Let uik denote the (i, k)th

element of U .

Assumption 1. (ui1, · · · , uim)′ ∼ i.i.d.(0,Σ), where Σ is an m ×m nonsingular matrix.

For some δ > 0, E|uikuiluisuit|1+δ is bounded by some finite constant for any i =

1, · · · , n and k, l, s, t = 1, · · · ,m.

Assumption 2. (Im − Φ0) is nonsingular and ρ(Λ0(Im − Φ0)
−1) < 1/ρ(W ).

Assumption 3. The row and column sums of W and (Imn − Φ′0 ⊗ In − Λ′0 ⊗W )−1 are

uniformly bounded in absolute value.
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Assumption 4. The matrix of exogenous regressors X has full column rank for n suffi -

ciently large. The elements of X are uniformly bounded constants.

Assumption 5. θk,0 is in the interior of a compact and convex parameter space for k =

1, · · · ,m.

Assumption 1-5 are from Kelejian and Prucha (2004) and Yang and Lee (2017). In

particular, Assumption 2 imposes a restriction on the parameter space so that model

(2.2) has a well defined reduced form. Assumption 3 limits the interdependence between

individuals’choices to a tractable degree. IfW is specified as a binary indicator matrix such

that its (i, j)th element is one if and only if individuals i and j are directly connected, then

Assumption 3 requires the number of every individual’s direct connections to be bounded.

3 GMM Estimation

Let

uk(θk) = J(yk − Zkθk). (3.1)

Inspired by the GMM estimator proposed by Lee (2007) for the single-equation spatial

autoregressive model, we consider both linear and quadratic moment functions of uk(θk)

to construct the GMM estimator. For an n × q nonstochastic IV matrix Q, define the

within-transformed IV matrix as Q̈ = JQ. The linear moment functions are given by

h1,k(θk) = Q̈′uk(θk), for k = 1, · · · ,m.

For an n×n nonstochastic weighting matrix Ξr (r = 1, · · · , p), define the within-transformed

weighting matrix as Ξ̈r = JΞrJ − tr(JΞr)J/tr(J). The quadratic moment functions are
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given by

h2,kl(θk, θl) = [Ξ̈′1uk(θk), · · · , Ξ̈′puk(θk)]′ul(θl), for k, l = 1, · · · ,m.

These moment conditions are valid because, at the true parameter value, E[h1,k(θk,0)] =

E(Q̈′uk) = 0 and E[h2,kl(θk,0, θl,0)] = E[(Ξ̈′1uk, · · · , Ξ̈′puk)′ul] = σkl[tr(Ξ̈1), · · · , tr(Ξ̈p)]′ = 0.

Let

h1(θ) = [h1,1(θ1)
′, · · · , h1,m(θm)′]′,

h2(θ) = [h2,11(θ1, θ1)
′, h2,12(θ1, θ2)

′, · · · , h2,mm(θm, θm)′]′,

and

h(θ) = [h1(θ)
′, h2(θ)

′]′, (3.2)

where θ = (θ′1, · · · , θ′m)′. The GMM estimator for θ0 is given by

θ̂gmm = arg minh(θ)′Ω̂−1h(θ), (3.3)

where n−1Ω̂ is a
√
n-consistent estimator of n−1Ω := n−1Var[h(θ0)].3

The (infeasible) optimal IV matrix for JZk is Fk := E(JZk). As E(Y ) =
∑∞

j=0W
j [X,L]Cj ,

where Cj is a coeffi cient matrix whose elements are functions of the elements of Φ0,Λ0, B0,Γ0

and η (Kelejian and Prucha, 2004), the optimal IV matrix Fk can be expressed as a linear

combination of the IVs in Q̈∞ = J [X,WX,W 2X, · · · ,WL,W 2L, · · · ]. As shown in Liu

and Lee (2010) and Liu (2014), WL,W 2L, · · · are the leading order terms of the Bonacich

centrality (Bonacich, 1987). If W(g) has constant row sums (including the case that W(g) is

3For notational simplicity, we assume that the moment functions in h(θ) are non-redundant. Otherwise,
one could define the GMM estimator based on Dh(θ), where D is a selector matrix that selects all non-
redundant moment functions from h(θ).
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row-normalized) for all g, then WL,W 2L, · · · are eliminated by the within transformation

and Q̈∞ becomes J [X,WX,W 2X, · · · ]. If W(g) has non-constant row sums for some g,

then JWL, JW 2L, · · · provide additional information to identify peer effects. Therefore,

in the latter case, the identification condition is in general weaker (Liu, 2014).

To implement the GMM estimator, the researcher may choose an IV matrix Q̈ con-

taining a subset of the linearly independent columns of Q̈∞.4 As JWL has g columns,

where g is the number of groups in the data, the number of IVs is proportional to the

number of groups when JWL is included in Q̈. If the number of groups increases with n to

infinity, so does the number of IVs. Therefore, we follow the many-instrument asymptotics

(Bekker, 1994) and allow q, the number of IVs in Q̈, to go to infinity. Furthermore, we

assume that the (infeasible) optimal IV matrix Fk can be approximated by a linear combi-

nation of the IVs in Q̈, with the approximation error diminishes as q →∞. This assumption

is common in the many-instrument literature (see, e.g., Donald and Newey, 2001; Hansen

et al., 2008).5

Assumption 6. Q̈ = JQ, where Q is an n × q constant matrix with uniformly bounded

elements. Q̈ has full column rank for n suffi ciently large. For each q, there exists a

constant matrix Ck,q such that n−1||Fk−Q̈Ck,q||2 → 0 as q, n→∞, for k = 1, · · · ,m.

The weighting matrices Ξ̈1, · · · , Ξ̈p in the quadratic moment functions are constructed

from Ξ1, · · · ,Ξp satisfying the following regularity condition. We assume p is a fixed

positive integer chosen together with Ξr’s by the researcher. Possible candidates for Ξr

include W,W 2, etc.6

4For the single-equation spatial autoregressive model, Liu and Lee (2013) derive the approximate mean
square error (MSE) of the 2SLS estimator as the criterion to choose the optimal set of IVs. Although
beyond the scope of this paper, it might be possible to derive the approximate MSE of the GMM estimator
for the simultaneous-equation network model following Liu and Lee (2013).

5For a primitive condition for Assumption 6 to hold, see Liu and Lee (2010, 2013) for more discussions.
6For the single-equation spatial autoregressive model, Liu and Lee (2010) derive the optimal Ξr assuming
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Assumption 7. Ξ̈r = JΞrJ − tr(JΞr)J/tr(J), where Ξr is an n×n constant matrix with

uniformly bounded row and column sums, for r = 1, · · · , p.

4 Asymptotic Identification and Consistency

For the GMM estimator, θ0 is asymptotically identified if plimn→∞n
−1h(θ)′Ω̂−1h(θ) attains

a unique minimum at θ0. As n−1h(θ)′Ω̂−1h(θ) = n−1h(θ)′Ω−1h(θ) + op(1) uniformly in θ

(see the proof of Proposition 4.2), an asymptotically equivalent identification condition is

that plimn→∞n
−1h(θ)′Ω−1h(θ) attains a unique minimum at θ0.

Let P̈ = Q̈(Q̈′Q̈)−1Q̈′, ω = [vecD(Ξ̈1), · · · , vecD(Ξ̈p)], and

µ3 =


E(ui1ui1ui1) E(ui1ui1ui2) · · · E(ui1uimuim)

...
...

. . .
...

E(uimui1ui1) E(uimui1ui2) · · · E(uimuimuim)

 .

Then,

Ω =

 Ω11 Ω12

Ω′12 Ω22


where Ω11 = Var[h1(θ0)] = Σ ⊗ (Q̈′Q̈), Ω12 = E[h1(θ0)h2(θ0)

′] = µ3 ⊗ (Q̈′ω), and Ω22 =

Var[h2(θ0)]. The (infeasible) GMM objective function can be written as

h(θ)′Ω−1h(θ) = h1(θ)
′Ω−111 h1(θ)+h∗2(θ)

′Ω∗−122 h∗2(θ) = u(θ)′(Σ−1⊗P̈ )u(θ)+h∗2(θ)
′Ω∗−122 h∗2(θ),

the disturbances follow a normal distribution. For a specific simultaneous-equation network model (e.g.,
the model considered in Example 1), the optimal Ξr may exist under proper assumptions (e.g., normality
of the disturbances).
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where

h∗2(θ) = h2(θ)− Ω′12Ω
−1
11 h1(θ) = h2(θ)− [(µ′3Σ

−1)⊗ (ω′P̈ )]u(θ),

Ω∗22 = Var[h∗2(θ)] = Ω22 − Ω′12Ω
−1
11 Ω12 = Ω22 − (µ′3Σ

−1µ3)⊗ (ω′P̈ω).

