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Abstract

We develop a uni�ed model embedding di¤erent behavioral mechanisms of social interac-

tions and design a statistical model selection test to di¤erentiate between them in empirical

applications. This framework is applied to study peer e¤ects in education (e¤ort in studying)

and sport activities for adolescents in the United States. We �nd that, for education, students

tend to conform to the social norm of their friends while, for sport activities, both the social

multiplier and the social norm e¤ect matter.

Key words: Social networks, identi�cation of peer e¤ects, J test, individual-based policy, group-

based policy.

JEL classi�cation: A14, D85, Z13

�We thank the editor, William Neilson, as well as three anonymous referees for very helpful comments. We also
that Maria Marta Ferreyra, Benjamin Golub, Lung-fei Lee and Marc Sommer for comments and discussions. We
are also grateful to Edoardo Rainone for excellent research assistance. This research uses data from Add Health, a
program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman and Kathleen
Mullan Harris at the University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice
Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other
federal agencies and foundations. Special acknowledgment is due to Ronald R. Rindfuss and Barbara Entwisle for
assistance in the original design. Information on how to obtain the Add Health data �les is available on the Add
Health website (http://www.cpc.unc.edu/addhealth). No direct support was received from grant P01-HD31921 for
this analysis.

yUniversity of Colorado Boulder. E-mail: xiaodong.liu@colorado.edu.
zSyracuse University, EIEF and CEPR. E-mail: epatacch@maxwell.syr.edu
xCorresponding author. Stockholm University, Research Institute of Industrial Economics (IFN) and GAINS.

E-mail: yves.zenou@ne.su.se.

1



1 Introduction

In many circumstances, the decision of agents to exert e¤ort in education, or some other activity,

cannot adequately be explained by their characteristics and by the intrinsic utility derived from it.

Rather, its rationale may be found in how peers and others value this activity. There is indeed

strong evidence that the behavior of individual agents is a¤ected by that of their peers. This is

particularly true in education, crime, labor markets, fertility, participation in welfare programs, etc.

(for surveys, see, Glaeser and Scheinkman, 2001; Mo¢ tt, 2001; Durlauf, 2004; Ioannides and Loury,

2004; Ioannides, 2012). The way peer e¤ects operate is, however, unclear. Are students working

hard at school because some of their friends work hard or because they do not want to be di¤erent

from the majority of their peers who work hard?

The aim of this paper is to help our understanding of social interaction mechanisms of peer

e¤ects. For that, we begin by developing a social network model aiming at capturing how peer

e¤ects operate through social networks.1 We characterize the Nash equilibrium and show under

which condition an interior Nash equilibrium exists and is unique. Such a model encompasses the

most popular peer e¤ects models on networks: the local-aggregate and the local-average models. In

the local-aggregate model (see, in particular, Ballester et al., 2006, 2010; Bramoullé and Kranton,

2007; Galeotti et al., 2009; Calvó-Armengol et al., 2009), endogenous peer e¤ects are captured by the

sum of friends�e¤orts in some activity so that the more active friends an individual has, the higher

is her marginal utility of exerting e¤ort. In the local-average model (e.g. Glaeser and Scheinkman,

2003; Patacchini and Zenou, 2012; Boucher et al., 2014), peers�choices are viewed as a social norm

and individuals pay a cost for deviating from this norm. In this model, each individual wants to

conform as much as possible to the social norm of her reference group, which is de�ned as the average

e¤ort of her friends.2 Ghiglino and Goyal (2010) develop a theoretical model where they compare

the local aggregate and local average models in the context of a pure exchange economy where

individuals trade in markets and are in�uenced by their neighbors. They found that with aggregate

comparisons, networks matter even if all people are equally wealthy. With average comparisons,

1There is a growing literature on networks in economics. See the recent literature surveys by Goyal (2007), Jackson
(2008) and Jackson and Zenou (2013).

2 In economics, di¤erent aspects of conformism and social norms have been explored from a theoretical point of
view. To name a few, (i) peer pressures and partnerships (Kandel and Lazear, 1992) where peer pressure arises
when individuals deviate from a well-established group norm, e.g. individuals are penalized for working less than the
group norm, (ii) religion (Iannaccone 1992, Berman 2000), since praying is much more satisfying the more average
participants there are, (iii) social status and social distance (Akerlof 1980, 1997; Bernheim 1994; Battu et al., 2007,
among others) where deviations from the social norm (average action) imply a loss of reputation and status.
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networks are irrelevant when individuals are equally wealthy. The two models are, however, similar

if there is heterogeneity in wealth.3 We are not aware of a paper where both local-aggregate and

local-average e¤ects are incorporated in a uni�ed network model.

Next, we study the econometric counterpart of the theoretical model. In the spatial econometric

literature, the local-average and the local-aggregate model are well-known and their main di¤erence

(from an econometric viewpoint) is due to the fact that the adjacency matrix is row-normalized in

the former but not in the latter. Our theoretical analysis provides a microfoundation for these two

models. For the local-average model, Bramoullé et al. (2009) show that intransitivity in network

connections can be used as an exclusion restriction to identify the endogenous peer e¤ect from

contextual and correlated e¤ects. In this paper, we show that, for the local-aggregate model, di¤erent

positions of the agents in a network captured by the Bonacich (1987) centrality can be used as

additional instruments to improve identi�cation and estimation e¢ ciency. We also give identi�cation

conditions for a general econometric network model that incorporates both local-aggregate and local-

average endogenous peer e¤ects.

Finally, we extend Kelejian�s (2008) J test for spatial econometric models to di¤erentiate be-

tween the local-aggregate and the local-average endogenous peer e¤ects in an econometric network

model with network �xed-e¤ects. We illustrate our methodology using data from the U.S. National

Longitudinal Survey of Adolescent Health (AddHealth), which contains unique detailed information

on friendship relationships among teenagers. In line with a number of recent studies based on the

AddHealth data (e.g. Calvó-Armengol et al., 2009, Lin 2010; Patacchini and Zenou, 2012; Liu et al.

2012), we exploit the structure of the network as well as network �xed e¤ects to identify peer e¤ects

from contextual and correlated e¤ects.4 We �nd that, for study e¤ort, students tend to conform to

the social norm of their friends while, for sport activities, both the social multiplier and the social

norm e¤ect matter. Our results also show that the local-average peer e¤ect is overstated if the

local-aggregate e¤ect is ignored and vice versa. In this respect, our analysis reveals that caution is

warranted in the assessment of peer e¤ects when social interactions can take di¤erent forms.

We believe that it is important to be able to disentangle empirically di¤erent behavioral mecha-

nisms of endogenous peer e¤ects because they imply di¤erent policy implications. In the local-average

3Another interesting paper is that of Clark and Oswald (1998) who propose a choice-theoretical justi�cation for
the local-average (i.e. conformist) model.

4The underlying assumption is that any troubling source of heterogeneity, which is left unexplained by the set of
observed (individual and peers) characteristics can be captured at the network level, and thus taken into account by
the inclusion of network �xed e¤ects.
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model, the only way to a¤ect individuals�behavior and thus their outcomes is to change the social

norm of the group. In other words, one needs to a¤ect most people in the group for the policy to be

e¤ective. As a result, group-based policies should be implemented in the context of this model. On

the other hand, for the local-aggregate model, one can target only one individual and still e¤ectively

in�uence the whole network. In an other words, in the local-aggregate model there is a more salient

social multiplier e¤ect than in the local-average model, and hence, individual-based policies could

be implemented.5

The rest of paper is organized as follows. Section 2 introduces the theoretical framework for the

network models. Section 3 discusses the identi�cation conditions of the corresponding econometric

models. We extend the J test of Kelejian and Piras (2011) to network models with network �xed

e¤ects in Section 4 and empirically test the network models using the AddHealth data in Section 5.

Section 5.4 discusses the policy implications of our results. Finally, Section 6 concludes. All proofs

of propositions can be found in Appendix A.

2 Theoretical Framework

2.1 The network

Suppose that a �nite set of agents N = f1; : : : ; ng is partitioned into �r networks, where Nr =

f1; : : : ; nrg denotes the set of agents in the r-th network (r = 1; :::; r).6 We keep track of social

connections in network r by its adjacency matrix Gr = [gij;r], where gij;r = 1 if i and j are friends,

and gij;r = 0, otherwise.7 We also set gii;r = 0.

The reference group of individual i in network r is the set of i�s friends given by Ni;r =

fj 6= i j gij;r = 1g. The size of Ni;r is gi;r =
Pnr

j=1 gij;r, which is known as the degree of i in graph

theory.8

Let G�r = [g
�
ij;r], where g

�
ij;r = gij;r=gi;r, denote the row-normalized adjacency matrix of network

r. By construction, we have 0 � g�ij;r � 1 and
Pnr

j=1 g
�
ij;r = 1. Figure 1 gives an example of a star-

5See our discussion in Sections 2.5 and 6.
6 In the theoretical analysis, we will only consider one connected network (i.e. there always exists a path between

two individuals in this network). We keep, however, the notation of r (multiple) networks (each being connected) to
ease the transition between the theoretical and the econometric analysis.

7We assume friendships are reciprocal so that gij;r = gji;r . All our results hold for asymmetric (directed ) and
weighted networks but, for the ease of the presentation, we focus on symmetric (undirected ) and unweighted networks
in this paper.

8For simplicity, we assume that no one is isolated so that gi;r > 0.
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shaped network and the corresponding adjacency matrices with and without row-normalization.

1 2 3 Gr =

266664
0 1 0

1 0 1

0 1 0

377775 and G�r =

266664
0 1 0

1=2 0 1=2

0 1 0

377775 :
Figure 1: an example network with corresponding adjacency matrices

2.2 The general network model

We denote by yi;r the e¤ort level of individual i and by Yr = (y1;r; :::; ynr;r)
0 the population e¤ort

pro�le of network r. Given the underlying network topology represented by the adjacency matrix Gr,

individuals in network r simultaneously decide how much e¤ort to exert to maximize the following

utility function

ui;r(yi;r) � ui;r(yi;r;Yr; Gr) = (��i;r + �1
Pnr

j=1 gij;ryj;r)yi;r| {z }
bene�t

� 1
2
[y2i;r + �2(yi;r �

Pnr
j=1 g

�
ij;ryj;r)

2]| {z }
cost

;

(1)

where �1 � 0 and �2 � 0. The utility function (1) has two components, bene�t and cost. The

bene�t component is modeled as a linear function of own e¤ort level yi;r, with the term (��i;r +

�1
Pnr

j=1 gij;ryj;r) representing the return to e¤ort. The term ��i;r represents ex ante individual

heterogeneity in the return to e¤ort. The term
Pnr

j=1 gij;ryj;r represents the aggregate e¤ort of i�s

friends with the social-multiplier coe¢ cient �1. As individuals may have di¤erent locations in the

network,
Pnr

j=1 gij;ryj;r is heterogeneous in i even if every individual in the network chooses the same

e¤ort level.

