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Abstract

This paper considers the speci�cation and estimation of social interaction models with net-

work structures and the presence of endogenous, contextual, correlated, and group �xed e¤ects.

When the network structure in a group is captured by a graph in which the degrees of nodes

are not all equal, the di¤erent positions of group members as measured by the Bonacich (1987)

centrality provide additional information for identi�cation and estimation. In this case, the

Bonacich centrality measure for each group can be used as an instrument for the endogenous

social e¤ect, but the number of such instruments grows with the number of groups. We consider

the 2SLS and GMM estimation for the model. The proposed estimators are asymptotically e¢ -

cient, respectively, within the class of IV estimators and the class of GMM estimators based on

linear and quadratic moments, when the sample size grows fast enough relative to the number

of instruments.
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1 Introduction

This paper studies social interaction models with network structures. The model considered has

the speci�cation of a spatial autoregressive (SAR) model but has features and implications directly

relevant to social interaction issues. With such a speci�cation, the information on network structures

is usually summarized in the spatial weights matrix, also known as the sociomatrix (or adjacency

matrix), in social interaction models.

A general social interaction model not only allows possible endogenous interactions, but also

exogenous interactions, unobserved group e¤ects, and correlation of unobservables. Identi�cation of

the endogenous interaction e¤ect from the other e¤ects is a main interest in social interaction models

(see, eg., Manski, 1993; Mo¢ tt, 2001). Linear regression models with endogenous interaction based

on rational expectations of the group behavior would su¤er from the �re�ection problem�of Manski

(1993), and the various interaction e¤ects cannot be separately identi�ed. Lee (2007b) considers a

group setting where an individual is equally in�uenced by all the other members in the group and

the average outcome of peers represents the source of the endogenous e¤ect. Lee�s (2007b) social

interaction model is identi�able only if there is variation in group sizes in the sample. The reason

for the possible identi�cation is that individuals in a small group will have stronger endogenous

interactions than those in a larger group. The identi�cation, however, can be weak if all of the

groups have large sizes, even if there is group size variation. The sociomatrix in Lee�s (2007b) model

has zero diagonal and all of its o¤-diagonal entries take the value of 1
m�1 , where m is the group size.

Such a sociomatrix represents a rather restrictive network structure, but may be practical when

there is no information on how individuals interact with each other.

In some data sets, one may have information on network structures. Based on a speci�c network

structure, the (i; j) entry of the sociomatrix is one if i is in�uenced by j, and zero otherwise. The

corresponding sociomatrix represents a directed graph with a directed edge leading from j to i if

j a¤ects i.1 Such a directed-graph sociomatrix has been considered in Lee et al. (2009), where it

is row-normalized such that each row sums to unity. For SAR models in empirical studies, row-

normalized spatial weights matrices are typical with a few exceptions,2 because the spatial e¤ect

1Note that the in�uence may or may not be reciprocal, so the sociomatrix could be asymmetric.
2An exception is argued in Bell and Bockstael (2000) for real estate problems with micro-level data. Kelejian and

Robinson (1995) has argued that the parameter space should be free except some singularity points for the spatial
matrix � and discussed not-row-normalized spatial matrices. More recently, Kelejian and Prucha (2007) consider
implications on the parameter space of the SAR model when the spatial matrix is not row-normalized.
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can be interpreted as a (weighted) average of neighborhood e¤ects. The social interaction models

based on expected group means in Manski (1993) and Brock and Durlauf (2001), and the one in Lee

(2007b) all have the endogenous e¤ect being an average of peers�outcomes.

The row-normalized sociomatrix in Lee et al. (2009) has some limitations. First, it implicitly

rules out the possibility that an individual�s outcome might a¤ect peers�outcomes but he/she might

not be a¤ected by peers.3 In addition, for social interaction studies, one may be interested in

the aggregate in�uence of an individual�s peers instead of the average in�uence. One may also be

interested in how an individual�s position in a network would in�uence peers�behavior. Notions such

as prestige and centrality have received attention in network studies (Wasserman and Faust, 1994).