Let F = diag{Fk}, where Fk = E(JZk). As

n−1u(θ)′(Σ−1 ⊗ P̈ )u(θ) = n−1(θ0 − θ)′F ′(Σ−1 ⊗ In)F (θ0 − θ) + op(1)

n−1h∗2(θ)
′Ω∗−122 h∗2(θ) = n−1h

∗
2(θ)

′Ω∗−122 h
∗
2(θ) + op(1)

where h
∗
2(θ) = E[h2(θ)]−[(µ′3Σ

−1)⊗ω′]F (θ0−θ), uniformly in θ (see the proof of Proposition

4.2), θ0 is asymptotically identified if

limn→∞n
−1(θ0 − θ)′F ′(Σ−1 ⊗ In)F (θ0 − θ) + lim

n→∞
n−1h

∗
2(θ)

′Ω∗−122 h
∗
2(θ)

attains a unique minimum at θ0. We assume the following regularity conditions. Let F ∗k

be a matrix containing all the linearly independent columns of Fk and F ∗ = diag{F ∗k }.

Assumption 8. (i) limn→∞ n−1F ∗′(Σ−1 ⊗ In)F ∗ is a finite and nonsingular matrix, (ii)

limn→∞ n−1[(µ′3Σ
−1) ⊗ ω′]F ∗ is a finite matrix with full column rank, and (iii)

limn→∞ n−1Ω∗22 is a finite and nonsingular matrix.

As (θ0 − θ)′F ′(Σ−1 ⊗ In)F (θ0 − θ) ≥ 0 and h
∗
2(θ)

′Ω∗−122 h
∗
2(θ) ≥ h

∗
2(θ0)

′Ω∗−122 h
∗
2(θ0) = 0,

the asymptotic identification fails only if

limn→∞n
−1(θ0 − θ)′F ′(Σ−1 ⊗ In)F (θ0 − θ) = 0 (4.1)
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and

lim
n→∞

n−1h
∗
2(θ)

′Ω∗−122 h
∗
2(θ) = 0 (4.2)

for some θ 6= θ0. If limn→∞ n−1F ′(Σ−1 ⊗ In)F is nonsingular, then θ0 is asymptotically

identified from (4.1). If limn→∞ n−1F ′(Σ−1 ⊗ In)F is singular, then (4.2) provides an

additional channel for asymptotic identification. More specifically, suppose F (θ0 − θ) =

F ∗(θ
(1)
0 − θ(1)) + F ∗C(θ

(2)
0 − θ(2)) for some constant matrix C, where θ

(1)
0 is a vector of

coeffi cients corresponding to the linearly independent columns of F . Then, under Assump-

tion 8, the solutions of (4.1) are characterized by θ(1) = θ
(1)
0 + C(θ

(2)
0 − θ(2)). Thus, θ

(1)
0 is

identified if θ(2)0 can be identified. Substitution of θ(1) = θ
(1)
0 +C(θ

(2)
0 − θ(2)) into (4.2), we

can show that (4.2) has a unique solution at θ0 if and only if

lim
n→∞

n−1E[h2(θ)] = 0, s.t. θ(1) = θ
(1)
0 + C(θ

(2)
0 − θ(2)), (4.3)

has a unique solution at θ(2)0 . Therefore, asymptotic identification is achieved if θ
(2)
0 can be

identified from (4.3).

In the following, we discuss the asymptotic identification in more detail following the

two-step identification strategy in Yang and Lee (2017), where the “pseudo”reduced form

parameters is identified in the first step, and the structural parameters are recovered from

the “pseudo”reduced form parameters in the second step.

Identification of the pseudo reduced form parameters Model (2.2) has a “pseudo”

reduced form

Y = Y Λ∗0 +XB∗0 +XΓ∗0 + Lη∗ + U∗, (4.4)

where

Λ∗0 = Λ0(Im − Φ0)
−1, B∗0 = B0(Im − Φ0)

−1, Γ∗0 = Γ0(Im − Φ0)
−1, (4.5)
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η∗ = η(Im − Φ0)
−1 and U∗ = U(Im − Φ0)

−1. The kth equation of the “pseudo”reduced

form is given by

yk =
∑m

l=1 λ
∗
lk,0yl +Xβ∗k,0 +Xγ∗k,0 + Lη∗k + u∗k, (4.6)

with

yk = Gk[(B
∗′
0 ⊗ In + Γ∗′0 ⊗W )vec(X) + (Im ⊗ L)vec(η∗) + vec(U∗)], (4.7)

where Gk = (i′m,k ⊗ W )(Imn − Λ∗′0 ⊗ W )−1. As (u∗i1, · · · , u∗im)′ ∼ i.i.d.(0,Σ∗), where

Σ∗ = (Im − Φ′0)
−1Σ(Im − Φ0)

−1, the “pseudo”reduced form parameters can be estimated

by the GMM estimator defined in (3.3) with the linear and quadratic moment functions

given by

h1,k(θ
∗
k) = Q̈′u∗k(θ

∗
k),

h2,kl(θ
∗
k, θ
∗
l ) = [Ξ̈′1u

∗
k(θ
∗
k), · · · , Ξ̈′pu∗k(θ∗k)]′u∗l (θ∗l ),

where θ∗k = (λ∗1k, · · · , λ∗mk, β∗′k , γ∗′k )′ and

u∗k(θ
∗
k) = J(yk −

∑m
l=1 λ

∗
lkyl −Xβ∗k −Xγ∗k)

= J [E(y1), · · · ,E(ym), X,X](θ∗k,0 − θ∗k) + Ju∗k +
∑m

l=1(λ
∗
lk,0 − λ∗lk)JGlvec(U∗).

As discussed above, the “pseudo” reduced form parameters can be asymptotically

identified if J [E(y1), · · · ,E(ym), X,X] has full column rank for large enough n, where

E(yk) = Gk[(B
∗′
0 ⊗ In + Γ∗′0 ⊗ W )vec(X) + (Im ⊗ L)vec(η∗)]. The term Gk(Im ⊗ L) in

E(yk) can be interpreted as a centrality measure that takes into account interactions in

different activities. If W(g) has constant row sums for all g, then JGk(Im ⊗ L) = 0. If

W(g) has non-constant row sums for some g, then Gk(Im ⊗ L) persists after the within

transformation and provides additional information for identification (Liu, 2014).
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When the rank condition fails, identification may still be possible through the quadratic

moment conditions. The following proposition summarizes suffi cient conditions for the

“pseudo”reduced form parameters to be identified. Let σ∗k denote the kth column of Σ∗.

Proposition 4.1. θ∗0 = (θ∗′1,0, · · · , θ∗′m,0)′ is asymptotically identified if either

(i) J [E(y1), · · · ,E(ym), X,X] has full column rank when n is suffi ciently large; or

(ii) J [E(y1), · · · ,E(ym), X,X] has full column rank for some 0 ≤ m ≤ m − 1 when n is

suffi ciently large, and the equations

lim
n→∞

n−1{
∑m

s=1(λ
∗
sk,0 − λ∗sk)tr[Ξ̈′rGs(σ∗l ⊗ In)] +

∑m
t=1(λ

∗
tl,0 − λ∗tl)tr[Ξ̈rGt(σ∗k ⊗ In)]

+
∑m

s=1

∑m
t=1(λ

∗
sk,0 − λ∗sk)(λ∗tl,0 − λ∗tl)tr[G′sΞ̈rGt(Σ∗ ⊗ In)]} = 0, (4.8)

for r = 1, · · · , p and k, l = 1, · · · ,m, have a unique solution at Λ∗0.

Identification of the structural parameters With the “pseudo”reduced form pa-

rameters Λ∗0, B
∗
0 ,Γ

∗
0 identified, the structural parameters Θ0 = [(Im−Φ0)

′,−Λ′0,−B′0,−Γ′0]
′

can be identified through the linear restrictions (4.5) in the same way as in the classical

linear simultaneous equations model. Suppose there are rk exclusion restrictions of the

form Rkϑk,0 = 0 where Rk is a matrix of known constants and ϑk,0 is the kth column of

Θ0. The suffi cient and necessary rank condition for ϑk,0 to be identified by the exclusion

restrictions Rkϑk,0 = 0 is that rank(RkΘ0) = m− 1, and the necessary order condition is

rk ≥ m− 1. The following assumption summarizes the two-step identification strategy.

Assumption 9. The “pseudo”reduced-form parameters in (4.4) can be identified accord-

ing to Proposition 4.1, and the structural parameters can be identified from the

“pseudo”reduced-form parameters under proper exclusion restrictions.
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Under the maintained assumptions, the following proposition establishes the consis-

tency of the GMM estimator defined in (3.3).

Proposition 4.2. Under Assumptions 1-9, if q/n→ 0 as q, n→∞, then θ̂gmm is consis-

tent.

5 Asymptotic Normality

Let Vk = JZk − Fk and V = diag{Vk}. Let Υ1,kl = [E(V ′kΞ̈1ul), · · · ,E(V ′kΞ̈pul)]
′, Υ2,kl =

[E(V ′l Ξ̈′1uk), · · · ,E(V ′l Ξ̈′puk)]
′,

D2 = −E[
∂

∂θ′
h2 (θ0)] =



Υ1,11

...

Υ1,1m

. . .