The cost component of the utility function has two terms. The �rst term y2i;r represents the cost

of own e¤ort. The second term (yi;r�
Pnr

j=1 g
�
ij;ryj;r)

2 represents the moral cost due to deviation from

the social norm of the reference group (i.e., the average e¤ort of the peers) with the social-conformity

coe¢ cient �2.9

Thus, an individual�s utility is positively a¤ected by the total e¤ort of her friends and negatively

a¤ected by the distance from the average e¤ort of her friends. From the �rst-order condition of the

9This is the standard way economists have been modeling conformity (see, among others, Akerlof, 1980, Bernheim,
1994, Kandel and Lazear, 1992, Akerlof, 1997, Fershtman and Weiss, 1998; Patacchini and Zenou, 2012).
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utility maximization, the best-reply function of individual i is then given by:

yi;r = �1
Pnr

j=1 gij;ryj;r + �2
Pnr

j=1 g
�
ij;ryj;r + �i;r; (2)

where �1 = �1=(1 + �2), �2 = �2=(1 + �2), and �i;r = ��i;r=(1 + �2). As �1 � 0 and �2 � 0,

we have �1 � 0 and 0 � �2 < 1. The coe¢ cient �1 is called the local-aggregate endogenous peer

e¤ect. As �1 � 0, this coe¢ cient re�ects strategic complementarity in e¤orts. The coe¢ cient �2

is called the local-average endogenous peer e¤ect, which captures the taste for conformity. Note

that, �1=�2 = �1=�2. That is, the relative magnitude of �1 and �2 is the same as that of the

social-multiplier coe¢ cient �1 and the social-conformity coe¢ cient �2.

We denote by gmaxr the highest degree in network r, i.e. gmaxr = maxi gi;r. Let�r = (�1;r; � � � ; �nr;r)0.

The Nash equilibrium of the general network model is characterized by the following proposition.

Proposition 1 If �1 � 0, �2 � 0 and gmaxr �1+�2 < 1, then the network game with payo¤s (1) has

a unique interior Nash equilibrium in pure strategies given by

Yr = (Inr � �1Gr � �2G�r)�1�r: (3)

We have a game with strategic complementarities (also called supermodular game) so that the

higher is the e¤ort of my neighbors, the higher is my marginal utility of exerting my own e¤ort. As a

result, there is a problem of existence of equilibrium because there is no bound on the e¤ort of each

agent. Since �1 and �2 express the intensity of these complementarities, then condition g
max
r �1+�2 <

1 guarantees the existence of equilibrium by limiting the degree of strategic complementarities of

e¤orts. The fact that we do not have multiple equilibria is due to the fact that we have both linear

best-reply functions and strategic complementarities. Indeed, introducing enough non-linearity in

the best-replies, or enough substitutabilities in the interactions, would lead to multiple equilibria.

In a way, linearity and strategic complementarities discipline each other.
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2.3 Two special cases: local-average and local-aggregate network models

There are two special cases of the general network model that are of special interest. When �1 = 0,

i.e., when there is no strategic complementarity e¤ect, the utility function (1) reduces to

ui;r(yi;r) � ui;r(yi;r;Yr; Gr) = ��i;ryi;r| {z }
bene�t

� 1
2
[y2i;r + �2(yi;r �

Pnr
j=1 g

�
ij;ryj;r)

2]| {z }
cost

:

In equilibrium, agents choose their e¤ort level yi;r simultaneously to maximize their utility. It follows

from the �rst-order condition that the best-reply function of individual i is given by

yi;r = �2
Pnr

j=1 g
�
ij;ryj;r + �i;r; (4)

where �2 = �2=(1 + �2) and �i;r = �
�
i;r=(1 + �2). As the equilibrium e¤ort level of individual i only

depends on the average e¤ort of her friends, this model is referred to as the local-average network

model. If 0 � �2 < 1, then the local-average network game has a unique interior Nash equilibrium

in pure strategies given by

Yr = (Inr � �2G�r)�1�r: (5)

On the other hand, when �2 = 0, i.e., when there is no social-conformity e¤ect, the utility function

(1) reduces to

ui;r(yi;r) � ui;r(yi;r;Yr; Gr) = (��i;r + �1
Pnr

j=1 gij;ryj;r)yi;r| {z }
bene�t

� 1
2
y2i;r| {z }
cost

:

In this case, it follows from the �rst-order condition that the best-reply function of individual i is

given by

yi;r = �1
Pnr

j=1 gij;ryj;r + �i;r; (6)

where �1 = �1=(1 + �2) = �1 and �i;r = �
�
i;r=(1 + �2) = �

�
i;r (as �2 = 0). As the equilibrium e¤ort

level of individual i depends on the aggregate e¤ort of her friends. Hence, we call this model the

local-aggregate network model. If 0 � gmaxr �1 < 1, then the local-aggregate network game has a

unique interior Nash equilibrium in pure strategies given by

Yr = (Inr � �1Gr)
�1
�r: (7)
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2.4 Equilibrium comparison: local average versus local aggregate

In the local-average model, it is the deviation from the average e¤ort of the reference group that

a¤ects an individual�s utility. So the closer an individual�s e¤ort is from the average e¤ort of her

friends, the higher is her equilibrium utility. On the contrary, in the local-aggregate model, it is the

aggregate e¤ort of the reference group that a¤ects an individual�s utility. So the more active friends

an individual has, the higher is her equilibrium utility. In the local-average model, positions in the

network would not matter and equilibrium e¤ort would be the same if all individuals are ex ante

identical. However, in the local-aggregate model, even if individuals are ex ante identical, di¤erent

positions in the network would imply di¤erent equilibrium e¤ort levels.

To illustrate this point, consider the case where all individuals are ex ante identical apart from

their positions in the network such that �i;r = �r for i = 1; � � � ; nr. For the local-average model, if

0 � �2 < 1, the unique interior Nash equilibrium given by (5) now becomes

Yr = �r(1� �2)�1lnr ;

where lnr is an nr-dimensional vector of ones. As a result, in the local-average model, the position

in the network plays no role and all individuals provide the same equilibrium e¤ort level �r=(1��2)

in network r. On the other hand, for the local-aggregate model, if 0 � �1gmaxr < 1, the unique Nash

equilibrium given by (7) now becomes

Yr = �r (Inr � �1Gr)
�1
lnr :

Note that (Inr � �1Gr)
�1
lnr represents the Bonacich centrality (Bonacich, 1987) of a network.

Therefore, the equilibrium e¤ort yi;r of individual i is proportional to her centrality in the network.

The more central an individual�s position is, the higher is her equilibrium e¤ort and equilibrium

utility.10 This is one of the fundamental di¤erences with the local-aggregate model where, even

if agents are ex ante identical, because of social multiplier e¤ects, the position in the network

determines their e¤ort activity so that more central persons exert more e¤ort than less central

individuals.

Thus, these two models have fundamentally di¤erent equilibrium implications as illustrated in

10For the local-aggregate model, the equilibrium utility of an individual is ui;r(y�i;r) =
1
2
y�2i;r , where y

�
i;r denote the

equilibrium e¤ort level.
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the above example. When it is the aggregate e¤ort of friends that a¤ects one�s utility, the position

in the network a¤ects one�s equilibrium e¤ort. When the deviation from the social norm is costly,

all individuals want to conform to the e¤ort of their reference group, which is the same for all of

them when they are ex ante identical.

2.5 Discussion

Let us discuss the di¤erences between local-average and local-aggregate models and what kinds of

mechanisms they imply in more detail. For that, we will start with Whyte�s (1955) study of the

Italian North End of Boston in the late 1930�s. Whyte studied the behavior of a street-corner gang,

especially that of their leader Doc. Whyte wondered why Doc, a highly intelligent and curious

individual, was not upwardly mobile and, instead, dropped out of school. Whyte was puzzled

by Doc�s behavior because school would have been easy for Doc given his exceptional ability and

intelligence. Whyte concluded that Doc did not seek extra education out of loyalty to his group,

whom he would be abandoning were he to advance beyond them educationally. The behavior of Doc

is in accordance with the local-average model where it is costly to deviate from the group�s social

norm. Even if Doc is much more intelligent than the members of his gang, it would be too costly

for him to acquire a higher level of education since this would mean interacting less with his friends

or even abandoning them. Contrary to a model with no social interactions, where educational costs

are mainly tuition fees, lost wages, etc., here it is the cost of lost contacts with one�s friends that is

crucial. Now, if Doc had preferences according to the local-aggregate model, he would have acted

di¤erently. His decision to seek extra education would have been driven by his formidable ability

and the sum of his friends�educational level, which is going to be quite high as Doc, a leader, has

many friends. What is crucial, however, is that there would not be a cost from deviating from his

friends�decisions and he would certainly have decided to pursue education, despite the lower average

education level of his peers.

This means that the policy implications of the two models are quite di¤erent. In the local-average

model, the only way to a¤ect individuals�behavior and thus their outcomes is to change the social

norm of the group. In other words, one needs to a¤ect most people in the group for the policy to

be e¤ective. As a result, group-based policies, for example, a school-based or a region-based policy,

should be implemented in the context of this model. On the other hand, in the local-aggregate

model, because of social multiplier e¤ects, one can target only one individual and still have positive
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e¤ects because she, in turn, will a¤ect her peers. In that case, individual-based policy could be

implemented.

Akerlof (1997) discussed Eugene Lang�s famous o¤er to give a college scholarship to every student

at the sixth grade class in Harlem. Of the 51 students who remained in the New York area, 40 were

considered likely to go to college six years later. Akerlof (1997) explained the success of this policy

by the fact that it a¤ected all students not some of them. As Akerlof put it: �The experiment was

successful because the students formed a cohesive group in which each member received reinforcement

from others who, like themselves, were on the academic track toward graduation from high school�.

In the language of the local-average model, this policy worked well because it changes the norm�s

group by a¤ecting all its members. After the policy experiment, graduating and going to college

was not anymore considered as �bad�but as the social norm of the group, i.e. what should be done.

In the context of the local-aggregate model, one does not need to undertake such a costly policy.

It su¢ ces to give a college scholarship to some students who, by increasing their performance, will

increase the total e¤ort of peer reference group of their friends, who will, in turn, a¤ect the total

e¤ort of their own friends, etc.

3 Identi�cation of the Econometric Network Model

3.1 Econometric network models

The speci�cation of the econometric model follows the equilibrium best-reply function of the network

game so that it has a clear microfoundation. Let the ex ante heterogeneity �i;r of individual i in

network r be

�i;r = x
0
i;r� +

nrP
j=1

g�ij;rx
0
j;r
 + �r + �i;r;

where xi;r is an p-dimensional vector of exogenous variables, �i;r is an i.i.d. innovation with zero

mean and �nite variance �2, and �; 
; �r are corresponding parameters. From the best-reply function

(2), the general econometric network model is

yi;r = �1
nrP
j=1

gij;ryj;r + �2
nrP
j=1

g�ij;ryj;r + x
0
i;r� +

nrP
j=1

g�ij;rx
0
j;r
 + �r + �i;r; (8)
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for i = 1; � � � ; nr and r = 1; � � � ; �r. Let Yr = (y1;r; � � � ; ynr;r)0, Xr = (x1;r; � � � ; xnr;r)0, and �r =

(�1;r; � � � ; �nr;r)0. Then, (8) can be written in matrix form as

Yr = �1GrYr + �2G
�
rYr +Xr� +G

�
rXr
 + �rlnr + �r:

Let diagfAjg denote a �generalized� block diagonal matrix in which the diagonal blocks are

mj � nj matrices Aj�s. For a data set with �r groups, let Y = (Y 01 ; � � � ; Y 0�r )0, X = (X 0
1; � � � ; X 0

�r)
0,

� = (�1; � � � ; ��r)0, � = (�01; � � � ; �0�r)0, G = diagfGrg�rr=1, G� = diagfG�rg�rr=1 and L = diagflnrg�rr=1.