When the social interaction is speci�ed as a SAR model, the measure of centrality in Bonacich (1987)

comes out naturally in the reduced form equation. If the sociomatrix represents the directed graph

mentioned above, the sum of the ith row is the indegrees (the number of inward directed edges)

of the node i in the graph. All group members (nodes) would have the same level of centrality by

the Bonacich measure if and only if the indegrees of all nodes are equal. Thus, if the indegrees

have a non-zero variation, so does the Bonacich centrality measure for the group members. The

variation in the Bonacich centrality measure helps to identify the various interaction e¤ects. Yet,

row-normalization would eliminate the variation in the Bonacich centrality measure. So, for social

network studies, sometimes a sociomatrix without row-normalization would be appropriate. In

this paper, we study the identi�cation and estimation of network e¤ects without requiring row-

normalization of the sociomatrix.

Similar to the model in Lee et al. (2009), the social interaction model in this paper has the

speci�cation of a SAR model and incorporates endogenous, exogenous, correlated, and unobserved

group e¤ects. The unobserved group e¤ect is captured by a group dummy variable, which is allowed

to have a conditional mean that depends on the exogenous variables and/or the sociomatrices (due

to self-selection), and so it is treated as a �xed e¤ect. With many groups in the sample, the group

dummies may induce the incidental parameter problem as in Neyman and Scott (1948). Based on a

transformed model that has the group dummies eliminated, Lee et al. (2009) has generalized the ML

estimation approach in Lee (2007b) to the network model with a sociomatrix having constant row

sums (including the special case of a row-normalized sociomatrix).4 However, when the sociomatrix

3 In this case, the corresponding row in the sociomatrix will have all zeros and can not be normalized to sum to
unity.

4The resulted likelihood function can be shown to be a partial likelihood function under normal disturbances. The
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does not have constant row sums, the likelihood function for the transformed model could not be

derived, and alternative estimation approaches need to be considered.

This paper considers the 2SLS and generalized method of moments (GMM) estimation ap-

proaches. The 2SLS approach has been proposed for the estimation of SAR models in Kelejian

and Prucha (1998). The GMM method has been considered for the estimation of a spatial process

in Kelejian and Prucha (1999), and SAR models in Lee (2007c) and Lee and Liu (2010). The 2SLS

and GMM approaches can be generalized for the estimation of social network models. When the

sociomatrix is not row-normalized and the indegrees of its nodes are not all equal, the Bonacich cen-

trality measure for each group can be used as an additional IV to improve estimation e¢ ciency. The

number of such instruments depends on the number of groups. If the number of groups grows with

the sample size, so does the number of IVs. We show that the proposed 2SLS and GMM estimators

can be consistent and asymptotically normal, and they can be e¢ cient when the sample size grows

fast enough relative to the number of instruments. We also suggest bias-correction procedures for

both estimators based on the estimated leading order many-instrument biases.

Since Bekker�s (1994) seminal work, the study of many-instrument asymptotics, where the num-

ber of instruments increases with the sample size, has attracted a lot of attention in the IV estimation

literature. Some recent developments in this area include Donald and Newey (2001), Hansen et al.

(2008), van Hasselt (2010) and Anderson et al. (2007), to name a few. In particular, Bekker and

van der Ploeg (2005) has considered IV estimation of a model where group indicators are used as

(dummy) instruments and the number of groups goes to in�nity. In this paper, we also consider

many-group asymptotics, where the number of instruments depends on the number of groups. How-

ever, the instruments based centrality measures are not dummy variables. Our model also relaxes

the i.i.d. assumption for observations within a group in Bekker and van der Ploeg (2005) by allow-

ing for possible spatial (or social) correlation among group members. Similar to Donald and Newey

(2001), we focus on the case where the number of instruments grows with, but at a slower rate than,

the sample size.5 Another important direction of research in the IV estimation literature is on weak

instruments or weak identi�cation (see, e.g., Chao and Swanson, 2005 and 2007). In this paper, we

notion of partial likelihood is introduced in Cox (1975); see also Lancaster (2000).
5Under the asymptotic sequence that the number of instruments increases at the same rate as the same size, the

asymptotic distribution of IV-based estimators has been established by Bekker (1994), Bekker and van der Ploeg
(2005), Hansen et al. (2008), and van Hasselt (2010). However, their CLTs assume independent observations and
might not be easy to modify for the case with (spatially) correlated observations without imposing strong regularity
conditions.
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assume the concentration parameter grows at the same rate as the sample size.6 Hence, we restrict

our attention to scenarios where instruments are stronger than assumed in the weak-instrument

literature.