Υ1,m1

...

Υ1,mm



+



Υ2,11

. . .

Υ2,1m

...

Υ2,m1

. . .

Υ2,mm



,

and D∗2 = D2 − [(µ′3Σ
−1)⊗ ω′]F . We maintain the following regularity condition.

Assumption 10. limn→∞ n−1D∗2 is a finite matrix with full column rank.

The following proposition gives the asymptotic distribution of the GMM estimator

defined in (3.3).

Proposition 5.1. Under Assumptions 1-10, if q3/2/n→ 0 as q, n→∞, then

√
n(θ̂gmm − θ0 − bgmm)

d→ N(0, lim
n→∞

[n−1F ′(Σ−1 ⊗ In)F + n−1D∗′2 Ω∗−122 D∗2]
−1),

14



where bgmm = [F ′(Σ−1 ⊗ In)F +D∗′2 Ω∗−122 D∗2]
−1E[V ′(Σ−1 ⊗ P̈ )u] = O(q/n).

The asymptotic covariance matrix of the GMM estimator can be compared with that

of the 3SLS estimator in Liu (2014). The asymptotic covariance matrix of the 3SLS esti-

mator is limn→∞[n−1F ′(Σ−1⊗ In)F ]−1. As D∗′2 Ω∗−122 D∗2 is positive semi-definite, the GMM

estimator improve the asymptotic effi ciency of the 3SLS estimator.

The leading-order asymptotic bias of the GMM estimator given in Proposition 5.1

can be estimated to correct for the many-instrument bias. Suppose
√
nb̂gmm is a consistent

estimator of
√
nbgmm. The bias-corrected GMM (BCGMM) estimator is given by θ̂bcgmm =

θ̂gmm − b̂gmm. From Proposition 5.1, if q3/2/n→ 0 then

√
n(θ̂bcgmm − θ0)

d→ N(0, lim
n→∞

[n−1F ′(Σ−1 ⊗ In)F + n−1D∗′2 Ω∗−122 D∗2]
−1).

In the following example, we derive the explicit form of the many-instrument bias for a

simultaneous equations network model with m = 2.

Example 1. Suppose m = 2 and kx = 2 with X = [x1, x2]. Consider the model

y1 = φ21,0y2 + λ11,0y1 + λ21,0y2 + x1β1,0 + x1γ1,0 + Lη1 + u1 (5.1)

y2 = φ12,0y1 + λ12,0y1 + λ22,0y2 + x2β2,0 + x2γ2,0 + Lη2 + u2.

Let

S = (1−φ12,0φ21,0)In−(λ11,0+λ22,0+φ12,0λ21,0+φ21,0λ12,0)W+(λ11,0λ22,0−λ12,0λ21,0)W 2.

(5.2)

The reduced-form equations of model (5.1) are

y1 = E(y1) + ε1 and y2 = E(y2) + ε2,
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where

E(y1) = S−1[x1β1,0 +Wx1(γ1,0 − λ22,0β1,0)−W 2x1λ22,0γ1,0

+x2φ21,0β2,0 +Wx2(λ21,0β2,0 + φ21,0γ2,0) +W 2x2λ21,0γ2,0

+L(η1 + φ21,0η2) +WL(λ21,0η2 − λ22,0η1)]

E(y2) = S−1[x2β2,0 +Wx2(γ2,0 − λ11,0β2,0)−W 2x2λ11,0γ2,0

+x1φ12,0β1,0 +Wx1(λ12,0β1,0 + φ12,0γ1,0) +W 2x1λ12,0γ1,0

+L(η2 + λ12,0η1) +WL(λ12,0η1 − λ11,0η2)]

and

ε1 = (In − λ22,0W )S−1u1 + (φ21,0In + λ21,0W )S−1u2

ε2 = (In − λ11,0W )S−1u2 + (φ12,0In + λ12,0W )S−1u1.

Let Z1 = [y2, y1, y2, x1, x1] and Z2 = [y1, y1, y2, x2, x2]. Then,

F1 = E(JZ1) = J [E(y2),WE(y1),WE(y2), x1, x1]

F2 = E(JZ2) = J [E(y1),WE(y1),WE(y2), x2, x2]

and

V1 = JZ1 − F1 = J [ε2,Wε1,Wε2, 0n×2] (5.3)

V2 = JZ2 − F2 = J [ε1,Wε1,Wε2, 0n×2].
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For the GMM estimation, the linear moment functions are given by

h1(θ) = (I2 ⊗ Q̈)′[u1(θ1)
′, u2(θ2)

′]′,

where uk(θk) = yk − Zkθk for k = 1, 2. The quadratic moment functions are given by

h2(θ) = [h2,11(θ1, θ1)
′, h2,12(θ1, θ2)

′, h2,21(θ2, θ1)
′, h2,22(θ2, θ2)

′]′,

where h2,kl(θk, θl) = [Ξ̈′1uk(θk), · · · , Ξ̈′puk(θk)]′ul(θl) for k, l = 1, 2. Let µs,t = E(usi1u
t
i2),

for s+ t = 3, 4. Then,

µ3 =

 µ3,0 µ2,1 µ2,1 µ1,2

µ2,1 µ1,2 µ1,2 µ0,3

 ,
and

Ω22 = κ4 ⊗ (ω′ω)

+



σ211 σ11σ12 σ11σ12 σ212

∗ σ212 σ11σ22 σ12σ22

∗ ∗ σ212 σ12σ22

∗ ∗ ∗ σ222


⊗∆1 +



σ211 σ11σ12 σ11σ12 σ212

∗ σ11σ22 σ212 σ12σ22

∗ ∗ σ11σ22 σ12σ22

∗ ∗ ∗ σ222


⊗∆2,
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where ω = [vecD(Ξ̈1), · · · , vecD(Ξ̈p)],

κ4 =



µ4,0 − 3σ211 µ3,1 − 3σ11σ12 µ3,1 − 3σ11σ12 µ2,2 − σ11σ22 − 2σ212

∗ µ2,2 − σ11σ12 − 2σ212 µ2,2 − σ11σ12 − 2σ212 µ1,3 − 3σ12σ22

∗ ∗ µ2,2 − σ11σ22 − 2σ212 µ1,3 − 3σ12σ22

∗ ∗ ∗ µ0,4 − 3σ222


,

∆1 =


tr(Ξ̈1Ξ̈1) · · · tr(Ξ̈1Ξ̈p)

...
. . .

...

tr(Ξ̈pΞ̈1) · · · tr(Ξ̈pΞ̈p)

 , and ∆2 =


tr(Ξ̈1Ξ̈

′
1) · · · tr(Ξ̈1Ξ̈

′
p)

...
. . .

...

tr(Ξ̈pΞ̈
′
1) · · · tr(Ξ̈pΞ̈

′
p)

 .

Let ĥ∗2(θ) = h2(θ) − [(µ̂′3Σ̂
−1) ⊗ (ω′P̈ )]u(θ) and Ω̂∗22 = Ω̂22 − (µ̂′3Σ̂

−1µ̂3) ⊗ (ω′P̈ω), where

Σ̂, µ̂3 and Ω̂22 are
√
n-consistent estimators of Σ, µ3 and Ω22.7 Then, it follows from

Proposition 5.1 that, if q3/2/n → 0, the GMM estimator θ̂gmm = arg minu(θ)′(Σ̂−1 ⊗

P̈ )u(θ) + ĥ∗2(θ)
′Ω̂∗−122 ĥ∗2(θ) is asymptotically normal with an asymptotic bias

bgmm = [F ′(Σ−1 ⊗ In)F +D∗′2 Ω∗−122 D∗2]
−1E[V ′(Σ−1 ⊗ P̈ )u], (5.4)

7When u = (u′1, u
′
2)
′ ∼ N(0,Σ⊗ In), ĥ∗2(θ) and Ω̂∗22 can be simplified as µ3 = 0 and κ4 = 0.
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where

E[V ′(Σ−1 ⊗ P̈ )u] =



φ12,0tr(P̈S
−1) + λ12,0tr(P̈WS−1)

tr(P̈WS−1)− λ22,0tr(P̈W 2S−1)

φ12,0tr(P̈WS−1) + λ12,0tr(P̈W
2S−1)

02×1

φ21,0tr(P̈S
−1) + λ21,0tr(P̈WS−1)

φ21,0tr(P̈WS−1) + λ21,0tr(P̈W
2S−1)

tr(P̈WS−1)− λ11,0tr(P̈W 2S−1)

02×1



. (5.5)

Let Ê[V ′(Σ−1⊗ P̈ )u] denote the estimated E[V ′(Σ−1⊗ P̈ )u] with φlk,0’s and λlk,0’s in (5.5)

replaced by their
√
n-consistent preliminary estimates.8 Let D̂∗2 = D̂2− [(µ̂′3Σ̂

−1)⊗ω′P̈ ]Z,

where n−1D̂2 is a consistent estimator of n−1D2.9 If follows by Lemma A.1 in the appendix

that, if q3/2/n→ 0, the BCGMM estimator θ̂bcgmm = θ̂gmm − b̂gmm, where

b̂gmm = [Z ′(Σ−1 ⊗ P̈ )Z + D̂∗′2 Ω̂∗−122 D̂∗2]
−1Ê[V ′(Σ−1 ⊗ P̈ )u], (5.6)

has an asymptotically normal distribution around θ0.