The general econometric model can be written as

Y = �1GY + �2G
�Y +X� +G�X
 + L� + �: (9)

The econometric network model (9) incorporates the endogenous e¤ect, captured by �1 and �2,

where an individual�s choice/outcome may depend on those of her friends, the contextual e¤ect,

captured by the coe¢ cient 
, where an individual�s choice/outcome may depend on the exogenous

characteristics of her friends, and the network �xed e¤ect, captured by the network-speci�c parameter

�r, where individuals in the same network may behave similarly as they have similar unobserved

individual characteristics or they face a similar institutional environment (see Manski, 1993).11

Furthermore, we distinguish between the aggregate endogenous e¤ect, captured by the coe¢ cient �1,

and the average endogenous e¤ect, captured by the coe¢ cient �2, as they originate from di¤erent

economic models with totally di¤erent equilibrium implications.

The network-speci�c parameters � is allowed to depend on G, G� and X as in a �xed e¤ect

panel data model. To avoid the incidental parameter problem when the number of groups �r is large,

we eliminate the term L� using the deviation from group mean projector J = diagfJrg�rr=1, where

Jr = Inr � 1
nr
lnr l

0
nr . This transformation is analogous to the within transformation for a �xed e¤ect

panel data model. As JL = 0, the transformed network model is

JY = �1JGY + �2JG
�Y + JX� + JG�X
 + J�: (10)

11Network �xed e¤ects can be motivated by a two-step network formation model where agents self-select into
di¤erent networks in a �rst step and, then, in a second step, link formation takes place within networks based on
observable individual characteristics only. Therefore, the network �xed e¤ect serves as a (partial) remedy for the
selection bias that originates from the possible sorting of individuals with similar unobserved characteristics into a
network.
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It is well known that endogenous and contextual e¤ects cannot be separately identi�ed in a

linear-in-means model due to the re�ection problem, �rst formulated by Manski (1993). The re�ec-

tion problem arises because, in a linear-in-means model, individuals are a¤ected by all individuals

belonging to their group and by nobody outside the group, and thus the simultaneity in behavior

of individuals in the same group introduces a perfect collinearity between the endogenous e¤ect

and the contextual e¤ect. For the network model, the reference group usually varies across in-

dividuals and the identi�cation of various social interaction e¤ects thus becomes possible. Let

Z = [GY;G�Y;X;G�X] denote the matrices of regressors in the network model. Let Q denote the

IV matrix.12 Then, the network model (9) is identi�ed if the following condition is satis�ed.

Identi�cation Condition limn!1
1
nQ

0E(JZ) is a �nite matrix with full column rank.

This identi�cation condition implies the rank condition that E(JZ) has full column rank and

that the column rank of Q is at least as high as that of E(JZ), for large enough n. In the rest of this

section, we provide su¢ cient conditions for this identi�cation condition. Based on the identi�cation

result, the transformed model can be estimated by generalizing the 2SLS and GMM methods in Liu

and Lee (2010).13

3.2 Identi�cation of the local-average model

First, we consider the identi�cation of (9) under the exclusion restriction �1 = 0. In this case, the

general network model reduces to the local-average model

Y = �2G
�Y +X� +G�X
 + L� + �; (11)

with the reduced-form equation

Y = (I � �2G�)�1(X� +G�X
 + L� + �): (12)

12For the local-average model, a possible IV matrix is Q = J [X;G�X;G�2X], where G�2X represents the charac-
teristics of friends�friends. For the local-aggregate model, a possible IV matrix is Q = J [X;G�X;G�2X;GL], where
GL represents the number of friends.
13See Section 4.2 and Appendix B at the end of the paper for more details.
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As J(I � �2G�)�1L = 0 and (I � �2G�)�1 =
P1

j=0(�2G
�)j , it follows from (12) that

E(JG�Y ) = JG�X�+JG�2(I��2G�)�1X(�2�+
) = JG�X�+(JG�2X+�2JG�3X+� � � )(�2�+
):

(13)

To illustrate the challenges for the identi�cation of the local-average model, we consider the two

following cases:

(i) �2� + 
 = 0. In this case, E(JG�Y ) = JG�X�. The model cannot be identi�ed because,

for Z = [G�Y;X;G�X], E(JZ) = [E(JG�Y ); JX; JG�X] does not have full column rank. From

the perspective of IV estimation, E(JG�Y ) = JG�X� implies that the only informative IV for the

endogenous e¤ect is JG�X, which is also a regressor in the transformed model, the contextual e¤ect.

The perfect collinearity between the mean of the endogenous e¤ect and the contextual e¤ect makes

the model unidenti�ed. A special case of �2� + 
 = 0 is � = 
 = 0. In this case, E(JG
�Y ) = 0 and,

thus, the model cannot be identi�ed as there is no relevant IV for the endogenous e¤ect.

(ii) �2� + 
 6= 0. In this case, identi�cation of the local-average model may be possible as,

according to (13), [JG�2X; JG�3X; � � � ] can be used IVs for the endogenous e¤ect. Note, in a

natural network, if individuals i; j are friends and j; k are friends, it does not necessarily imply

that i; k are also friends. The intransitivity in social connections provides an exclusion restriction

such that the characteristics of the friends�friends G�2X may not be perfectly correlated with own

characteristics X and the characteristics of the friends G�X. Thus, one can use IVs like JG�2X to

identify endogenous and contextual e¤ects. Based on this important observation, Bramoullé et al.

(2009) have shown that if the matrices I;G�; G�2; G�3 are linearly independent, social e¤ects are

identi�ed. From the perspective of a spatial autoregressive (SAR) model, Lee et al. (2010) have

shown that model (11) can be identi�ed if [JX; JG�X; JG�2X] has full column rank.

3.3 Identi�cation of the local-aggregate model

On the other hand, under the exclusion restriction �2 = 0, the general network model (9) reduces

to the local-aggregate model

Y = �1GY +X� +G
�X
 + L� + �: (14)
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For the r-th network, the reduced-form equation of the local-aggregate model is

Yr = (Inr � �1Gr)�1(Xr� +G�rXr
 + �rlnr + �r);

which implies

E(JrGrYr) = JrGr(Inr � �1Gr)�1(Xr� +G�rXr
) + �rJrGr(Inr � �1Gr)�1lnr : (15)

Note, the term Gr (Inr � �1Gr)
�1
lnr is the Bonacich measure of centrality (Ballester et al. 2006;

Bonacich, 1987). When row sums of Gr are not constant, the term JrGr (Inr � �1Gr)
�1
lnr 6= 0 and

therefore can be used as an additional IV for model identi�cation.

As the identi�cation condition requires E(JZ), where Z = [GY;X;G�X] for the local-aggregate

model, to have full column rank, the following proposition gives a su¢ cient condition for the rank

condition. Henceforth, let c (possibly with subscripts) denote a constant scalar that may take

di¤erent values for di¤erent uses.

Let also

�1 =

266666664


c1 1 ��1c1

� + 
c2 ��1 ��1c2


c3 0 1� �1c3

�r 0 0

377777775
(16)

and

�2 =

266666666664

�
c1 1 �1c1

� � 
c2 ��1 �1c2

�
c3 �1 �1c3 + 1


 � � � 
c4 �1 �1c4 � �1
�
c5 0 �1c5 � 1

377777777775
: (17)

We have the following result:

Proposition 2 For the local-aggregate network model (14), let E(JZ) = [E(JGY ); JX; JG�X].

� When Gr has non-constant row sums for some network r, E(JZ) has full column rank if: (i)

Inr ; Gr; G
�
r ; GrG

�
r are linearly independent and j�j + j
j + j�rj 6= 0; or (ii) GrG�r = c1Inr +

c2Gr + c3G
�
r and �1 given by (16) has full rank.
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� When Gr has constant row sums such that gi;r = gr for all r, E(JZ) has full column rank if:

(iii) I;G;G�; GG�; G�2; GG�2 are linearly independent and j�j+j
j 6= 0; (iv) I;G;G�; GG�; G�2

are linearly independent, GG�2 = c1I+c2G+c3G�+c4GG�+c5G�2, and �2 given by (17) has

full rank; or (v) gr = g for all r, I;G�; G�2; G�3 are linearly independent, and �1�g + 
 6= 0.

In many cases, the identi�cation conditions for the local-aggregate model given in Proposition 2

are weaker than those for the local-average model given in Bramoullé et al. (2009). Figure 2 gives an

example where identi�cation is possible for the local-aggregate model but fails for the local-average

model. Consider a data set where each network is represented by the graph in Figure 2 (a star-

shaped network). The adjacency matrix G is a block-diagonal matrix with diagonal blocks being Gr

in Figure 2. For the row-normalized adjacency matrix G�, it is easy to see that G�3 = G�. Therefore,

it follows from Proposition 5 of Bramoullé et al. (2009) that the local-average model (11) is not

identi�ed. On the other hand, as Gr in Figure 2 has non-constant row sums and Inr ; Gr; G
�
r ; GrG

�
r

are linearly independent, it follows from our Proposition 2(i) that the local-aggregate model (14)

can be identi�ed for this network. From the perspective of IVs, as J(G�)j+2X = (�1)j+1JG�X

for j = 0; 1; 2; � � � , the IVs based on (13) [JG�2X; JG�3X; � � � ] are all perfectly correlated with the

contextual e¤ect regressor JG�X. Therefore, the local-average model cannot be identi�ed. On the

other hand, for the local-aggregate model, as Gr does not have constant row sums, one can use

JrGrlnr , the leading-order term of JrGr(Inr � �1Gr)�1lnr in (15), as an IV to identify endogenous

and contextual e¤ects.

3 4
1

2

Gr =

266666664

0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

377777775
and G�r =

266666664

0 1=3 1=3 1=3

1 0 0 0

1 0 0 0

1 0 0 0

377777775
:

Figure 2: An example where the local-aggregate model can be identi�ed by Proposition 2(i).

Figure 3 provides another example where the local-average model cannot be identi�ed while the

local-aggregate model can. Consider a data set with two types of networks. The �rst type of network

is represented by the graph on the top of Figure 3 (a regular network or a circle). The second type of

network is represented by the graph on the bottom of Figure 3 (a bi-partite network). For these two
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networks, the adjacency matrix G is a block-diagonal matrix with diagonal blocks being either G1 or

G2 given in Figure 3. For the row normalized adjacency matrix G�, it is easy to see that G�3 = G�.