The rest of the paper is organized as follows. Section 2 presents the network model and suggests a

transformation of the model to eliminate group �xed e¤ects. Sections 3 and 4 propose the 2SLS and

GMM approaches for the estimation of the model. We prove consistency of the proposed estimators,

derive the asymptotic distributions, and suggest bias correction procedures for the many-instrument

bias. The detailed proofs are given in the Appendix. Monte Carlo evidence on the small sample

performance of the proposed estimators is given in Section 5. Section 6 brie�y concludes.

2 The Network Model with Group Fixed E¤ects

The model considered has the speci�cation

Yr = �0WrYr +X1r�01 +WrX2r�02 + lmr�0r + ur; (1)

and ur = �0Mrur + �r, for r = 1; � � � ; �r, where �r is the total number of groups in the sample, mr

is the number of individuals in the rth group, and n =
P�r

r=1mr is the total number of sample

observations. Yr = (y1r; � � � ; ymrr)
0 is an mr-dimensional vector of yir�s, where yir is the observed

outcome of the ith individual in the group r. Wr and Mr are mr � mr sociomatrices of known

constants. In principle, Wr and Mr may or may not be the same.7 �0 captures the endogenous

e¤ect, where outcomes of individuals in�uence those of their successors in the directed graph.8 X1r

andX2r are, respectively,mr�k1 andmr�k2 matrices of exogenous variables, which may or may not

be the same. �01 represents the dependence of individuals�outcomes on their own characteristics. On

the other hand, outcomes of individuals may also depend on the characteristics of their predecessors

via the exogenous contextual e¤ect �02. lmr
is an mr-dimensional vector of ones and �0r represents

the unobserved group-speci�c e¤ect. Aside from the group �xed e¤ect, �0 captures unobservable

6This condition on the concentration parameter is implied by Assumption 4 in Section 3. The assumption of
independent observations is omnipresent in the literature of weak instruments. This model allows the observations
within a group to be correlated. The analysis of asymptotic properties of IV estimators in the presence of weak
instruments in a model with correlated observations is a di¢ cult problem, which is beyond the scope of this paper.

7For models with row-normalized spatial matrices, some empirical studies assume Mr = Wr , (see, e.g., Cohen,
2002; Fingleton, 2008). Some discussions on the possibility that Mr 6=Wr can be found in LeSage (1999, pp. 87-88).
In this paper, we consider the case where Wr is not row-normalized. We think the use of row-normalized Wr as Mr

instead of Wr itself might be more relevant in practice; otherwise, the variance of an individual�s outcome would
increase with the number of friends he has, and might be too large if he has a large number of friends.

8 In a directed graph, if a edge leads from x to y, then y is said to be a successor of x, and x is said to be a
predecessor of y.
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correlated e¤ects of individuals with their connections in the network. Whether or not all these

various interaction or correlation e¤ects can be identi�ed or estimated is the main interest of the

literature of social interaction models (Manski, 1993). �r = (�r;1; � � � ; �r;mr
)0 is an mr-dimensional

vector of disturbances, where �r;i�s are i.i.d. with zero mean and variance �2 for all i and r.

Let Xr = (X1r;WrX2r). For a sample with �r groups, stack up the data by de�ning Y =

(Y 01 ; � � � ; Y 0�r )0, X = (X 0
1; � � � ; X 0

�r)
0, u = (u01; � � � ; u0�r)0, � = (�01; � � � ; �0�r)0, W = D(W1; � � � ;W�r), M =

D(M1; � � � ;M�r), � = D(lm1 ; � � � ; lm�r ) and �0 = (�01; � � � ; �0�r)0, where D(A1; � � � ; AK) is a block

diagonal matrix in which the diagonal blocks are mk � nk matrices Ak�s.9 For the entire sample,

the model is Y = �0WY + X�0 + ��0 + u, where u = �0Mu + �. Denote R(�) = I � �M and

R � R(�0), where I is the identity matrix. To �lter the spatial correlation in u, a Cochrane-Orcutt

type transformation by R gives

RY = �0RZ�0 +R��0 + �; (2)

where Z = (WY;X) and �0 = (�0; �
0
0)
0.