6 Monte Carlo Experiments

To investigate the finite sample performance of the proposed GMM estimator, we conduct

a limited simulation study based on model (5.1). The DGP of the Monte Carlo experiment

follows that in Liu (2014). Specifically, the adjacency matrix W(g) is generated as follows.

First, for the ith row of W(g), we generate an integer cg,i uniformly at random from the set

8For example, Φ0 and Λ0 can be consistently estimated by a less effi cient equation-by-equation 2SLS
estimator with a fixed number of IVs Q̈ = J [X,WX,W 2X].

9The explicit expression of n−1D2 and its estimator can be found in the proof of Lemma A.1.
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of integers {1, 2, 3}. Then, if i+ cg,i ≤ ng, we set the (i+ 1)th, · · · , (i+ cg,i)th elements of

the ith row of W(g) to be ones and the other elements in that row to be zeros; otherwise,

the elements of ones will be wrapped around such that the first (i+ cg,i − ng) elements of

the ith row will be ones. We experiment with different numbers of groups g and different

group sizes ng.

We conduct 1000 repetitions for each specification in this Monte Carlo experiment.

In each repetition, xk is generated from N(0, In) and ηk is generated from N(0, Ig) for

k = 1, 2. The error term u = (u′1, u
′
2)
′ is generated from N(0,Σ⊗In). We set σ11 = σ22 = 1,

φ21,0 = φ12,0 = 0.2, and λ11,0 = λ21,0 = λ12,0 = λ22,0 = 0.1.10 We experiment with different

values for σ12, (β1,0, β2,0) and (γ1,0, γ2,0).

We consider the following estimators in the experiment. (i) 3SLS-1: the 3SLS esti-

mator with the IV matrix Q̈1 = J [X,WX,W 2X], where X = [x1, x2]; (ii) 3SLS-2: the

3SLS estimator with the IV matrix Q̈2 = [Q̈1, JWL]; (iii) BC3SLS: the bias-corrected

3SLS-2; (iv) GMM-1: the GMM estimator with the IV matrix Q̈1 and quadratic mo-

ment functions h2(θ) = [u1(θ1)
′Ξ̈′u1(θ1), u2(θ2)′Ξ̈′u1(θ1), u1(θ1)′Ξ̈′u2(θ2), u2(θ2)′Ξ̈′u2(θ2)]′,

where Ξ̈ = JWJ − tr(JW )J/tr(J); (v) GMM-2: the GMM estimator with the IV matrix

Q̈2 and the same set of quadratic moment functions used by GMM-1; and (vi) BCGMM:

the bias-corrected GMM-2. The IV matrix Q̈1 is based on the exogenous attributes of

direct and indirect connections. Q̈2 includes additional IVs JWL based on the numbers of

(direct) connections to improve estimation effi ciency. As WL has g columns, the number

of IVs in Q̈2 increases with the number of groups.

[Insert Tables 1-6 here]

We report the mean and standard deviation (SD) of the empirical distributions of the

10The matrix S defined in (5.2) is invertible with the chosen parameters.
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estimates. To facilitate the comparison of different estimators, we also report their root

mean square errors (RMSE). Due to symmetry of the two equations in model (5.1), we

only report the estimation result for the first equation of model (5.1) in Tables 1-6. The

main findings from the simulation experiment are summarized as follows.

(a) The quadratic moment conditions improves the estimation effi ciency of the peer

effect parameters. When β1,0 = β2,0 = γ1,0 = γ2,0 = 0.6 and the correlation across

equations is moderate (σ12 = 0.5), for the sample with ng = 10 and g = 30 in Table

1, GMM-1 reduces the SD of 3SLS-1 estimates of λ11,0 and λ21,0 by 11.4% and 13.3%

respectively. The effi ciency improvement is more significant when the IV matrix Q̈1 is less

informative. When β1,0 = β2,0 = γ1,0 = γ2,0 = 0.3 and the correlation across equations is

moderate (σ12 = 0.5), for the sample with ng = 10 and g = 30 in Table 4, GMM-1 reduces

the SD of 3SLS-1 estimates of λ11,0 and λ21,0 by 32.3% and 35.8% respectively.

(b) The additional IVs JWL in Q̈2 also improve the estimation effi ciency of the peer

effect parameters. When β1,0 = β2,0 = γ1,0 = γ2,0 = 0.6 and the correlation across

equations is moderate (σ12 = 0.5), for the sample with ng = 10 and g = 30 in Table

1, GMM-2 reduces the SD of GMM-1 estimates of λ11,0 and λ21,0 by 15.4% and 17.9%

respectively. The effi ciency improvement is more significant when the IV matrix Q̈1 is less

informative. When β1,0 = β2,0 = γ1,0 = γ2,0 = 0.3 and the correlation across equations is

moderate (σ12 = 0.5), for the sample with ng = 10 and g = 30 in Table 4, GMM-2 reduces

the SD of GMM-1 estimates of λ11,0 and λ21,0 by 30.8% and 27.9% respectively.

(c) The additional IVs JWL in Q̈2 introduce biases into the estimators. The size of

the bias increases as the correlation across equations σ12 increases and as Q̈1 becomes

less informative. The size of the bias reduces as the network size increases. The proposed

bias-correction procedure substantially reduces the bias. When the sample size is relatively

large (Tables 3 and 6), the bias corrected estimates are essentially unbiased.
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7 Summary and Future Work

In this paper, we propose a new set of quadratic moment conditions based on the correlation

of individual decisions in multiple activities to identify peer effects. Combining linear

and quadratic moment conditions, we develop a general GMM framework to estimate

the simultaneous equations network model. The proposed GMM estimator improves the

asymptotic effi ciency of the IV-based linear estimators, and performs well in the Monte

Carlo experiment.

Some possible extensions of the current work are in order. First, different individuals

may participate in different activities. Therefore, it would be interesting to study the

sample selection issue (Heckman, 1976) in the context of social networks and multivariate

choices. Second, people may form different social networks for different activities they

participate. Hence, another thread of future research could be to study activity-specific

networks and associated identification problems.
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A Proofs

Proof of Proposition 4.1. If condition (i) holds, then θ∗0 is asymptotically identified from

(4.1). Condition (i) fails if, for some 0 ≤ m ≤ m − 1, JE(yl) is linearly dependent on

J [E(y1), · · · ,E(ym), X,X] such that JE(yl) = bl,1JE(y1) + · · · + bl,mJE(ym) + JXcl,1 +

JXcl,2, for l = m + 1, · · · ,m, where bl,1, · · · , bl,m are constant scalars and cl,1, cl,2 are

constant vectors. If J [E(y1), · · · ,E(ym), X,X] has full column rank for large enough n,

(4.1) implies

λ∗1k = λ∗1k,0 +
∑m

l=m+1(λ
∗
lk,0 − λ∗lk)bl,1, (A.1)

· · ·

λ∗mk = λ∗mk,0 +
∑m

l=m+1(λ
∗
lk,0 − λ∗lk)bl,m,

β∗k = β∗k,0 +
∑m

l=m+1(λ
∗
lk,0 − λ∗lk)cl,1,

γ∗k = γ∗k,0 +
∑m

l=m+1(λ
∗
lk,0 − λ∗lk)cl,2,

for k = 1, · · · ,m, i.e., θ∗0 is identified if Λ∗0 is identified. Substitution of (A.1) into (4.3)

gives (4.8). Therefore, Λ∗0 is identified if (4.8) has a unique solution at Λ∗0. The desired

result follows.

Proof of Proposition 4.2. First, we consider the infeasible GMM estimator

θ̃gmm = arg minh(θ)′Ω−1h(θ) = arg minu(θ)′(Σ−1 ⊗ P̈ )u(θ) + h∗2(θ)
′Ω∗−122 h∗2(θ).