Therefore, it follows from Proposition 5 of Bramoullé et al. (2009) that the local-average model (11)

is not identi�ed. On the other hand, as the two di¤erent types of networks have di¤erent row sums,

I;G;G�; GG�; G�2 are linearly independent and GG�2 = G. Therefore, the local-aggregate model

(14) can be identi�ed by our Proposition 2(iv). From the perspective of IVs, the local-average model

cannot be identi�ed because the IVs based on (13) [JG�2X; JG�3X; � � � ] are all perfectly correlated

with the contextual e¤ect regressor JG�X. On the other hand, for the local-aggregate model, as

JGX and JGG�X are linearly independent of the contextual e¤ect regressor JG�X, one can use

JGX and JGG�X, the leading-order terms of JG(I � �1G)�1(X� + G�X
) in (15), as IVs to

identify endogenous and contextual e¤ects.

1 4

2 3
G1 =

266666664

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

377777775
G�1 =

266666664

0 1=2 0 1=2

1=2 0 1=2 0

0 1=2 0 1=2

1=2 0 1=2 0

377777775
;

1

2

3

4

5

6

G2 =

2666666666666664

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

3777777777777775
G�2 =

2666666666666664

0 0 0 1=3 1=3 1=3

0 0 0 1=3 1=3 1=3

0 0 0 1=3 1=3 1=3

1=3 1=3 1=3 0 0 0

1=3 1=3 1=3 0 0 0

1=3 1=3 1=3 0 0 0

3777777777777775
:

Figure 3: An example where the local-aggregate model can be identi�ed by Proposition 2(iv).

3.4 Identi�cation of the general network model

Let us now consider the identi�cation of the general network model. For the r-th network, the

reduced-form equation is

Yr = (Inr � �1Gr � �2G�r)�1(Xr� +G�rXr
 + �rlnr + �r);
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which implies

E(JrGrYr) = JrGr(Inr ��1Gr��2G�r)�1(Xr�+G�rXr
)+JrGr(Inr ��1Gr��2G�r)�1lnr�r; (18)

and

E(JrG
�
rYr) = JrG

�
r(Inr ��1Gr��2G�r)�1(Xr�+G�rXr
)+JrG�r(Inr ��1Gr��2G�r)�1lnr�r: (19)

First, we consider the case when all networks have constant row sums such that gi;r = gr for all r.

If, furthermore, gr = g for all r, i.e., all network have the same degrees (row sums), then G = gG� and

the general network model cannot be identi�ed as the local-aggregate endogenous variable GY and

local-average endogenous variable G�Y are perfectly correlated. If there are at least two networks

in the data that have di¤erent degrees so that G and G� are linearly independent, then the general

network model can be identi�ed through the following proposition.

Proposition 3 Suppose Gr has constant row sums such that gi;r = gr for all r. E(JZ) of the general

network model (9) has full column rank if I;G;G�; GG�; G�2; GG�2; G�3 are linearly independent and

�1� 6= 0 or 
 + �2� 6= 0.

Intuitively, the identi�cation result given by Proposition 3 relies on the variation of degrees gr

across networks. Note that if � = 
 = 0, i.e., there is no relevant exogenous covariate in the model,

then the identi�cation condition given by Proposition 3 does not hold.

When the row sums of Gr are not constant for some network r and �r 6= 0, then it follows from

(18) that JrGr(Inr � �1Gr � �2G�r)�1lnr can be used as an IV for the local-aggregate endogenous

variable JrGrYr. Furthermore, if �1 6= 0, then it follows from (19) that JrG�r(Inr��1Gr��2G�r)�1lnr
can be used as an IV for the local-average endogenous variable JrG�rYr. In this case, the general

network model may still be identi�able even if there is no relevant exogenous covariate in the model

such that � = 
 = 0.

4 Local Aggregate or Local Average? A Speci�cation Test

From the above discussion, we can see that the local-average and local-aggregate models have di¤er-

ent equilibrium implications and identi�cation conditions. In this section, we propose a statistical

model selection test to detect which behavioral mechanism better represents the data. As local-
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average and local-aggregate models are special cases of the general network model (9), one could

simply test for individual signi�cance of �1 or �2 in (9). Here, we consider a more general speci�ca-

tion test for network models, which can be applied to, but not limited to, the test for local-average

and local-aggregate e¤ects.

In standard linear regression models, the J test is used to compare non-nested model speci�cations

(Davidson and MacKinnon, 1981). The idea of the J test is as follows. If a given model contains

the correct set of regressors, then including the �tted values of an alternative model (or of a �xed

number of competing models) into the null model should provide no signi�cant improvement.

Kelejian (2008) extends the J test to a spatial framework. He shows that the test could, but

need not, relate solely to the speci�cation of the spatial weighting matrix. Importantly, since the

J test relies on whether the prediction based on an alternative model signi�cantly increases the

explanatory power of the null model, it is important to use all the available information in the

alternative model. However, Kelejian (2008) does not use the information in an e¢ cient way to

determine the predictions (Kelejian and Piras, 2011). Here, the J test of Kelejian (2008) and

Kelejian and Piras (2011) is implemented using the spatial 2SLS estimation procedure. Our paper�s

contributions in this regard can be summarized as follows.

(1) We generalize the J test in Kelejian and Piras (2011) to a network model with network �xed

e¤ects. Our source of identi�cation of the augmented model is the variation in the row sums of the

adjacency matrix G.

(2) We �rst consider the 2SLS estimation of the augmented model to implement the J test.

Besides the IVs proposed by Kelejian and Prucha (1998), we consider additional IVs based on the

vector of degrees Grlnr (the number of friends) to improve identi�cation and estimation e¢ ciency.

The number of such IVs is the same as the number of networks in the data. If the number of IVs is

large relative to our sample size, the 2SLS estimator could be asymptotically biased (Liu and Lee,

2010). Hence, we propose a bias-correction procedure to eliminate the leading order many-IV bias.

(3) When the IVs are weak and thus the J test based on the 2SLS estimator is not reliable, we

propose a GMM estimator to implement the J test. The GMM estimator uses additional quadratic

moment conditions, which are especially helpful when the IVs are weak.
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4.1 J test for model selection

The local-aggregate and local-average models (14) and (11) can be written more compactly as:

H1 : Y = �1GY +X
��1 + L�1 + �1; (20)

H2 : Y = �2G
�Y +X��2 + L�2 + �2; (21)

where X� = [X;G�X], and �1; �2 are corresponding vector of coe¢ cients.

4.1.1 The test of model H1 against model H2

To test against the model speci�cation H2, one can estimate the following augmented model of H1,

Y = �1YH2 + �1GY +X
��1 + L�1 + �1; (22)

where YH2 is a predictor of Y under H2 such that YH2 = �2G
�Y + X��2 + L�2 (see Kelejian and

Prucha, 2007; Kelejian and Piras, 2011). Thus, a test of the null model (20) against the alternative

one (21) would be in terms of the hypotheses: H0 : �1 = 0 against Ha : �1 6= 0.

Substitution of the predictor YH2
into (22) gives

Y = �1(�2G
�Y +X��2) + �1GY +X

��1 + L(�1 + �1�2) + �1

= Z�1#1 + L(�1 + �1�2) + �1; (23)

where Z�1 = [�2G
�Y +X��2; GY;X

�] and #1 = (�1; �1; �
0
1)
0. The within transformation of (23) with

the deviation from group mean projector J gives

JY = JZ�1#1 + J�1: (24)

The proposed J test can be implemented by the following two steps:

(1) Estimate model H2 by the quasi-maximum-likelihood (QML) method of Lee et al. (2010).

Let the preliminary QML estimators of �2 and �2 be denoted by ~�2 and ~�2.

(2) Estimate the feasible counterpart of model (24)

JY = J ~Z�1#1 + J�1; (25)
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where ~Z�1 = [~�2G
�Y +X�~�2; GY;X

�], by the 2SLS or GMM method described in Section 4.2. If the

estimated �1 is insigni�cant, then this is evidence against model H2.

4.1.2 The test of model H2 against model H1

The test of model H2 against model H1 can be carried out in a similar manner. Consider the

following augmented model of H2,

H2 : Y = �2YH1
+ �2G

�Y +X��2 + L�2 + �2; (26)

where YH1
is a predictor of Y under H1 such that YH1

= �1GY +X
��1 + L�1.

14 Thus, the test of

the null model (21) against the alternative (20) would be in terms of the hypotheses H0 : �2 = 0

against Ha : �2 6= 0. The within transformation of (26) with the projector J gives

JY = JZ�2#2 + J�2: (27)

where Z�2 = [�1GY +X
��1; G

�Y;X�] and #2 = (�2; �2; �2)
0.

The proposed J test can be implemented by the following two steps:

(1) Estimate model H1 by the 2SLS with IVs J [X;G�X;GX]. Let the preliminary 2SLS estima-

tors of �1 and �1 be denoted by ~�1 and ~�1.

(2) Estimate the feasible counterpart of model (27)

JY = J ~Z�2#2 + J�2; (28)

where ~Z�2 = [(~�1GY +X
�~�1); G

�Y;X�], by the 2SLS or GMM method described in Section 4.2. If

the estimated �2 is signi�cant, then that is evidence against model H1.

4.2 The 2SLS and GMM estimators

For the estimation of the general network model (10) and the augmented models (25) or (28) in the

second step of the J test, we consider the following estimators by generalizing the 2SLS and GMM

methods in Liu and Lee (2010):

14An alternative predictor of Y under H1 is YH1 = (I � �1G)�1X��1 + (I � �1G)�1L�1 (see Kelejian, 2008 and
Kelejian and Piras, 2011). However, this predictor brings some additional complication to the estimation of the
augmented model

Y = �2(I � �1G)�1X��1 + �2G
�Y +X��2 + �2(I � �1G)�1L�1 + L�2 + �2

as the term �2(I � �1G)�1L�1 cannot be eliminated by the projector J .
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(a) �2SLS�: a 2SLS estimator with the IV matrix Q1 = J [X;G�X;GX;G�2X].

(b) �BC2SLS�: a bias-corrected 2SLS estimator with the IV matrixQ2 = J [X;G�X;GX;G�2X;GL].

The additional IVs JGL correspond to the information on di¤erent positions of group members

measured by Bonacich (1987) centrality. The additional IVs improve asymptotic e¢ ciency of the

estimator and help achieve identi�cation when the �conventional�IVs Q1 are weak. Note that, the

matrix JGL has �r columns, where �r is the number of networks in the data. Therefore, if there are

many networks (e.g. in the empirical study, there are 490 networks in our data), the 2SLS estima-

tor with the IV matrix Q2 may have an asymptotic bias, which is known as the many-instrument

bias.15 The �BC2SLS�estimator corrects the many-instrument bias by an estimated leading-order

bias term.

The 2SLS estimators are based on moment conditions that are linear in the model coe¢ cients.

However, when the IVs are weak, the inference based on the 2SLS estimation may be unreliable.