In this paper, we treat �0 as a vector of unknown parameters. When the number of groups �r is

large, we have the incidental parameter problem (Neyman and Scott, 1948).10 For example, in the

ML approach, the estimators of the common parameters for all the groups may become inconsistent

due to the joint estimation of the many group-speci�c parameters. For this reason, various ap-

proaches have been proposed to eliminate the �xed e¤ect parameters in order to consistently estimate

the common parameters of interest (see, eg., Kalb�eisch and Sprott, 1970; Baltagi, 1995; Hsiao, 2003).

For panel regression models, popular methods involve subtraction of the time-averaged model (the

within estimator) or subtraction of the time-lagged model (the �rst-di¤erences estimator).11 In this

paper, we subtract the (weighted) group-averaged model to eliminate the group �xed e¤ects.

Let Rr be the rth diagonal block of the matrix R. For the rth group, if Mr�s rows all sum

to a constant c, then Rrlmr
= (1 � c�0)lmr

and one can eliminate the group e¤ect parameter

�0r by subtracting the group average from (2). However, if row sums of Mr vary, so will the

elements of Rrlmr
. In that situation, the subtraction of the group average could not eliminate the

9For the convenience of reference, a list of frequently used notations is provided in the Appendix.
10Neyman and Scott (1948) considered a simple panel regression model with yit � N(�i; �2) where �i is the mean

of yit which is invariant for the cross-sectional unit i over time t with t = 1; � � � ; T ; but �2 is a common variance
parameter. They show that in the presence of many �xed (incidental) parameters �i�s but only a �nite number of
time periods T , the imprecise (ML) estimates of �i, i = 1; � � � ; n, will render the estimator of the common parameter
�2 to be inconsistent.
11When the proper variance matrices of the resulted disturbances are taken into account in the estimation, the

resulted estimators are equivalent as the samples of the two di¤erent transformations have the same degrees of
freedom.
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group e¤ect, and an alternative transformation is needed. As Rrlmr = (lmr ;Mrlmr )(1;��0)0, the

unobserved group-speci�c e¤ect �0r can be eliminated with the orthogonal projector Jr = Imr
�

(lmr
;Mrlmr

)[(lmr
;Mrlmr

)0(lmr
;Mrlmr

)]�(lmr
;Mrlmr

)0, where A� denotes a generalized inverse of a

square matrix A. In general, Jr projects an mr-dimensional vector to the space spanned by lmr and

Mrlmr
. IfMrlmr

6= clmr
for any constant c, Jr has rank (mr�2). Otherwise, Jr = Imr

� 1
mr
lmr
l0mr
,

which is the deviation from group mean projector with rank (mr � 1). Let J = D(J1; � � � ; J�r).

Premultiplication of (2) by J gives a model without the group e¤ect parameters,

JRY = JRZ�0 + J�: (3)

Let S(�) = I � �W and S � S(�0). The model (1) represents an equilibrium equation, so S is

assumed to be invertible. The equilibrium vector Y is given by the reduced form equation

Y = S�1(X�0 + ��0) + S
�1R�1�: (4)

It follows that WY = G(X�0 + ��0) +GR
�1�, where G =WS�1. WY is correlated with � because

E((GR�1�)0�) = �20tr(GR
�1) 6= 0. Hence, in general, (3) cannot be consistently estimated by OLS.12

On the other hand, (3) may not be considered as a self-contained system where the transformed

variable JRY can be expressed as a function of the exogenous variables and disturbances, and,

hence, a partial likelihood type approach may not be feasible based on (3).13 In this paper, we

consider the estimation of (3) by 2SLS and GMM approaches.

3 2SLS Estimation of the Network Model

3.1 The Estimator

From the reduced form equation (4), E(Z) = [G(X�0+��0); X] and JRZ = JRE(Z)+JRGR
�1�e01,

where e1 is the �rst unit (column) vector of dimension (k + 1) with k = k1 + k2.14 The best IV

matrix for JRZ in (3) is given by

f = JRE(Z) = JR[G(X�0 + ��0); X]; (5)

12Lee (2002) has shown the OLS estimator can be consistent in the spatial scenario where each spatial unit is
in�uenced by many neighbors whose in�uences are uniformly small.
13When both W and R are row normalized, Y can be transformed into JRY on both sides of the regression equation.