Let Vk = JZk − Fk and V = diag{Vk}. u(θ) = J(y − Zθ) = d(θ) + r(θ), where d(θ) =

F (θ0−θ) and r(θ) = V (θ0−θ)+Ju. Suppose F (θ0−θ) = F ∗(θ
(1)
0 −θ(1))+F ∗C(θ

(2)
0 −θ(2)) for

some constant matrix C, where θ(1)0 is a vector of coeffi cients corresponding to the linearly
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independent columns of F . When q/n→ 0, it follows by Lemma C.3 of Liu (2014) that

n−1u(θ)′(Σ−1 ⊗ P̈ )u(θ)

= n−1d(θ)′(Σ−1 ⊗ P̈ )d(θ) + 2n−1d(θ)′(Σ−1 ⊗ P̈ )r(θ) + n−1r(θ)′(Σ−1 ⊗ P̈ )r(θ)

= n−1(θ0 − θ)′F ′(Σ−1 ⊗ In)F (θ0 − θ) + op(1)

= n−1[(θ
(1)
0 − θ(1)) + C(θ

(2)
0 − θ(2))]′F ∗′(Σ−1 ⊗ In)F ∗[(θ

(1)
0 − θ(1)) + C(θ

(2)
0 − θ(2))] + op(1),

and

n−1[(µ′3Σ
−1)⊗ (ω′P̈ )]u(θ)

= n−1[(µ′3Σ
−1)⊗ (ω′P̈ )]d(θ) + n−1[(µ′3Σ

−1)⊗ (ω′P̈ )]r(θ)

= n−1[(µ′3Σ
−1)⊗ ω′]F (θ0 − θ) + op(1)

= n−1[(µ′3Σ
−1)⊗ ω′]F ∗[(θ(1)0 − θ(1)) + C(θ

(2)
0 − θ(2))] + op(1),

uniformly in θ. In addition, it follows by a similar argument as in the proof of Propo-

sition 1 in Lee (2007) that n−1h2(θ) − n−1E[h2(θ)] = op(1) uniformly in θ. Hence,

n−1h∗2(θ) − n−1h
∗
2(θ) = op(1) uniformly in θ. As n−1h

∗
2(θ) is a quadratic function of θ

and the parameter space of θ is bounded, n−1h
∗
2(θ) is uniformly equicontinuous in θ. The

identification condition and uniform equicontinuity of n−1h
∗
2(θ) imply that the identifica-

tion uniqueness condition for n−1h
∗
2(θ)Ω

∗−1
22 h

∗
2(θ) must be satisfied. The consistency of

θ̃gmm follows from the uniform convergence and identification uniqueness condition for

plimn→∞n
−1[u(θ)′(Σ−1 ⊗ P̈ )u(θ) + h∗2(θ)

′Ω∗−122 h∗2(θ)] (White, 1994).

Let Σ̂ and µ̂3 be
√
n-consistent estimators of Σ and µ3 respectively. Let ĥ∗2(θ) =

h2(θ)− [(µ̂′3Σ̂
−1)⊗(ω′P̈ )]u(θ) and Ω̂∗22 = Ω̂22−(µ̂′3Σ̂

−1µ̂3)⊗(ω′P̈ω), where n−1Ω̂22 is a
√
n-

consistent estimator of n−1Ω22. It remains to show that n−1u(θ)′[(Σ̂−1 −Σ−1)⊗ P̈ ]u(θ) =
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op(1) and n−1ĥ∗2(θ)
′Ω̂∗−122 ĥ∗2(θ)− n−1h∗2(θ)′Ω∗−122 h∗2(θ) = op(1) uniformly in θ. By a similar

argument as above, when q/n→ 0,

n−1u(θ)′[(Σ̂−1 − Σ−1)⊗ P̈ ]u(θ) = n−1(θ0 − θ)′F ′[(Σ̂−1 − Σ−1)⊗ In]F (θ0 − θ) + op(1),

uniformly in θ. As Σ̂−1 − Σ−1 = op(1), n−1u(θ)′[(Σ̂−1 − Σ−1)⊗ P̈ ]u(θ) = op(1) uniformly

in θ. On the other hand,

n−1ĥ∗2(θ)
′Ω̂∗−122 ĥ∗2(θ)− n−1h∗2(θ)′Ω∗−122 h∗2(θ)

= n−1[ĥ∗2(θ)− h∗2(θ)]′(n−1Ω̂∗22)−1n−1ĥ∗2(θ) + n−1h∗2(θ)
′(n−1Ω̂∗22)

−1n−1[ĥ∗2(θ)− h∗2(θ)]

+n−1h∗2(θ)
′[(n−1Ω̂∗22)

−1 − (n−1Ω∗22)
−1]n−1h∗2(θ).

As shown above, n−1h∗2(θ) − n−1h
∗
2(θ) = op(1) uniformly in θ. By a similar argument as

in the proof of Proposition 2 in Lee (2007), n−1E[h2(θ)] = O(1) uniformly in θ. Therefore,

n−1E[h∗2(θ)] = O(1) uniformly in θ, which implies n−1h∗2(θ) = Op(1) uniformly in θ.

n−1[ĥ∗2(θ)− h∗2(θ)]

= −n−1[(µ̂′3Σ̂−1 − µ′3Σ−1)⊗ (ω′P̈ )]u(θ)

= −n−1[(µ̂′3Σ̂−1 − µ′3Σ−1)⊗ (ω′P̈ )]F (θ0 − θ)− n−1[(µ̂′3Σ̂−1 − µ′3Σ−1)⊗ (ω′P̈ )]r(θ).

When q/n→ 0, it follows by Lemma C.3 of Liu (2014) that n−1[ĥ∗2(θ)−h∗2(θ)] = op(1) uni-

formly in θ. As n−1Ω̂∗22−n−1Ω∗22 = op(1), we have n−1ĥ∗2(θ)
′Ω̂∗−122 ĥ∗2(θ)−n−1h∗2(θ)′Ω∗−122 h∗2(θ) =

op(1) uniformly in θ. The desired result follows.

Proof of Proposition 5.1. The Taylor expansion of

−Z ′(Σ̂−1 ⊗ P̈ )u(θ̂gmm) +
∂ĥ∗2(θ̂gmm)′

∂θ
Ω̂∗−122 ĥ∗2(θ̂gmm) = 0
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around θ0 gives
√
n(θ̂gmm − θ0) = Â−1b̂, where

Â = n−1Z ′(Σ̂−1 ⊗ P̈ )Z + n−1
∂ĥ∗2(θ̂gmm)′

∂θ
Ω̂∗−122

∂ĥ∗2(θ
+)

∂θ′
,

b̂ = n−1/2Z ′(Σ̂−1 ⊗ P̈ )u− n−1/2∂ĥ
∗
2(θ̂gmm)′

∂θ
Ω̂∗−122 ĥ∗2(θ0),

for some θ+ between θ̂gmm and θ0. As Σ̂−Σ = Op(n
−1/2), it follows by Lemma C.3 of Liu

(2014) that, if q/n→ 0,

n−1Z ′(Σ̂−1 ⊗ P̈ )Z = n−1F ′(Σ̂−1 ⊗ In)F − n−1F ′[Σ̂−1 ⊗ (In − P̈ )]F

+n−1F ′(Σ̂−1 ⊗ P̈ )V + n−1V ′(Σ̂−1 ⊗ P̈ )F + n−1V ′(Σ̂−1 ⊗ P̈ )V

= n−1F ′(Σ−1 ⊗ In)F +Op(
√
q/n).

∂ĥ∗2(θ)/∂θ
′ = ∂h2(θ)/∂θ

′ + [(µ̂′3Σ̂
−1)⊗ (ω′P̈ )]Z. For a typical element of h2(θ), we have

∂uk(θk)
′

∂θk
Ξ̈rul(θl) = −Z ′kΞ̈rul(θl) (A.2)

= −F ′kΞ̈rul − V ′kΞ̈rul + (F ′kΞ̈rFl + F ′kΞ̈rVl + V ′kΞ̈rFl + V ′kΞ̈rVl)(θl − θl,0).

It follows from Lemmas A.4 and A.5 of Lee (2007) that n−1∂h2(θ̃)/∂θ′ = −n−1D2 + op(1)

for θ̃ = θ0 + op(1). As Σ̂− Σ = Op(n
−1/2) and µ̂3 − µ3 = Op(n

−1/2), it follows by Lemma

C.3 of Liu (2014) that, if q/n→ 0,

n−1[(µ̂′3Σ̂
−1)⊗ (ω′P̈ )]Z

= n−1[(µ̂′3Σ̂
−1)⊗ ω′]F − n−1{(µ̂′3Σ̂−1)⊗ [ω′(In − P̈ )]}F + n−1[(µ̂′3Σ̂

−1)⊗ (ω′P̈ )]V

= n−1[(µ′3Σ
−1)⊗ ω′]F +Op(

√
q/n).

Therefore, n−1∂ĥ∗2(θ̃)/∂θ
′ = −n−1D∗2+op(1) = Op(1) for θ̃ = θ0+op(1), which implies that
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n−1 ∂∂θ ĥ
∗
2(θ̂gmm)′Ω̂∗−122

∂
∂θ′
ĥ∗2(θ

+)− n−1D∗′2 Ω∗−122 D∗2 = op(1) since n−1/2(Ω̂∗22 − Ω∗22) = Op(1).