Lee (2007a) has suggested to generalize the 2SLS method to a comprehensive GMM framework with

additional quadratic moment conditions based on the covariance structure of the reduced form equa-

tion to improve identi�cation and estimation e¢ ciency. The added quadratic moment conditions are

especially helpful when the IVs are weak. In this paper, we consider the following GMM estimators

for the estimation of the empirical model:

(c) �GMM�: an optimal GMM estimator using linear moment conditions with Q1 and quadratic

moment conditions.

(d) �BCGMM�: a bias-corrected optimal GMM estimator using linear moment conditions with

Q2 and the same quadratic moment conditions as in �GMM�. Similar to the corresponding 2SLS

estimator, the additional IVs in Q2 may introduce a many-instrument bias into the GMM estimator.

The �BCGMM� estimator corrects the many-instrument bias by an estimated leading-order bias

term.

The details of the 2SLS and GMM methods, including the explicit form of the quadratic moment

condition, are given in Appendix B.

15This is less of a concern in the data used in this paper, as the number of groups are small relative to the sample
size.

21



5 Empirical Application

5.1 Data description

As an illustration of the proposed econometric methodology, we present an empirical analysis of

study e¤ort (i.e. education) and sport activities among teenagers in the United States. Our analysis

is made possible by the use of a unique database on friendship networks from the National Longi-

tudinal Survey of Adolescent Health (AddHealth). The AddHealth database has been designed to

study the impact of the social environment (i.e. friends, family, neighborhood and school) on adoles-

cents�behavior in the United States by collecting data on students in grades 7-12 from a nationally

representative sample of roughly 130 private and public schools in years 1994-95. Every pupil at-

tending the sampled schools on the interview day is asked to compile a questionnaire (in-school data)

containing questions on respondents�demographic and behavioral characteristics, education, family

background and friendship. This sample contains information on roughly 90,000 students.16

From a network perspective, the most interesting aspect of the AddHealth data is the informa-

tion on friendships. Indeed, the friendship information is based upon actual friend nominations.

Students were asked to identify their best friends from a school roster (up to �ve males and �ve

females).17 Knowing exactly who nominates whom in a network, we exploit the directed nature of

the nominations data.18 We focus on choices made and we denote a link from i to j as gij;r = 1 if i

has nominated j as her friend in network r, and gij;r = 0, otherwise.19 By matching the identi�ca-

tion numbers of the friendship nominations to respondents�identi�cation numbers, one can obtain

information on the characteristics of nominated friends. More importantly, one can reconstruct

the whole geometric structure of the friendship networks. For each school, we thus obtain all the

networks of (best) friends.20 ;21

16A subset of adolescents selected from the rosters of the sampled schools, about 20,000 individuals, is then asked to
compile a longer questionnaire containing more sensitive individual and household information (in-home and parental
data). Those subjects of the subset are interviewed again in 1995�96 (wave II), in 2001�2 (wave III), and again in
2007-2008 (wave IV). For the purpose of our analysis, we only focus on wave I in-school data.
17The limit in the number of nominations is not binding (even by gender). Less than 1% of the students in our

sample show a list of ten best friends.
18We also consider the undirected nature of the friendship relationships in Section 5.3.
19As highlighted by Wasserman and Faust (1994), centrality indices for directional relationships generally focus on

choices made.
20Note that, when an individual i identi�es a best friend j who does not belong to the same school, the database

does not include j in the network of i; it provides no information about j. Fortunately, in the large majority of cases
(more than 93%), best friends tend to be in the same school and thus are systematically included in the network.
21We construct networks as network components. Network components are maximally connected networks, which

satisfy the two following conditions. First, two agents in a network component are either directly linked or are
indirectly linked through a sequence of agents (this is the requirement of connectedness). Second, two agents in
di¤erent network components cannot be connected through any such sequence (this is maximality ). A school usually
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We exploit this unique data set to understand the impact of peer pressure on individual behavior

for two di¤erent outcomes: (i) study e¤ort22 and (ii) sport activities. The �study e¤ort�corresponds

to the response to the question: �In general, how hard do you try to do your school work well?�,

coded using an ordinal scale as 0 (I never try at all), 1 (I don�t try very hard), 2 (I try hard

enough/but not as hard as I could), and 3 (I try very had to do my best). Involvement in sport

activities is measured by the response to the question: �How many times in a normal week to you

work, play, or exercise hard enough to make you sweat and breathe heavily?�, coded as 0 (never), 1

(1 or 2 times), 2 (3 to 5 times), 3 (6 or 7 times), and 4 (more than 7 times). De�nitions and summary

statistics of the variables used in our empirical analysis can be found in Table C.1 in Appendix C.

After removing students with missing or inadequate information, isolated students and pairs

(i.e. network with only two students), the sample consists of 63,325 students distributed over 215

networks, with network size ranging from 3 to 1,833. Because the strength of peer e¤ect may vary

with network sizes (see Calvó-Armengol et al., 2009) and the endogeneity of friendships may be

more severe in large and sparse networks, we focus our analysis on networks with a size of between

3 and 300 students.23 Our selected sample consists of 8,607 students distributed over 133 networks,

with network sizes ranging from 3 to 299.24 The mean and the standard deviation of network size

are 64.71 and 89.90. Furthermore, in our sample, the average number of friends of a student is 3.60

with the standard deviation 2.58.

5.2 Estimation results

Tables 1 and 2 report the estimation results for the general econometric network model (9) using

alternative estimators for �study e¤ort� (Table 1) and �sport activities� (Table 2). We consider

the 2SLS and GMM estimators described in Section 4.2 and the bias-corrected 2SLS and GMM

the estimators that use additional IVs based on Bonacich centrality (i.e. BC2SLS and BCGMM

described in Section 4.2). Tables 1 and 2 also report the �rst stage F test statistic and the over-

identifying restrictions (OIR) test p-value for the 2SLS estimator. The IVs described in Section 4.2

are only valid if the network adjacency matrix G is exogenous conditional on control variables X

and network �xed e¤ects. We �nd that the p-values of the OIR test are larger than conventional

contains more than one network.
22Since the outcome of our theoretical model, yi;r , is e¤ort in some activity, it makes sense to use �study e¤ort�as

a measure of education rather than the grade of the student, even if the latter is positively correlated to the former.
23Our results, however, do not depend crucially on these network size thresholds. They remain qualitatively

unchanged when slightly moving the network size window.
24From the summary statistics given in Table C.1, we can see that the selected sample is representative of the

original data.
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signi�cance level for both activities, which provides evidence that G can be considered as exogenous

in this empirical analysis.

[Insert Tables 1 and 2 here]

Do peer e¤ects matter? Which model is more adequate for each activity? These questions can

be answered from the statistical signi�cance of �1 and �2 of the general network model or from the

p-values of the J test reported in Tables 1 and 2.

Table 1 reveals that, for study e¤ort, the endogenous peer e¤ect is mostly captured by a social-

conformity e¤ect rather than a social-multiplier e¤ect. In other words, the local-average model is

the most appropriate model for education as measured by the �study e¤ort�of each student. This

is in line with the �ndings in Lin (2010) and Boucher et al. (2014). On the other hand, for sport

activities, we �nd in Table 2 that both social-conformity and social-multiplier e¤ects contribute

to the endogenous peer e¤ect. In terms of magnitude, the BCGMM estimates suggest that, for a

student with 10 friends, if the sport activity index of these 10 students increases by 1 point, then

my sporting activity index will increase by about 0.1 points because of my desire to conform to the

social norm of the group and by about 0.07 points because of the social multiplier e¤ect.25

[Insert Table 3 here]

Our results are interesting and new. First, they show that di¤erent forms of social interactions

may drive peer e¤ects in di¤erent activities. Second, they show that even for the same activity

there might be di¤erent mechanisms of peer e¤ects at work. In this respect, our �ndings suggest

notes of caveat in the empirical analysis of peer e¤ects. Peer e¤ects are a complex phenomenon

and their assessment should be considered with caution. If more than one mechanism is driving

social interactions, then neglecting one of them can produce biased inferential results. In Table 3,

we report the empirical results obtained when separately estimating the local-aggregate and the

local-average model. Comparing Tables 1, 2 and 3, it appears clearly that the local-aggregate peer

e¤ect is overstated if the local-average e¤ect is ignored and vice versa. The bias is even more severe,

when we model �study e¤ort� using the local-aggregate model since the J test suggests that the

25As the maximum number of friends a student can nominate is 10, gmaxr � 10. The constraint for the uniqueness
of the equilibrium gmaxr �1 + �2 < 1 holds for all speci�cations and estimators considered.
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local-average model is more appropriate for this activity.

5.3 Robustness checks

As a robustness check, we �rst consider the estimation of the general network model without includ-

ing network �xed e¤ects. The estimation results are reported in Table 4. The network �xed e¤ect

captures the correlated e¤ect at the network level. Without network �xed e¤ects, the estimates of

the endogenous peer e¤ects reported in Table 4 are upwards biased relative to those reported in

Tables 1 and 2. However, the qualitative results remain unchanged.

[Insert Table 4 here]

Our identi�cation and estimation strategies depend on the correct speci�cation of network links.

In particular, our identi�cation strategy hinges upon nonlinearities in friendship, i.e. on the pres-

ence of intransitive triads. In this section, we test the robustness of our results with respect to

misspeci�cation of network topology. So far, we have measured peer groups as precisely as possible

by exploiting the direction of the nomination data. However, friendship relationships are reciprocal

in nature, and even if a best friend of a given student does not nominate this student as her best

friend, one may think that social interactions take place. Under this circumstance, there can be some

�unobserved�network link that, if considered, would change the network topology and break some

intransitivities in network links. Therefore, in this section, we repeat our analysis by considering

undirected networks, i.e. we assume that a link exists between two friends only if both students

have nominated each other, that is gij;r = gji;r = 1. Table 5 reports the main results for undirected

networks. The qualitative results remain unchanged.

[Insert Table 5 here]

5.4 Policy implications

We would like to discuss the di¤erent policy implications of the local-aggregate and local-average

network models. Indeed, we believe that it is important to be able to disentangle between di¤erent

behavioral peer-e¤ect models because they have di¤erent policy implications. We base our discussion

on our empirical results in Section 5.2 where the activity considered is education (i.e. �study e¤ort�).

This is a context where peer e¤ects matter and where policy interventions are crucial.
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Indeed, education is clearly an important topic and e¤ective policies are di¢ cult to implement.26

There has been some debate in the United States of giving incentives to teachers. It is, however,

di¢ cult to determine which incentive to give to teachers in order to improve teacher quality. If

the local aggregate model is at work among teachers, then we would need to have a teacher-based

incentive policy since teachers will in�uence each other while, if it is the local average model, then

one should implement a school-based incentive policy because this will be the only way to change

the social norm of working hard among teachers.

If we now consider the students themselves, then the two models will be useful for policy im-

plications. If the local-aggregate model is important in explaining students� education outcomes

(Calvó-Armengol et al., 2009), then any individual-based policy (for example, vouchers) would be

e¢ cient. If, on the contrary, as shown in the present paper, we believe that the local-average model

is more important, then we should change the social norm in the school or the classroom and try

to implement the idea that it is �cool� to work hard at school.27 For example, in Section 2.5, we

discussed Eugene Lang�s famous o¤er to give a college scholarship to every student at the sixth grade

class in Harlem. This policy worked well because it changed the norm�s group by a¤ecting all its

members.