It is based on such a transformation, Lee et al. (2009) can derive the likelihood function for the transformed model.
14 In this paper, X and �0 are treated as constants. See Assumption 2 in the next subsection for more discussions.
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which is an n � (k + 1) matrix (see, eg., Lee, 2003). However, this IV matrix is infeasible as it

involves unknown parameters �0 = (�0; �
0
0)
0 and �0. As R = I � �0M , f can be considered as

a linear combination of the IVs in Q1 = J(Q01;MQ
0
1), where Q

0
1 = (GX;G�;X). As � has �r

columns, the number of IVs in Q1 increases as the number of groups �r increases. Furthermore,

as G = W (I � �0W )�1 =
P1

j=0 �
j
0W

j+1 when sup jj�0W jj1 < 1, GX and G� in Q01 can be

replaced by linear combinations of (WX;W 2X; � � � ) and (W�;W 2�; � � � ) respectively, and, hence,

Q01 = (WX;W 2X; � � � ;W�;W 2�; � � � ; X).15 In this paper, we show that, when the sample size

grows fast enough relative to the number of IVs, the asymptotic e¢ ciency can be obtained by using

a sequence of IVs approximating the best set of IVs Q1. On the other hand, the 2SLS with a �xed

number of IVs would be consistent but, in general, not e¢ cient.

Let Q0K be a submatrix of Q01 including X,16 and QK = J [Q0K ;MQ
0
K ] be an n�K IV matrix

with K � (k + 1). For simplicity, K serves as both the number of IVs and the index of the IV

set, as in Donald and Newey (2001). In general, K may be a function of n such that K is allowed

to increase with n. Let �(�) = JR(�)(Y � Z�) with � = (�; �0)0 and �(�0; �) = JR(Y � Z�). The

moment function corresponding to the orthogonality condition of QK and J� is Q0K�(�0; �). Let

PK = QK(Q
0
KQK)

�Q0K . With a preliminary estimator ~� of �0 and ~R = R(~�),
17 the 2SLS estimator

is

�̂2sls = (Z
0 ~R0PK ~RZ)

�1Z 0 ~R0PK ~RY: (6)

3.2 Identi�cation, Consistency and Asymptotic Distributions

To proceed, we assume the following regularity conditions. Henceforth, uniformly bounded in row

(column) sums in absolute value of a sequence of square matrices fAg will be abbreviated as UBR

(UBC), and uniformly bounded in both row and column sums in absolute value as UB.18

Assumption 1 The elements of � are i.i.d. with zero mean, variance �20 and that a moment of order

15See the paragraph following Assumption 5 for more details.
16A simple example for Q0K would be (WX;W�;X). Please see the Monte Carlo simulation part of the paper for

more discussions on the selection of QK .
17A consistent initial estimator of ~� may be obtained in various ways. One may follow a two step approach as in

Kelejian and Prucha (1998), where a 2SLS with a �nite number of IVs can be used to estimate the main equation
(without the transformation by R) and then estimate �0 in the SAR disturbances via some method of moments with
estimated residuals. As an alternative, one may estimate jointly all the parameters with a �nite number of linear
and quadratic moments in a GMM setting in Lee (2007a). The resulted estimator ~� can be

p
n-consistent by both

methods.
18A sequence of square matrices fAg, where A = [Aij ], is said to be UBR (UBC) if the sequence of row sum matrix

norm jjAjj1 = maxi=1;��� ;n
Pn
j=1 jAij j (column sum matrix norm jjAjj1 = maxj=1;��� ;n

Pn
i=1 jAij j) is bounded.

(Horn and Johnson, 1985)
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higher than the fourth exists.19

Assumption 2 The elements of X are uniformly bounded constants, X has the full rank k, and

limn!1
1
nX

0X exists and is nonsingular.20

Assumption 3 The sequences of matrices fWg, fMg, fS�1g and fR�1g are UB.