In summary,

Â = n−1[F ′(Σ−1 ⊗ In)F +D∗′2 Ω∗−122 D∗2] + op(1). (A.3)

As Σ̂ − Σ = Op(n
−1/2) and µ̂3 − µ3 = Op(n

−1/2), it follows by Lemma C.3 of Liu (2014)

that, if q/n→ 0,

n−1/2Z ′(Σ̂−1 ⊗ P̈ )u

= n−1/2F ′(Σ̂−1 ⊗ In)u− n−1/2F ′[Σ̂−1 ⊗ (In − P̈ )]u+ n−1/2V ′(Σ̂−1 ⊗ P̈ )u

= n−1/2F ′(Σ−1 ⊗ In)u+ n−1/2E[V ′(Σ−1 ⊗ P̈ )u] + op(1),

and n−1/2ĥ∗2(θ0)− n−1/2h∗2(θ0) = −n−1[
√
n(µ̂′3Σ̂

−1 − µ′3Σ−1)⊗ (ω′P̈ )]u = op(1). As

n−1E[h∗2(θ0)u
′(Σ−1 ⊗ In)F ] = n−1{(µ′3Σ−1)⊗ [ω′(In − P̈ )]}F = op(1),

n−1/2F ′(Σ−1⊗In)u and n−1/2h∗2(θ0) are asymptotically uncorrelated. It follows by Lemma

3 of Yang and Lee (2017) that

b̂− n−1/2E[V ′(Σ−1 ⊗ P̈ )u]
d→ N(0, lim

n→∞
n−1[F ′(Σ−1 ⊗ In)F +D∗′2 Ω∗−122 D∗2]). (A.4)

As E[V ′(Σ−1 ⊗ P̈ )u] = O(q), from (A.3) and (A.4), we have
√
n(θ̂gmm − θ0) = Op(q/

√
n),

or θ̂gmm − θ0 = Op(q/n).

It follows from (A.2) and Lemmas A.4 and A.5 of Lee (2007) that, if q/n→ 0, we have

n−1∂h2(θ̃)/∂θ
′ = −n−1D2+Op(max{1/

√
n, q/n}) for θ̃−θ0 = Op(q/n), which implies that

n−1∂h∗2(θ̃)/∂θ
′ = −n−1D∗2 +Op(

√
q/n). Hence,

Â = n−1[F ′(Σ−1 ⊗ In)F +D∗′2 Ω∗−122 D∗2] +Op(
√
q/n). (A.5)
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From (A.4) and (A.5),

√
n(θ̂gmm − θ0 − bgmm)

= −[n−1
∂h(θ̂gmm)′

∂θ
Ω−1

∂h(θ+)

∂θ′
]−1n−1/2{∂h(θ̂gmm)′

∂θ
Ω−1h(θ0) + E[V ′(Σ−1 ⊗ P̈ )u]}+Op(

√
q3/n2).

Hence, if q3/2/n→ 0,
√
n(θ̂gmm−θ0−bgmm)

d→ N(0, limn→∞ n[F ′(Σ−1⊗In)F+D∗′2 Ω∗−122 D∗2]
−1).

Lemma A.1. If q/n→ 0 then
√
n(̂bgmm− bgmm) = op(1), where bgmm and b̂gmm are given

by (5.4) and (5.6) respectively.

Proof. To show the desired result, it is suffi cient to show that n−1Z ′(Σ̂−1⊗P̈ )Z−n−1F ′(Σ−1⊗

In)F = op(1), n−1D̂∗2 − n−1D∗2 = op(1), n−1Ω̂∗22 − n−1Ω∗22 = op(1), and n−1/2Ê[V ′(Σ−1 ⊗

P̈ )u]−n−1/2E[V ′(Σ−1⊗P̈ )u] = op(1). By a similar argument as in the proof of Proposition

5.1, if q/n→ 0 then n−1Z ′(Σ̂−1 ⊗ P̈ )Z − n−1F ′(Σ−1 ⊗ In)F = op(1). As n−1ω′ω = O(1),

n−1∆1 = O(1), n−1∆2 = O(1), and n−1ω′P̈ω = O(1), we have n−1Ω̂∗22 − n−1Ω∗22 = op(1).

As shown in the proof of Proposition 9 in Liu (2014), if q/n → 0 then n−1/2Ê[V ′(Σ−1 ⊗

P̈ )u] − n−1/2E[V ′(Σ−1 ⊗ P̈ )u] = op(1). Hence, it only remains to show that n−1D̂∗2 −

n−1D∗2 = op(1).

D2 = −E[
∂

∂θ′
h2 (θ0)] =



Υ1,11 0

Υ1,12 0

0 Υ1,21

0 Υ1,22


+



Υ2,11 0

0 Υ2,12

Υ2,21 0

0 Υ2,22


,

where Υ1,kl = [E(V ′kΞ̈1ul), · · · ,E(V ′kΞ̈pul)]
′ and Υ2,kl = [E(V ′l Ξ̈′1uk), · · · ,E(V ′l Ξ̈′puk)]

′ for
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k, l = 1, 2. With V1 and V2 given by (5.3),

E(V ′1Au1) =



(σ12 + φ12,0σ11)tr(A
′S−1) + (λ12,0σ11 − λ11,0σ12)tr(A′WS−1)

(σ11 + φ21,0σ12)tr(A
′WS−1) + (λ21,0σ12 − λ22,0σ11)tr(A′W 2S−1)

(σ12 + φ12,0σ11)tr(A
′WS−1) + (λ12,0σ11 − λ11,0σ12)tr(A′W 2S−1)

02×1



E(V ′2Au2) =



(σ12 + φ21,0σ22)tr(A
′S−1) + (λ21,0σ22 − λ22,0σ12)tr(A′WS−1)

(σ12 + φ21,0σ22)tr(A
′WS−1) + (λ21,0σ22 − λ22,0σ12)tr(A′W 2S−1)

(σ22 + φ12,0σ12)tr(A
′WS−1) + (λ12,0σ12 − λ11,0σ22)tr(A′W 2S−1)

02×1



E(V ′1Au2) =



(σ22 + φ12,0σ12)tr(A
′S−1) + (λ12,0σ12 − λ11,0σ22)tr(A′WS−1)

(σ12 + φ21,0σ22)tr(A
′WS−1) + (λ21,0σ22 − λ22,0σ12)tr(A′W 2S−1)

(σ22 + φ12,0σ12)tr(A
′WS−1) + (λ12,0σ12 − λ11,0σ22)tr(A′W 2S−1)

02×1



E(V ′2Au1) =



(σ11 + φ21,0σ12)tr(A
′S−1) + (λ21,0σ12 − λ22,0σ11)tr(A′WS−1)

(σ11 + φ21,0σ12)tr(A
′WS−1) + (λ21,0σ12 − λ22,0σ11)tr(A′W 2S−1)

(σ12 + φ12,0σ11)tr(A
′WS−1) + (λ12,0σ11 − λ11,0σ12)tr(A′W 2S−1)

02×1


where A is either Ξ̈r or Ξ̈′r. As n

−1tr(AS−1), n−1tr(AWS−1) and n−1tr(AW 2S−1) areO(1),

we have n−1D̂2 − n−1D2 = op(1), where D̂2 is an estimator of D2 by replacing unknown

parameters in D2 by their consistent estimators. It follows by Lemma C.3 of Liu (2014)

that, if q/n→ 0, n−1ω′P̈Zk = n−1ω′Fk+n−1ω′(In−P̈ )Fk+n−1ω′P̈ Vk = n−1ω′Fk+op(1) =

Op(1). Hence, n−1D̂∗2 = n−1D̂2 − n−1[(µ̂′3Σ̂−1) ⊗ ω′P̈ ]Z = n−1D2 + op(1). The desired
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result follows.
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Table 1: 3SLS and GMM Estimation (𝑛𝑛𝑔𝑔 = 10, �̅�𝑔 = 30) 
 𝜙𝜙21,0 = 0.2 𝜆𝜆11,0 = 0.1 𝜆𝜆21,0 = 0.1 𝛽𝛽1,0 = 0.6 𝛾𝛾1,0 = 0.6 

𝜎𝜎12 = 0.1      
3SLS-1 .198(.069)[.069]  .096(.046)[.046]  .104(.045)[.045]  .603(.062)[.062]  .603(.057)[.057]  
3SLS-2 .222(.069)[.072]  .087(.035)[.037]  .098(.035)[.035]  .598(.060)[.060]  .603(.052)[.052]  
BC3SLS .194(.070)[.070]  .098(.037)[.037]  .104(.036)[.037]  .604(.061)[.061]  .602(.053)[.053]  
GMM-1 .201(.069)[.069]  .095(.038)[.039]  .101(.036)[.036]  .602(.062)[.062]  .600(.055)[.055]  
GMM-2 .225(.069)[.074]  .088(.032)[.035]  .097(.031)[.031]  .597(.060)[.061]  .600(.052)[.052]  
BCGMM .197(.070)[.070]  .097(.034)[.034]  .103(.032)[.032]  .603(.061)[.061]  .600(.053)[.053]  
𝜎𝜎12 = 0.5      
3SLS-1 .199(.069)[.069]  .096(.044)[.045]  .102(.045)[.045]  .605(.058)[.058]  .603(.055)[.055]  
3SLS-2 .224(.069)[.073]  .087(.035)[.037]  .095(.035)[.035]  .605(.056)[.056]  .608(.050)[.050]  
BC3SLS .195(.073)[.073]  .099(.036)[.036]  .103(.037)[.037]  .604(.058)[.058]  .602(.052)[.052]  
GMM-1 .200(.071)[.071]  .094(.039)[.040]  .101(.039)[.039]  .603(.057)[.057]  .602(.053)[.053]  
GMM-2 .226(.070)[.075]  .087(.033)[.035]  .094(.032)[.033]  .605(.056)[.056]  .607(.050)[.050]  
BCGMM .197(.073)[.073]  .097(.035)[.035]  .102(.034)[.034]  .603(.058)[.058]  .601(.052)[.052]  
𝜎𝜎12 = 0.9      
3SLS-1 .200(.070)[.070]  .096(.041)[.041]  .102(.044)[.044]  .606(.047)[.047]  .605(.046)[.047]  
3SLS-2 .226(.072)[.077]  .087(.033)[.036]  .092(.035)[.036]  .616(.048)[.050]  .616(.047)[.050]  
BC3SLS .198(.075)[.075]  .098(.035)[.035]  .103(.038)[.038]  .605(.049)[.049]  .604(.049)[.049]  
GMM-1 .200(.072)[.072]  .093(.039)[.040]  .101(.043)[.043]  .606(.047)[.047]  .605(.047)[.047]  
GMM-2 .226(.073)[.078]  .087(.033)[.035]  .092(.035)[.035]  .616(.048)[.050]  .616(.047)[.050]  
BCGMM .198(.075)[.075]  .097(.035)[.035]  .102(.037)[.037]  .605(.049)[.049]  .604(.048)[.049]  
Mean(SD)[RMSE] 