An example of a policy that has tried to change the social norm of students in terms of education

is the charter-school policy. The charter schools are very good in screening teachers and at selecting

the best ones. In particular, the �No Excuses policy� (Angrist et al., 2010, 2012) is a highly

standardized and widely replicated charter model that features a long school day, an extended

school year, selective teacher hiring, strict behavior norms, and emphasizes traditional reading and

math skills. The main objective is to change the social norms of disadvantage kids by being very

strict on discipline. This is a typical policy that is in accordance with the local-average model since

its aim is to change the social norm of students in terms of education. Angrist et al. (2012) focus

on special needs students that may be underserved. Their results show average achievement gains

of 0.36 standard deviations in math and 0.12 standard deviations in reading for each year spent at

a charter school called: Knowledge is Power Program (KIPP) Lynn, with the largest gains coming

from the Limited English Pro�cient (LEP), Special Education (SPED), and low-achievement groups.
26 It has to be clear that the policy implications discussed in this section are heuristic and not derived formally.
27This is related to the �acting white� literature where it is argued that African American students in poor areas

may be ambivalent about studying hard in school because this may be regarded as �acting white� and adopting
mainstream identities (Fordham and Ogbu, 1986; Delpit, 1995; Ainsworth-Darnell and Downey, 1998; Austen-Smith
and Fryer, 2005; Battu et al., 2007; Fryer and Torelli, 2010; Battu and Zenou, 2010; Bisin et al., 2011; de Martí and
Zenou, 2014).
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They show that the average reading gains were driven almost entirely by SPED and LEP students,

whose reading scores rose by roughly 0.35 standard deviations for each year spent at KIPP Lynn.28

The local-average model can also help us design an adequate policy in terms of tracking at school

(Betts, 2011). Should we �track�students in a way that separates high achievers from low achievers

or should we mix them? If we believe that the local-average model matters, then the answer is that

we should separate high achievers from low achievers but then have an exogenous intervention on

the low achievers in order to change their social norms. A way to do so is to send them to a charter

school as the Angrist et al. (2012) study suggests. However, if the local aggregate mechanism of

peer e¤ects prevails, then classes should be heterogenous with respect to students�test scores, with

the high performing students distributed among the classes. Under this scenario, high achievers will

have a positive impact on low achievers but will not be able to change the social norm of the low

achievers.

To sum-up, an e¤ective policy for the local-average model would be to change people�s perceptions

of �normal�behavior (i.e. their social norm) so that a school-based policy should be implemented

while, for the local-aggregate model, this would not be necessary and an individual-based policy

should instead be implemented.

6 Concluding remarks

Identifying the nature of peer e¤ects is a topic as important for policy purposes as di¢ cult to study

empirically. While a variety of mechanisms have been put forward in the theoretical literature, the

econometrics of networks is lagging behind. This paper develops a uni�ed econometric framework

to estimate two types of social interaction (peer group) e¤ects based on a given network structure.

We provide a micro foundation by exploring di¤erent types of utility functions and illustrate the

methodology using an application to education and sport activities. Our results show that di¤erent

forms of social interactions may drive peer e¤ects in di¤erent outcomes. Furthermore, they show

that even for the same outcome there might be di¤erent mechanisms of peer e¤ects at work. In

this respect, our �ndings suggest some notes of caveat in the empirical analysis of peer e¤ects. Peer

e¤ects are a complex phenomenon and their assessment should be considered with caution. If more

than one mechanism is driving social interactions, then neglecting one of them can produce biased

28See also Curto and Fryer (2014) who study the SEED schools, which combine a �No Excuses� charter model
with a 5-day-a-week boarding program. These are America�s only urban public boarding schools for the poor. Using
admission lotteries, they show that attending a SEED school increases achievement by 0.211 standard deviation in
reading and 0.229 standard deviation in math per year.
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inferential results.
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APPENDICES

A Proofs

Proof of Proposition 1. Since G�r is the row-normalized Gr, we have Gr = RrG
�
r , where Rr =

diagfgi;rgnri=1 and gi;r =
Pnr

j=1 gij;r. Let jj � jj1 denote the row-sum matrix norm. As jjG�r jj1 = 1,

we have

jj�1Gr + �2G�r jj1 = jj�1RrG�r + �2G�jj1 � jj�1Rr + �2Inr jj1 = gmaxr �1 + �2 < 1:

Hence, Inr ��1Gr ��2G�r is invertible (see Horn and Johnson, 1990) and the desired result follows.

Proof of Proposition 2. See Liu et al. (2012).

Proof of Proposition 3. Suppose Gr has constant row sums such that gi;r = gr for all r. Then,

Gr = grG
�
r and G = RG� where R = diagfgrInrg�rr=1. E(JZ3) = [E(JGY );E(JG�Y ); JX; JG�X]

has full column rank if

[E(JGY )d1 + E(JG
�Y )d2 + JXd3 + JG

�Xd4] = 0 (29)

implies d1 = d2 = d3 = d4 = 0. As G = RG�, we have JG(I � �1G � �2G�)�1L = JG�(I �

�1G��2G�)�1L = 0, G(I ��1G��2G�)�1 = (I ��1G��2G�)�1G and G�(I ��1G��2G�)�1 =

(I � �1G� �2G�)�1G�. Then, it follows from (18) and (19) that

E(JGY ) = J(I � �1G� �2G�)�1G(X� +G�X
); (30)

E(JG�Y ) = J(I � �1G� �2G�)�1G�(X� +G�X
): (31)

Plugging (30) and (31) into (29) gives

J(I��1G��2G�)�1[Xd3+GX(�d1��1d3)+G�X(�d2��2d3+d4)+GG�X(
d1��1d4)+G�2X(
d2��2d4)] = 0;

which implies

Xd3+GX(�d1��1d3)+G�X(�d2��2d3+d4)+GG�X(
d1��1d4)+G�2X(
d2��2d4) = �L; (32)
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for a constant scalar �. Premultiplying (32) by G� gives

G�Xd3+GG
�X(�d1��1d3)+G�2X(�d2��2d3+d4)+GG�2X(
d1��1d4)+G�3X(
d2��2d4) = �L:

(33)

From (32) and (33), when I;G;G�; GG�; G�2; GG�2; G�3 are linearly independent, then d1 = d2 =

d3 = d4 = 0 if �1� 6= 0 or 
 + �2� 6= 0.

B 2SLS and GMM Estimation

We consider 2SLS and GMM estimators for the estimation of an empirical general network model,

and for the estimation of augmented models in the J test. This appendix presents the derivation

and asymptotic properties of the estimators.

For any n�nmatrixA = [aij ], let vecD(A) = (a11; � � � ; ann)0, As = A+A0, At = A�tr(A)J=tr(J),

and A� denote a generalized inverse of a square matrix A. For a parameter �, let �0 denote the true

parameter value in the data generating process. Let �3 and �4 denote, respectively, the third and

fourth moments of the error term.

B.1 Estimation of the general network model

B.1.1 2SLS estimation

Let M0 = (I � �10G� �20G�)�1. From the reduced form equation, E(Y ) =M0(X
��0 + L�).29 For

Z = [GY;G�Y;X�], the ideal IV matrix for the explanatory variables JZ in (10) is given by

f = E(JZ) = J [GE(Y ); G�E(Y ); X�]: (34)

However, this IV matrix is infeasible as it involves unknown parameters. Note that f can be consid-

ered as a linear combination of the IVs in Q1 = J [GM0X
�; GM0L;G

�M0X
�; G�M0L;X

�]. As L

has �r columns, the number of IVs in Q1 increases as the number of groups �r increases. Furthermore,

if j�10maxi(
P

j gij)j+ j�20j < 1,30 we have M0 = (I � �10G� �20G�)�1 =
P1

j=0(�10G+ �20G
�)j .

Hence,M0 in Q1 can be approximated by a linear combination of [I;G;G�; G2; GG�; G�G;G�2; � � � ].
29For simplicity, we assume G and X are nonstochastic. If G and X are stochastic, then the following results can

be considered as conditional on G and X.
30The model represents an equilibrium so I � �10G � �20G

� is assumed to be invertible. In Proposition 1, we
showed that a su¢ cient condition for the invertibility assumption is: j�10dmaxj+ j�20j < 1, where dmax � maxi gi is
the highest degree in network G. On the other hand, a su¢ cient condition for the the invertibility of I��10G for the
local aggregate model is j�10jdmax < 1 and a su¢ cient condition for the the invertibility of I � �20G� for the local
average model is j�20j < 1. Both of them are weaker than the invertibility condition of the hybrid model.
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To achieve asymptotic e¢ ciency, we assume the number of IVs increases with the sample size so

that the ideal IV matrix f can be approximated by a feasible IV matrix QK with an approximation

error diminishing to zero. That is, for an n�K IV matrix QK premultiplied by J , there exists some

conformable matrix �K such that jjf �QK�K jj1 ! 0 as n;K ! 1. Let PK = QK(Q
0
KQK)

�Q0K ,

the 2SLS estimator is given by �̂2sls = (Z 0PKZ)�1Z 0PKY:

Let �0 = (�10; �20; �
0
0)
0. If K=n ! 0, then it follows by a similar argument as in Liu and

Lee (2010) that
p
n(�̂2sls � �0 � b2sls)

d! N(0; �2 �H�1), where �H = limn!1
1
nf

0f and b2sls =

�2(Z 0PKZ)
�1[tr(PKGM0); tr(PKG

�M0); 01�2m]
0 = Op(K=n). The 2SLS estimator has an asymp-

totic bias term due to the large number of IVs. WhenK2=n! 0, the leading order bias term
p
nb2sls

converges to zero and the proposed 2SLS estimator is e¢ cient as the variance matrix �2 �H�1 attains

the e¢ ciency lower bound for the class of IV estimators.

To correct for the many-instrument bias in the 2SLS estimator, one can estimate the leading

order bias term and adjust the 2SLS estimator by the estimated leading-order bias ~b2sls. With
p
n-

consistent initial estimates ��2; ��1; ��2, the bias-corrected 2SLS (BC2SLS) is given by �̂c2sls = �̂2sls�
~b2sls; where ~b2sls = ��2(Z 0PKZ)

�1[tr(PKGM); tr(PKG
�M); 01�2m]

0 and M = (I � ��1G� ��2G�)�1.

The BC2SLS is e¢ cient when K=n! 0.

B.1.2 GMM estimation

The 2SLS estimator can be generalized to the GMM with additional quadratic moment equa-

tions. Let �(�) = J(Y � Z�). The IV moment conditions Q0K�(�) = 0 are linear in � at �0.

As E(�0U1�) =E(�0U2�) = 0 for U1 = (JGM0J)
t and U2 = (JG�M0J)

t, the quadratic moment

conditions for estimation are given by [U1�(�); U2�(�)]0�(�) = 0. The proposed quadratic moment

conditions can be shown to be optimal (in terms of e¢ ciency of the GMM estimator) under normal-

ity (see Lee and Liu, 2010). The vector of linear and quadratic empirical moments for the GMM

estimation is given by g(�) = [QK ; U1�(�); U2�(�)]0�(�).