The existence of moments higher than the fourth of � is needed in order to apply a central limit

theorem (CLT) of a linear and quadratic form due to Kelejian and Prucha (2001). The uniform

boundedness condition for X in Assumptions 2 is for analytic tractability. The uniform boundedness

of fWg, fMg, fS�1g and fR�1g in Assumption 3 limits spatial dependence among the units to a

tractable degree and is originated in Kelejian and Prucha (1999). It rules out the unit root case (in

time series as a special case).21

From (3), we have

�(�0; �) = JR(Y � Z�) = f(�0 � �) + JRS(�)S�1R�1�; (7)

where f is in (5) and S(�) = I � �W . The identi�cation of �0 is based on the moment condition

E(Q0K�(�0; �)) = 0. For any feasible �, E(Q0K�(�0; �)) = Q0Kf(�0 � �) = 0, which has the unique

solution �0 if Q0Kf has full column rank k + 1. This rank condition requires necessarily that the

best IV matrix f has a full rank (k + 1). For each group, Grlmr
= Wr(Imr

� �0Wr)
�1lmr

is the

Bonacich measure of centrality of group members. When Wr does not have equal indegrees for all

its nodes and Wr is not row-normalized, the elements of Grlmr
are not all equal, which represent

di¤erent centrality scores of group members. In this situation, Jr will not eliminate RrGrlmr
, which,

in turn, helps to identify �0. We see that, even when X is irrelevant in the model so that �0 = 0,

the best IV matrix f = JR(G��0; X) may still have the rank (k + 1) and identi�cation is possible.

This identi�cation condition is weaker than the one when Wr has constant row sums. For the

19 It may be possible to generalize the analysis to the case under heteroscedasticity, as we assume K increases slower
than n. The analysis of 2SLS would be similar under heteroscedasticity even though the limiting variance of the
estimate would change as usual. For the quadratic moments in the GMM estimation, as the number of quadratic
moments is �nite, based on a similar idea as in Lin and Lee (2006), it may be possible to modify the proposed GMM
procedure so that the estimator is robust to unknown heteroscedasticity.
20 If X is allowed to be stochastic, then appropriate moment conditions need to be imposed, and the results presented

in this paper can be considered as conditional on X instead.
21For the limiting case jj�0Wnjj ! 1, Lee and Yu (2009) have some preliminary results. They have shown that the

limiting distribution of the estimator of the endogenous interaction coe¢ cient (�0 in their spatial model) can have a
faster rate of convergence and the properly normalized estimator can still be asymptotically normal. In terms of the
Bonacich centrality, this could imply a divergent sequence of such measures.
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latter case, JrRrGrlmr = 0 so that f = JR(GX�0; X) and the identi�cation condition based on

E(Q0K�(�0; �)) = 0 could not be satis�ed if �0 = 0. Assumption 4 gives a su¢ cient identi�cation

condition for �0.

Assumption 4 H = limn!1
1
nf

0f is a �nite nonsingular matrix.

Assumption 4 also characterizes the quality of the instruments. Let �G = RGR�1. The vari-

ance of the error term in the reduced form equation be denoted by � = 1
nE(e1�

0 �G0J �G�e01) =

1
n�

2
0tr(

�G0J �G)e1e
0
1. Because only the (1,1) entry of � is non-zero, with the corresponding (1,1)

entry of f 0f , the concentration parameter for our network model is [G(X�0 + ��0)]
0R0JR[G(X�0 +

��0)]=[
1
n�

2
0tr(

�G0J �G)]. The concentration parameter is a natural measure of the instrument strength.

We assume the limit of 1nf
0f is a constant as the sample size goes to in�nity in Assumption 4, which

implies that the concentration parameter grows at the same rate as the sample size. Such a rate is

assumed in Bekker (1994). Assumption 4 seems reasonable as it covers many practical cases where

either X or the Bonacich measure has signi�cant e¤ects on Y . Hence, under Assumption 4, we focus

on scenarios where instruments are stronger than assumed in the weak-instrument literature.

Assumption 5 There exists a K� (k+1) matrix �K such that jjE(Z)�Q0K�K jj1 ! 0 as n;K !