 
  



Table 2: 3SLS and GMM Estimation (𝑛𝑛𝑔𝑔 = 15, �̅�𝑔 = 30) 
 𝜙𝜙21,0 = 0.2 𝜆𝜆11,0 = 0.1 𝜆𝜆21,0 = 0.1 𝛽𝛽1,0 = 0.6 𝛾𝛾1,0 = 0.6 

𝜎𝜎12 = 0.1      
3SLS-1 .201(.053)[.053]  .099(.034)[.034]  .099(.033)[.033]  .598(.051)[.051]  .603(.046)[.046]  
3SLS-2 .217(.054)[.057]  .097(.027)[.028]  .095(.028)[.029]  .596(.050)[.050]  .602(.042)[.042]  
BC3SLS .199(.055)[.055]  .100(.028)[.028]  .100(.029)[.029]  .598(.051)[.051]  .602(.043)[.043]  
GMM-1 .204(.052)[.052]  .099(.027)[.027]  .098(.025)[.025]  .597(.051)[.051]  .601(.042)[.042]  
GMM-2 .219(.053)[.057]  .096(.024)[.024]  .095(.023)[.024]  .595(.050)[.050]  .600(.041)[.041]  
BCGMM .201(.054)[.054]  .099(.024)[.024]  .099(.024)[.024]  .597(.050)[.051]  .601(.041)[.041]  
𝜎𝜎12 = 0.5      
3SLS-1 .202(.053)[.053]  .099(.033)[.033]  .099(.033)[.033]  .599(.047)[.047]  .603(.043)[.043]  
3SLS-2 .217(.054)[.057]  .096(.027)[.027]  .094(.028)[.028]  .601(.046)[.046]  .606(.040)[.040]  
BC3SLS .199(.056)[.056]  .100(.028)[.028]  .099(.029)[.029]  .598(.047)[.047]  .602(.041)[.041]  
GMM-1 .204(.052)[.052]  .099(.028)[.028]  .098(.027)[.027]  .598(.047)[.047]  .602(.040)[.040]  
GMM-2 .219(.053)[.057]  .096(.024)[.024]  .094(.024)[.025]  .601(.046)[.046]  .605(.038)[.039]  
BCGMM .201(.055)[.055]  .100(.025)[.025]  .099(.025)[.025]  .598(.047)[.047]  .601(.040)[.040]  
𝜎𝜎12 = 0.9      
3SLS-1 .203(.052)[.052]  .100(.030)[.030]  .098(.032)[.032]  .602(.037)[.037]  .603(.036)[.036]  
3SLS-2 .218(.055)[.058]  .095(.026)[.026]  .093(.028)[.028]  .608(.038)[.039]  .610(.037)[.039]  
BC3SLS .200(.057)[.057]  .100(.026)[.026]  .099(.029)[.029]  .601(.039)[.039]  .603(.038)[.038]  
GMM-1 .203(.053)[.053]  .099(.028)[.028]  .097(.030)[.030]  .602(.037)[.037]  .603(.036)[.036]  
GMM-2 .219(.055)[.058]  .096(.024)[.025]  .094(.026)[.027]  .608(.038)[.039]  .610(.037)[.038]  
BCGMM .201(.057)[.057]  .100(.025)[.025]  .098(.027)[.027]  .601(.039)[.039]  .602(.038)[.038]  
Mean(SD)[RMSE] 

 
  



Table 3: 3SLS and GMM Estimation (𝑛𝑛𝑔𝑔 = 15, �̅�𝑔 = 60) 
 𝜙𝜙21,0 = 0.2 𝜆𝜆11,0 = 0.1 𝜆𝜆21,0 = 0.1 𝛽𝛽1,0 = 0.6 𝛾𝛾1,0 = 0.6 

𝜎𝜎12 = 0.1      
3SLS-1 .200(.038)[.038]  .099(.023)[.023]  .100(.025)[.025]  .600(.035)[.035]  .600(.032)[.032]  
3SLS-2 .215(.038)[.041]  .096(.019)[.020]  .097(.020)[.021]  .598(.035)[.035]  .601(.030)[.030]  
BC3SLS .198(.039)[.039]  .099(.020)[.020]  .101(.021)[.021]  .600(.035)[.035]  .601(.031)[.031]  
GMM-1 .201(.037)[.037]  .099(.019)[.019]  .100(.019)[.019]  .600(.035)[.035]  .600(.030)[.030]  
GMM-2 .216(.038)[.041]  .096(.017)[.017]  .097(.018)[.018]  .598(.035)[.035]  .600(.029)[.029]  
BCGMM .200(.038)[.038]  .099(.017)[.017]  .101(.018)[.018]  .600(.035)[.035]  .600(.030)[.030]  
𝜎𝜎12 = 0.5      
3SLS-1 .201(.038)[.038]  .099(.022)[.022]  .100(.024)[.024]  .600(.033)[.033]  .601(.030)[.030]  
3SLS-2 .215(.039)[.041]  .095(.019)[.019]  .096(.020)[.021]  .602(.032)[.032]  .605(.028)[.029]  
BC3SLS .199(.040)[.040]  .099(.019)[.019]  .101(.021)[.021]  .599(.033)[.033]  .601(.029)[.029]  
GMM-1 .201(.038)[.038]  .098(.019)[.019]  .100(.021)[.021]  .600(.033)[.033]  .601(.029)[.029]  
GMM-2 .216(.038)[.041]  .095(.017)[.018]  .097(.018)[.019]  .602(.032)[.032]  .604(.028)[.028]  
BCGMM .199(.040)[.040]  .099(.017)[.017]  .101(.019)[.019]  .599(.033)[.033]  .601(.029)[.029]  
𝜎𝜎12 = 0.9      
3SLS-1 .201(.038)[.038]  .099(.021)[.021]  .100(.024)[.024]  .601(.027)[.027]  .602(.026)[.026]  
3SLS-2 .216(.040)[.044]  .094(.018)[.019]  .095(.020)[.021]  .607(.028)[.029]  .608(.026)[.027]  
BC3SLS .200(.042)[.042]  .099(.018)[.018]  .101(.021)[.021]  .600(.029)[.029]  .601(.027)[.027]  
GMM-1 .201(.039)[.039]  .098(.020)[.020]  .100(.023)[.023]  .601(.028)[.028]  .602(.026)[.026]  
GMM-2 .216(.041)[.044]  .095(.017)[.018]  .096(.020)[.020]  .607(.028)[.029]  .608(.026)[.027]  
BCGMM .200(.042)[.042]  .099(.018)[.018]  .100(.021)[.021]  .600(.028)[.028]  .601(.027)[.027]  
Mean(SD)[RMSE] 

 

  



Table 4: 3SLS and GMM Estimation (𝑛𝑛𝑔𝑔 = 10, �̅�𝑔 = 30) 
 𝜙𝜙21,0 = 0.2 𝜆𝜆11,0 = 0.1 𝜆𝜆21,0 = 0.1 𝛽𝛽1,0 = 0.3 𝛾𝛾1,0 = 0.3 