In order for inference based on the following asymptotic results to be robust, we do not impose

the normality assumption for the following analysis. The variance matrix of g(�0) is given by


 = Var[g(�0)] =

0B@ �2Q0KQK �3Q
0
K!

�3!
0QK (�4 � 3�4)!0! + �4�

1CA ;
where ! = [vecD(U1); vecD(U2)] and � = 1

2 [vec(U
s
1 ); vec(U

s
2 )]

0[vec(Us1 ); vec(U
s
2 )]. By the generalized
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Schwarz inequality, the optimal GMM estimator is given by

�̂gmm = argmin g
0(�)
�1g(�): (35)

Let B�1 = (�4 � 3�4)!0! + �4��
�23
�2!

0PK!,

D = ��2

0B@ tr(Us1GM0) tr(Us1G
�M0) 01�2m

tr(Us2GM0) tr(Us2G
�M0) 01�2m

1CA ;
�D = D � �3

�2!
0f , and �D = D � �3

�2!
0PKZ. When K3=2=n ! 0, the optimal GMM estimator31 has

the asymptotic distribution

p
n(�̂gmm � �0 � bgmm)

d! N(0; (��2 �H + lim
n!1

1

n
�D0B �D)�1); (36)

where bgmm = (��2Z 0PKZ + �D0B �D)�1[tr(PKGM0); tr(PKG
�M0); 01�2m]

0 = O(K=n).

As the asymptotic bias
p
nbgmm is O(K=

p
n), the asymptotic distribution of the GMM estimator

�̂gmm will be centered at �0 only if K2=n ! 0. With a consistently estimated leading order bias

~bgmm, the bias-corrected GMM (BCGMM) estimator �̂cgmm = �̂gmm � ~bgmm has a proper centered

asymptotic normal distribution as given in (36) if K3=2=n! 0.

The asymptotic variance matrix of the many-IV GMM estimator can be compared with that

of the many-IV 2SLS estimator. As �D0B �D is nonnegative de�nite, the asymptotic variance of the

many-IV GMM estimator is smaller relative to that of the 2SLS estimator. Thus, the many-IV

GMM estimator with additional quadratic moments improves e¢ ciency upon the 2SLS estimator.

B.2 Estimation of augmented models in the J test

In this subsection, we focus on the estimation of the augmented model in the test of model H1

against model H2. The estimator for the test of model H2 against model H1 can be derived in a

similar manner.
31The weighting matrices for quadratic moments U1; U2 and the optimal weighting matrix for the objective function


�1 involves unknown parameters �1; �2; �
2
0; �3 and �4. With consistent preliminary estimators of those unknown

parameters, the feasible optimal GMM estimator can be shown to have the same asymptotic distribution given by
(36).
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B.2.1 2SLS estimation of the augmented model

First, we consider the 2SLS estimator of the augmented model (24). Let M10 = (I � �10�20G� �

�10G)
�1. The ideal IV matrix for JZ�1 in (24) is given by f1 = E(JZ�1 ) = J [�20G

�E(Y ) +

X��20; GE(Y ); X
�], where E(Y ) = M10[X

�(�10�20 + �10) + L(�1 + �10�2)]. The ideal IV matrix

f1 is infeasible as it involves unknown parameters. We note that f1 can be considered as a linear

combination of the IVs in Q1 = J [G�M10X
�; G�M10L;GM10X

�; GM10L;X
�]. Furthermore, under

some regularity conditions, M10 = (I � �10�20G� � �10G)�1 =
P1

j=0(�10�20G
� + �10G)

j . Hence,

M10 in Q1 can be approximated by polynomials of I, G and G�.

To achieve asymptotic e¢ ciency, we consider an n�K feasible submatrix of Q1, denoted by QK ,

such that the ideal IV matrix f1 can be approximated by a linear combination of QK with an approx-

imation error diminishing to zero as the number of IVs K increases. Let PK = QK(Q
0
KQK)

�Q0K

and ~Z�1 = [(~�2G
�Y + X�~�2); GY;X

�], where ~�2; ~�2 are
p
n-consistent preliminary estimates. The

2SLS estimator considered is #̂1;tsls = ( ~Z�01 PK ~Z
�
1 )
�1 ~Z�01 PKY:

Under the null hypothesis, it follows by a similar argument as in Liu and Lee (2010) that

if K=n ! 0 then
p
n(#̂1;tsls � #10 � b1;tsls)

d! N(0; �21
�H�1
1 ); where �H1 = limn!1

1
nf

0
1f1 and

b1;tsls = �
2
1(
~Z�01 PK

~Z�1 )
�1[�20tr(PKG

�M10); tr(PKGM10); 01�2m]
0. The term b1;tsls is a bias due to

the presence of many IVs. We can adjust for the many-IV bias by considering the BC2SLS esti-

mator #̂1;ctsls = #̂1;tsls � ~b1;tsls, where ~b1;tsls is a consistent estimator of b1;tsls. If K=n ! 0 then
p
n(#̂1;ctsls � #10)

d! N(0; �21
�H�1
1 ):

B.2.2 GMM estimation of the augmented model

The GMM estimator uses both linear moment conditions Q0K�1(#1) = 0 and quadratic ones

[U1�1(#1); U2�1(#1)]
0�1(#1) = 0;

where U1 = (JG�M10J)
t; U2 = (JGM10J)

t; and �1(#1) = J(Y � ~Z�1#1). The vector of lin-

ear and quadratic empirical moment functions for the GMM estimation is given by g1(#1) =

[QK ; U1�1(#1); U2�1(#1)]
0�1(#1). By the generalized Schwarz inequality, the optimal GMM estimator
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is given by #̂1;gmm = argmin g01(#1)

�1g1(#1), where


 =

0B@ �21Q
0
KQK �3Q

0
K!

�3!
0QK (�4 � 3�41)!0! + �41�

1CA ;
! = [vecD(U1); vecD(U2)] and � = 1

2 [vec(U
s
1 ); vec(U

s
2 )]

0[vec(Us1 ); vec(U
s
2 )].

Let B�11 = (�4 � 3�41)!0! + �41��
�23
�21
!0PK!,

D1 = ��21

0B@ �20tr(U
s
1G

�M10) tr(Us1GM10) 01�2m

�20tr(U
s
2G

�M10) tr(Us2GM10) 01�2m

1CA ;
�D1 = D1 � �3

�21
!0f1, and �D1 = D1 � �3

�21
!0PK ~Z

�
1 . Under the null hypothesis, if K

3=2=n ! 0, the

optimal GMM estimator32 has the asymptotic distribution

p
n(#̂1;gmm � #10 � b1;gmm)

d! N(0; (��21
�H1 + lim

n!1

1

n
�D0
1B1 �D1)

�1); (37)

where b1;gmm = (�
�2
1
~Z�01 PK

~Z�1 +
�D0
1B1

�D1)
�1[�20tr(PKG

�M10); tr(PKGM10); 01�2m]
0 = O(K=n).

With a consistently estimated leading order bias ~b1;gmm, it follows by a similar argument as in

Liu and Lee (2010) that, if K3=2=n! 0, the BCGMM estimator #̂1;cgmm = #̂1;gmm � ~b1;gmm has a

proper centered asymptotic normal distribution as given in (37).

32With consistent preliminary estimates of the unknown parameters in U1; U2;
, the feasible optimal GMM esti-
mator can be shown to have the same asymptotic distribution given by (37).

39



Appendix C: Data appendix 
 

Table C.1: Data Summary 

Variable Definition 
Sample with 

networks 3-1833 
(𝑛 = 63325) 

Sample with 
networks 3-300 

(𝑛 = 8607) 
  Mean SD Mean SD 

study effort In the text    2.24    0.67    2.38    0.66 
sport activity In the text    2.28    1.20    2.41    1.23 
age  Age    15.06    1.68   13.90    1.66 
female 1 if the respondent is female    0.53    0.50    0.55    0.50 
white 1 if the respondent is white    0.57    0.49    0.53    0.50 
born in the U.S. 1 if born in the U.S.    0.92    0.27    0.95    0.21 
years in school Number of years in the current school    2.57    1.44    3.09    1.74 
live with both parents 1 if lives with both parents    0.74    0.44    0.71    0.46 
Parental Education      
(less than HS) 1 if parent’s education is less than high 

school (HS) 
   0.11    0.31    0.14    0.35 

HS grad 1 if parent’s education is HS or higher 
but no college degree 

   0.45    0.50    0.47    0.50 

college grad 1 if parent’s education is college or 
higher 

   0.32    0.47    0.23    0.42 

missing 1 if parent’s education information is 
missing 

   0.12    0.32    0.15    0.36 

Parent Job      
(stay home) 1 if parent is a homemaker, retired, or 

does not work 
   0.09    0.29    0.12    0.33 

professional 1 if parent’s job is a doctor, lawyer, 
scientist, teacher, librarian, nurse, 
manager, executive, director 

   0.28    0.45    0.20    0.40 

other jobs 1 if parent’s job is not “stay home” or 
“professional” 

   0.54    0.50    0.56    0.50 

missing 1 if parent’s job information is missing    0.09    0.29    0.11    0.32 
parental care 1 if parent cares very much    0.84    0.37    0.84    0.36 
neighborhood safety 1 if feels safe in the neighbourhood    0.74    0.44    0.73    0.44 
school safety 1 if feels safe at school    0.63    0.48    0.64    0.48 
The variable in the parentheses is the reference category. 
If both parents are in the household, the education and job of the father is considered. 
 