1.22

Assumption 5 concerns approximation of the ideal IV matrix f . There are a few possible se-

quences of fQ0Kg that satisfy this assumption and we illustrate one of them as follows. E(Z) can

be presented as a linear combination of �Q0K = (GX;G�;X) because E(Z) = �Q0K ��K with ��K =0B@ �00 �00 0

0 0 Ik

1CA
0

. Hence, the ideal IV matrix f = JRE(Z) can be presented as a linear combination

of �QK = J [ �Q0K ;M �Q0K ]. As G in �QK involves the unknown parameter �0, we approximate G by a se-

ries expansion at �0, and express the approximated G as a linear combination of a sequence of known

matrices. If sup jj�0W jj1 < 1, G = WS�1 =
P1

j=0 �
j
0W

j+1 =
Pp

j=0 �
j
0W

j+1 + (�0W )
p+1G. It fol-

lows that jjG�
Pp

j=0 �
j
0W

j+1jj1 � jj�0W jjp+11 jjGjj1 = o(1) as p!1. Here, as sup jj�0W jj1 < 1,

the approximation error by series expansion diminishes very fast in a geometric rate, as long as

the degree of approximation increases as sample size increases. This example is summarized in the

following lemma.

22The assumption that the ideal instrument can be approximated by a certain linear combination has been used in
the many-instruments literature (see, eg., Donald and Newey, 2001; Hansen et al., 2008; Hausman et al., 2008).
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Lemma 3.1 If sup jj�0W jj1 < 1, for Q(p)K = J(G
(p)
X ;MG

(p)
X ; G

(p)
� ;MG

(p)
� ; X;MX) where G(p)X =

(WX; � � � ;W p+1X), G(p)� = (W�; � � � ;W p+1�) and p is an increasing integer-valued function of K,

there exists a K � (k + 1) matrix �(p)K such that jjf �Q(p)K �
(p)
K jj1 ! 0 as n;K !1.

The 2SLS estimator with an increasing number of IVs approximating f can be asymptotically

e¢ cient under some conditions. However, when the number of instruments increases too fast, such

an estimator could be asymptotically biased, which is known as the many-instrument problem (see,

eg., Bekker, 1994; Donald and Newey, 2001; Alvarez and Arellano, 2003; Han and Phillips, 2006).

It is possible to use a �xed number of IVs to avoid this problem. The 2SLS estimator with a �xed

number of IVs will be consistent and asymptotically normal but may not be e¢ cient. In this paper,

we focus on IV matrices satisfying Assumption 5. The following proposition shows consistency and

asymptotic normality of the 2SLS estimator in (6). Let 	K = PK �G.

Proposition 1 Under Assumptions 1-5, if K=n! 0 and
p
n(~���0) = Op(1), then

p
n(�̂2sls��0�

b2sls)
d! N(0; �20H

�1), where b2sls = �20tr(	K)(Z
0R0PKRZ)

�1e1 = Op(K=n).

From this proposition, we see that
p
n(�̂2sls � �0) has the bias

p
nb2sls due to the increas-

ing number of IVs. To understand this bias, let us look at the normal equation of the 2SLS,

1
nZ

0R0PKR(Y �Z�̂2sls) = 0, as if �0 were known. At �0, E[ 1nZ
0R0PKR(Y �Z�0)] = 1

n�
2
0tr(	K)e1 =

O(K=n) (see Lemma B.2 in the Appendix), which does not converge to zero when the number of

IVs grows at the same rate of the sample size. The following corollary summarizes the asymptotic

properties of the 2SLS for di¤erent divergent rates of K in terms of n.

Corollary 1 Under Assumptions 1-5 and
p
n(~�� �0) = Op(1), (i) if K2=n! 0,

p
n(�̂2sls � �0)

d!

N(0; �20H
�1); (ii) if K2=n ! c < 1 and c 6= 0,

p
n(�̂2sls � �0)

d! N(�b2sls; �
2
0H

�1), where �b2sls =

limn!1
p
nb2sls = �20H

�1 limn!1 tr(	K)e1=
p
n; and (iii) if K2=n ! 1 but K1+�=n ! 0 for

0 < � < 1, K�(�̂2sls � �0)
p! 0.