𝜎𝜎12 = 0.1      
3SLS-1 .195(.143)[.143]  .089(.100)[.101]  .108(.097)[.097]  .304(.065)[.065]  .305(.060)[.060]  
3SLS-2 .267(.149)[.164]  .076(.051)[.056]  .093(.052)[.053]  .294(.061)[.061]  .298(.052)[.052]  
BC3SLS .181(.153)[.154]  .101(.059)[.059]  .105(.057)[.057]  .307(.063)[.063]  .302(.053)[.053]  
GMM-1 .212(.144)[.144]  .093(.059)[.060]  .099(.053)[.053]  .302(.062)[.062]  .299(.054)[.054]  
GMM-2 .275(.151)[.169]  .078(.044)[.049]  .089(.042)[.043]  .293(.061)[.061]  .294(.052)[.053]  
BCGMM .192(.150)[.150]  .099(.048)[.048]  .103(.046)[.046]  .305(.062)[.062]  .300(.052)[.052]  
𝜎𝜎12 = 0.5      
3SLS-1 .201(.147)[.147]  .091(.096)[.097]  .103(.095)[.095]  .307(.061)[.061]  .305(.057)[.058]  
3SLS-2 .276(.150)[.168]  .076(.051)[.056]  .087(.052)[.053]  .305(.056)[.057]  .307(.048)[.049]  
BC3SLS .200(.321)[.321]  .107(.199)[.199]  .105(.070)[.070]  .310(.102)[.103]  .304(.074)[.074]  
GMM-1 .208(.149)[.149]  .091(.065)[.065]  .100(.061)[.061]  .305(.058)[.058]  .303(.052)[.052]  
GMM-2 .281(.152)[.172]  .077(.045)[.050]  .086(.044)[.046]  .305(.056)[.057]  .305(.048)[.049]  
BCGMM .198(.160)[.160]  .099(.052)[.052]  .103(.053)[.053]  .306(.060)[.060]  .302(.053)[.053]  
𝜎𝜎12 = 0.9      
3SLS-1 .205(.149)[.149]  .088(.087)[.088]  .100(.092)[.092]  .310(.049)[.050]  .309(.048)[.049]  
3SLS-2 .283(.154)[.175]  .076(.050)[.055]  .081(.052)[.055]  .324(.050)[.055]  .324(.048)[.053]  
BC3SLS .205(.193)[.193]  .092(.250)[.250]  .107(.100)[.101]  .311(.064)[.065]  .310(.053)[.054]  
GMM-1 .203(.158)[.158]  .088(.075)[.076]  .102(.080)[.080]  .309(.049)[.050]  .309(.048)[.049]  
GMM-2 .285(.155)[.177]  .077(.048)[.053]  .083(.050)[.052]  .324(.050)[.055]  .324(.047)[.053]  
BCGMM .207(.159)[.159]  .092(.157)[.158]  .105(.082)[.082]  .311(.052)[.053]  .310(.049)[.050]  
Mean(SD)[RMSE] 

 

  



Table 5: 3SLS and GMM Estimation (𝑛𝑛𝑔𝑔 = 15, �̅�𝑔 = 30) 
 𝜙𝜙21,0 = 0.2 𝜆𝜆11,0 = 0.1 𝜆𝜆21,0 = 0.1 𝛽𝛽1,0 = 0.3 𝛾𝛾1,0 = 0.3 

𝜎𝜎12 = 0.1      
3SLS-1 .203(.108)[.108]  .097(.070)[.070]  .100(.068)[.068]  .299(.052)[.052]  .304(.046)[.047]  
3SLS-2 .251(.113)[.124]  .092(.040)[.041]  .088(.044)[.046]  .294(.050)[.050]  .299(.040)[.040]  
BC3SLS .193(.115)[.115]  .101(.043)[.043]  .100(.046)[.046]  .299(.051)[.051]  .302(.041)[.041]  
GMM-1 .210(.104)[.104]  .098(.040)[.040]  .097(.037)[.037]  .298(.051)[.051]  .300(.040)[.040]  
GMM-2 .256(.112)[.126]  .091(.032)[.033]  .089(.033)[.035]  .294(.050)[.050]  .298(.039)[.039]  
BCGMM .200(.114)[.114]  .100(.033)[.033]  .100(.034)[.034]  .298(.050)[.050]  .301(.039)[.039]  
𝜎𝜎12 = 0.5      
3SLS-1 .205(.107)[.107]  .097(.068)[.068]  .097(.067)[.067]  .300(.048)[.048]  .305(.044)[.044]  
3SLS-2 .254(.113)[.125]  .091(.040)[.041]  .087(.043)[.046]  .302(.046)[.046]  .306(.037)[.038]  
BC3SLS .195(.119)[.119]  .102(.043)[.043]  .100(.047)[.047]  .300(.048)[.048]  .303(.040)[.040]  
GMM-1 .210(.104)[.104]  .098(.043)[.043]  .096(.041)[.042]  .300(.047)[.047]  .302(.038)[.038]  
GMM-2 .257(.112)[.126]  .091(.033)[.034]  .088(.035)[.037]  .302(.046)[.046]  .305(.036)[.036]  
BCGMM .200(.117)[.117]  .100(.035)[.035]  .099(.038)[.038]  .299(.047)[.047]  .302(.038)[.038]  
𝜎𝜎12 = 0.9      
3SLS-1 .208(.105)[.106]  .096(.063)[.063]  .095(.066)[.066]  .305(.038)[.038]  .306(.037)[.037]  
3SLS-2 .257(.114)[.127]  .089(.039)[.040]  .086(.043)[.045]  .314(.039)[.041]  .316(.037)[.040]  
BC3SLS .201(.118)[.118]  .102(.047)[.047]  .099(.047)[.047]  .304(.039)[.040]  .305(.037)[.038]  
GMM-1 .208(.110)[.111]  .098(.049)[.049]  .096(.055)[.055]  .304(.038)[.038]  .305(.036)[.036]  
GMM-2 .258(.114)[.128]  .090(.035)[.037]  .087(.039)[.041]  .315(.039)[.041]  .316(.036)[.040]  
BCGMM .203(.117)[.117]  .101(.039)[.039]  .098(.043)[.043]  .304(.039)[.039]  .305(.037)[.037]  
Mean(SD)[RMSE] 

 

  



Table 6: 3SLS and GMM Estimation (𝑛𝑛𝑔𝑔 = 15, �̅�𝑔 = 60) 
 𝜙𝜙21,0 = 0.2 𝜆𝜆11,0 = 0.1 𝜆𝜆21,0 = 0.1 𝛽𝛽1,0 = 0.3 𝛾𝛾1,0 = 0.3 

𝜎𝜎12 = 0.1      
3SLS-1 .201(.077)[.077]  .098(.047)[.047]  .101(.050)[.050]  .300(.036)[.036]  .301(.032)[.032]  
3SLS-2 .246(.080)[.092]  .090(.028)[.030]  .092(.031)[.032]  .297(.035)[.035]  .299(.029)[.029]  
BC3SLS .195(.080)[.080]  .099(.029)[.029]  .102(.032)[.032]  .301(.035)[.035]  .301(.029)[.029]  
GMM-1 .205(.073)[.074]  .098(.028)[.028]  .100(.027)[.027]  .300(.035)[.035]  .299(.029)[.029]  
GMM-2 .249(.079)[.093]  .090(.022)[.025]  .093(.024)[.025]  .297(.035)[.035]  .298(.028)[.028]  
BCGMM .198(.079)[.079]  .099(.023)[.023]  .102(.024)[.024]  .300(.035)[.035]  .300(.028)[.028]  
𝜎𝜎12 = 0.5      
3SLS-1 .202(.077)[.077]  .097(.045)[.045]  .101(.049)[.049]  .301(.033)[.033]  .302(.030)[.030]  
3SLS-2 .247(.081)[.094]  .089(.028)[.030]  .091(.030)[.032]  .303(.032)[.032]  .306(.026)[.027]  
BC3SLS .196(.084)[.084]  .099(.029)[.030]  .102(.033)[.033]  .300(.033)[.033]  .301(.028)[.028]  
GMM-1 .203(.075)[.075]  .097(.030)[.030]  .100(.031)[.031]  .300(.033)[.033]  .301(.028)[.028]  
GMM-2 .249(.080)[.094]  .089(.024)[.026]  .092(.025)[.027]  .303(.032)[.032]  .305(.026)[.026]  
BCGMM .198(.083)[.083]  .099(.025)[.025]  .102(.027)[.027]  .300(.033)[.033]  .301(.028)[.028]  
𝜎𝜎12 = 0.9      
3SLS-1 .203(.077)[.077]  .097(.042)[.042]  .100(.048)[.048]  .302(.027)[.027]  .303(.026)[.026]  
3SLS-2 .250(.083)[.097]  .087(.028)[.030]  .090(.031)[.032]  .311(.028)[.030]  .313(.026)[.029]  
BC3SLS .199(.086)[.086]  .099(.029)[.029]  .101(.033)[.033]  .301(.028)[.028]  .302(.027)[.027]  
GMM-1 .201(.081)[.081]  .096(.036)[.036]  .101(.042)[.042]  .302(.028)[.028]  .303(.026)[.026]  
GMM-2 .250(.083)[.097]  .089(.026)[.028]  .091(.029)[.030]  .311(.028)[.030]  .313(.026)[.029]  
BCGMM .200(.085)[.085]  .098(.028)[.028]  .101(.031)[.031]  .301(.028)[.028]  .302(.026)[.027]  
Mean(SD)[RMSE] 

 