  



Table 1: Estimation of Peer Effects in Study Effort 
 2SLS BC2SLS GMM BCGMM 

local-aggregate peer effect   0.0003   0.0002   0.0008   0.0007 
  (0.0015)  (0.0015)  (0.0015)  (0.0015) 
local-average peer effect   0.0311  -0.0122   0.0839***   0.0779*** 
  (0.0995)  (0.0570)  (0.0171)  (0.0167) 
age  -0.0468***  -0.0501***  -0.0427***  -0.0433*** 
  (0.0102)  (0.0082)  (0.0071)  (0.0071) 
female    0.1444***   0.1434***   0.1465***   0.1466*** 
  (0.0153)  (0.0152)  (0.0152)  (0.0152) 
white  -0.0021  -0.0018  -0.0036  -0.0036 
  (0.0188)  (0.0189)  (0.0188)  (0.0188) 
born in the U.S.  -0.0374  -0.0389  -0.0368  -0.0372 
  (0.0354)  (0.0353)  (0.0352)  (0.0352) 
years in school  -0.0040  -0.0041  -0.0041  -0.0041 
  (0.0055)  (0.0055)  (0.0055)  (0.0055) 
live with both parents   0.0019   0.0022   0.0013   0.0014 
  (0.0168)  (0.0168)  (0.0168)  (0.0168) 
parent education: HS grad   0.0483**   0.0479**   0.0486**   0.0486** 
  (0.0212)  (0.0212)  (0.0212)  (0.0212) 
parent education: college grad   0.0684***   0.0678***   0.0695***   0.0693*** 
  (0.0251)  (0.0251)  (0.0250)  (0.0250) 
parent education: missing   0.1118***   0.1125***   0.1125***   0.1127*** 
  (0.0275)  (0.0275)  (0.0274)  (0.0274) 
parent job: professional   0.0279   0.0265   0.0301   0.0297 
  (0.0265)  (0.0264)  (0.0264)  (0.0264) 
parent job: other  -0.0010  -0.0021   0.0005   0.0002 
  (0.0224)  (0.0223)  (0.0223)  (0.0223) 
parent job: missing   0.0835***   0.0822***   0.0847***   0.0843*** 
  (0.0308)  (0.0307)  (0.0306)  (0.0306) 
parental care   0.1964***   0.1965***   0.1967***   0.1968*** 
  (0.0208)  (0.0209)  (0.0208)  (0.0208) 
neighborhood safety   0.0773***   0.0774***   0.0784***   0.0784*** 
  (0.0173)  (0.0174)  (0.0173)  (0.0173) 
school safety   0.0922***   0.0929***   0.0902***   0.0906*** 
  (0.0165)  (0.0165)  (0.0165)  (0.0165) 
contextual effects Yes Yes Yes Yes 
network fixed effects Yes Yes Yes Yes 
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
2SLS First Stage F test statistic: 9.360 
2SLS OIR test p-value: 0.277 
J test p-value for the null “local-aggregate model”: 0.00 
J test p-value for the null “local-average model”: 0.66 
 
  



Table 2: Estimation of Peer Effects in Sport Activities 
 2SLS BC2SLS GMM BCGMM 

local-aggregate peer effect   0.0057**   0.0066***   0.0074***   0.0072*** 
  (0.0026)  (0.0026)  (0.0025)  (0.0024) 
local-average peer effect   0.3095***   0.1038   0.1094***   0.1056*** 
  (0.1237)  (0.0771)  (0.0182)  (0.0180) 
age  -0.0216  -0.0368***  -0.0365***  -0.0368*** 
  (0.0158)  (0.0140)  (0.0129)  (0.0129) 
female   -0.6707***  -0.6828***  -0.6824***  -0.6827*** 
  (0.0287)  (0.0280)  (0.0277)  (0.0277) 
white   0.0975***   0.1009***   0.1006***   0.1010*** 
  (0.0346)  (0.0344)  (0.0343)  (0.0343) 
born in the U.S.   0.0950   0.1023   0.1011   0.1021 
  (0.0647)  (0.0642)  (0.0641)  (0.0641) 
years in school   0.0229**   0.0195*   0.0194*   0.0194* 
  (0.0103)  (0.0101)  (0.0100)  (0.0100) 
live with both parents  -0.0036  -0.0015  -0.0015  -0.0014 
  (0.0309)  (0.0306)  (0.0306)  (0.0306) 
parent education: HS grad  -0.0181  -0.0198  -0.0194  -0.0195 
  (0.0389)  (0.0387)  (0.0387)  (0.0387) 
parent education: college grad   0.0814*   0.0754*   0.0764*   0.0762* 
  (0.0461)  (0.0457)  (0.0456)  (0.0456) 
parent education: missing  -0.0639  -0.0647  -0.0642  -0.0643 
  (0.0503)  (0.0500)  (0.0500)  (0.0500) 
parent job: professional   0.0747   0.0792*   0.0790   0.0795* 
  (0.0485)  (0.0481)  (0.0481)  (0.0481) 
parent job: other   0.1060***   0.1096***   0.1101***   0.1103*** 
  (0.0409)  (0.0406)  (0.0406)  (0.0406) 
parent job: missing   0.0363   0.0443   0.0438   0.0442 
  (0.0564)  (0.0559)  (0.0559)  (0.0559) 
parental care   0.0512   0.0485   0.0481   0.0480 
  (0.0383)  (0.0380)  (0.0380)  (0.0380) 
neighborhood safety   0.0933***   0.0996***   0.0998***   0.0999*** 
  (0.0321)  (0.0317)  (0.0316)  (0.0316) 
school safety   0.0164   0.0141   0.0140   0.0141 
  (0.0303)  (0.0300)  (0.0300)  (0.0300) 
contextual effects Yes Yes Yes Yes 
network fixed effects Yes Yes Yes Yes 
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
2SLS First Stage F test statistic: 6.881 
2SLS OIR test p-value: 0.681 
J test p-value for the null “local-aggregate model”: 0.00 
J test p-value for the null “local-average model”: 0.00 
 
  



Table 3: GMM Estimation of Local-Aggregate and Local-Average Models 
 Study Effort Sport Activities 

local-aggregate peer effect   0.0025*    0.0133***  
  (0.0014)   (0.0022)  
local-average peer effect    0.0854***    0.1320*** 
   (0.0166)   (0.0166) 
age  -0.0492***  -0.0430***  -0.0421***  -0.0382*** 
  (0.0070)  (0.0071)  (0.0128)  (0.0128) 
female    0.1457***   0.1456***  -0.6893***  -0.6818*** 
  (0.0152)  (0.0152)  (0.0277)  (0.0277) 
white  -0.0041  -0.0024   0.1028***   0.1026*** 
  (0.0188)  (0.0188)  (0.0344)  (0.0344) 
born in the U.S.  -0.0411  -0.0355   0.1081*   0.1003 
  (0.0352)  (0.0352)  (0.0642)  (0.0642) 
years in school  -0.0048  -0.0037   0.0155   0.0218** 
  (0.0055)  (0.0055)  (0.0100)  (0.0100) 
live with both parents   0.0023   0.0015   0.0005  -0.0022 
  (0.0168)  (0.0168)  (0.0307)  (0.0307) 
parent education: HS grad   0.0471**   0.0488**  -0.0213  -0.0180 
  (0.0212)  (0.0212)  (0.0387)  (0.0387) 
parent education: college grad   0.0664***   0.0692***   0.0699   0.0796* 
  (0.0250)  (0.0250)  (0.0457)  (0.0456) 
parent education: missing   0.1142***   0.1109***  -0.0647  -0.0640 
  (0.0274)  (0.0274)  (0.0501)  (0.0500) 
parent job: professional   0.0246   0.0297   0.0811*   0.0832* 
  (0.0264)  (0.0263)  (0.0481)  (0.0481) 
parent job: other  -0.0036   0.0005   0.1126***   0.1126*** 
  (0.0223)  (0.0222)  (0.0406)  (0.0406) 
parent job: missing   0.0800***   0.0852***   0.0483   0.0459 
  (0.0306)  (0.0306)  (0.0559)  (0.0559) 
parental care   0.1956***   0.1964***   0.0422   0.0515 
  (0.0208)  (0.0208)  (0.0380)  (0.0380) 
neighborhood safety   0.0777***   0.0773***   0.1029***   0.1006*** 
  (0.0173)  (0.0173)  (0.0317)  (0.0316) 
school safety   0.0921***   0.0915***   0.0102   0.0177 
  (0.0165)  (0.0164)  (0.0301)  (0.0300) 
contextual effects Yes Yes Yes Yes 
network fixed effects Yes Yes Yes Yes 
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
 

  



Table 4: Estimation of Peer Effects without Network Fixed Effects 
 Study Effort Sport Activities 

 2SLS GMM 2SLS GMM 
local-aggregate peer effect   0.0004   0.0009   0.0059***   0.0085*** 
  (0.0014)  (0.0014)  (0.0025)  (0.0023) 
local-average peer effect   0.0833   0.1024***   0.3387***   0.1316*** 
  (0.0866)  (0.0165)  (0.1065)  (0.0174) 
age  -0.0519***  -0.0494***  -0.0167  -0.0413*** 
  (0.0107)  (0.0057)  (0.0160)  (0.0100) 
female    0.1451***   0.1466***  -0.6681***  -0.6821*** 
  (0.0153)  (0.0152)  (0.0286)  (0.0277) 
white  -0.0358**  -0.0358**   0.1190***   0.1273*** 
  (0.0181)  (0.0181)  (0.0332)  (0.0330) 
born in the U.S.  -0.0251  -0.0246   0.1164*   0.1108* 
  (0.0343)  (0.0338)  (0.0614)  (0.0616) 
years in school  -0.0077  -0.0077   0.0314***   0.0316*** 
  (0.0052)  (0.0052)  (0.0095)  (0.0095) 
live with both parents  -0.0038  -0.0040   0.0055   0.0088 
  (0.0167)  (0.0168)  (0.0305)  (0.0306) 
parent education: HS grad   0.0375*   0.0385*  -0.0274  -0.0359 
  (0.0211)  (0.0212)  (0.0386)  (0.0385) 
parent education: college grad   0.0535**   0.0544**   0.0743   0.0587 
  (0.0248)  (0.0248)  (0.0457)  (0.0451) 
parent education: missing   0.1068***   0.1078***  -0.0679  -0.0698 
  (0.0273)  (0.0274)  (0.0498)  (0.0500) 
parent job: professional   0.0165   0.0176   0.0466   0.0417 
  (0.0265)  (0.0263)  (0.0479)  (0.0479) 
parent job: other  -0.0111  -0.0101   0.0770*   0.0738* 
  (0.0223)  (0.0222)  (0.0404)  (0.0404) 
parent job: missing   0.0825***   0.0831***   0.0238   0.0268 
  (0.0307)  (0.0308)  (0.0559)  (0.0560) 
parental care   0.2151***   0.2151***   0.0507   0.0464 
  (0.0207)  (0.0209)  (0.0379)  (0.0380) 
neighborhood safety   0.0687***   0.0695***   0.0805***   0.0833*** 
  (0.0171)  (0.0172)  (0.0313)  (0.0314) 
school safety   0.0898***   0.0890***   0.0250   0.0256 
  (0.0161)  (0.0162)  (0.0294)  (0.0295) 
contextual effects Yes Yes Yes Yes 
network fixed effects No No No No 
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
 

  



Table 5: Estimation of Peer Effects in Undirected Networks 
 Study Effort 
 2SLS BC2SLS GMM BCGMM 

local-aggregate peer effect  -0.0002  -0.0008  -0.0002  -0.0003 
  (0.0010)  (0.0009)  (0.0009)  (0.0009) 
local-average peer effect   0.7159***   0.1666*   0.1138***   0.0802*** 
  (0.2180)  (0.0979)  (0.0156)  (0.0156) 
J test p-value for the null “local-aggregate model”: 0.00 
J test p-value for the null “local-average model”: 0.70 

 Sport Activities 
 2SLS BC2SLS GMM BCGMM 

local-aggregate peer effect   0.0063***   0.0078***   0.0081***   0.0085*** 
  (0.0017)  (0.0015)  (0.0015)  (0.0014) 
local-average peer effect   0.4979**   0.0747   0.0607***   0.0459*** 
  (0.2265)  (0.1002)  (0.0166)  (0.0164) 
J test p-value for the null “local-aggregate model”: 0.00 
J test p-value for the null “local-average model”: 0.00 
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
The control variables are the same as in Tables 1-2 
 