The sequence of IV matrices fQKg given in the previous subsection provides the asymptotically

best IV estimator when K2=n! 0, as the variance matrix �20H
�1 attains the e¢ ciency lower bound

for the class of IV estimators. With a �xed number of instruments given by �Q, the asymptotic

distribution of the 2SLS estimator ~� is given by
p
n(~� � �0)

d! N(0; �20(limn!1
1
nf

0 �Pf)�1), where

�P = �Q( �Q0 �Q)�1 �Q0. Note that H � lim 1
nf

0 �Pf = lim 1
nf

0(I � �P )f , which is positive semi-de�nite in

11



general, unless f lies asymptotically on the space spanned by the columns of �P , i.e., lim 1
n (f� �Pf) =

0. Hence, in general, the 2SLS with a �xed number of instruments is not e¢ cient.

On the other hand, the condition that K=n! 0 is crucial for the IV estimator to be consistent.

The following corollary illustrates the inconsistency of the 2SLS estimator if K=n converges to a

nonzero constant. This result is closely related to Bekker (1994), who is among the �rst to show the

inconsistency of IV estimators when K grows as fast as n.

Proposition 2 Under Assumptions 1-5, if K=n! c 6= 0 and ~���0 = op(1), then �̂2sls��0�b2sls
p!

0, where b2sls might converge to a nonzero constant.

Note G� in the ideal IV set f has �r columns and we use a series expansion to approximate G.

So, if we include an approximated Bonacich centrality measure from each of the �r groups as an IV

in QK , then �r=K ! 0. Hence, K=n! 0 implies �r=n = 1= �m! 0, where �m is the average group size.

So for consistency of the 2SLS estimator using the centrality measures of all the groups as IVs, the

average group size needs to be large. On the other hand, K2=n! 0 implies �r2=n = �r= �m! 0. So for

asymptotic e¢ ciency, the average group size needs to be large relative to the number of groups in

order that the asymptotic distribution of the 2SLS estimator is properly centered. The asymptotic

bias can be either eliminated or reduced by some bias correction procedures, which may relax the

large average group size requirement to some extent.23

3.3 Bias Correction

To correct for the many-instrument bias in the 2SLS estimator, we can estimate the leading order

bias b2sls in Proposition 1 and adjust the 2SLS estimator by the estimated bias. With consistent

initial estimators ~�2; ~� and ~�, the feasible bias-corrected 2SLS (FC2SLS) is given by

�̂fc2sls = (Z
0 ~R0PK ~RZ)

�1[Z 0 ~R0PK ~RY � ~�2tr(PK ~R ~G ~R�1)e1]; (8)

where ~G = G(~�). The following result gives consistency and asymptotic normality of the FC2SLS

estimator.
23The assumptions for asymptotic results in this paper do not rule out the case where the number of groups is �xed.

So the analysis covers that case. However, this assertion relies on Assumption 4 in the paper. Section 6 of Lee (2004)
has shown that the estimator could be inconsistent in a special case when mr ! 1 with a single group, i.e., r = 1.
In that special case, an individual has �many neighbors/friends�such that weights matrix Wn has many nonnegative
elements that are uniformly of order O(1=hn), where hn increases to in�nity at the same rate as the sample size n,
and it generates a multicollinearity problem in the reduced form equation. Assumption 4 has ruled out that special
case as multicollinearity is not allowed in the reduced form equation in this paper.
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Proposition 3 Under Assumptions 1-5, if K=n! 0 and ~�2; ~�; ~� are
p
n-consistent initial estima-

tors of �20; �0; �0, then
p
n(�̂fc2sls � �0)

d! N(0; �20H
�1).

If the Bonacich centrality measures for all groups are included in QK as IVs, the properly

centered and asymptotically e¢ cient 2SLS estimator can be derived as long as the average group

size, implicitly in n=K, is large.24

4 GMM Estimation of the Network Model

4.1 The Estimator, Identi�cation and Consistency

The 2SLS can be generalized to the GMM with additional quadratic moment equations. The use

of quadratic moments for the estimation of SAR models has been proposed in Kelejian and Prucha

(1999) and Lee (2007a; 2007c). While the IV moments utilize the information of the mean regression

function of the reduced form for estimation, the quadratic moments explore the correlation structure

of the reduced form disturbances.25 The IV moments g1(�) = Q0K�(�) are linear in � at �0. The

additional quadratic moments are g2(�) = [U1�(�); � � � ; Uq�(�)]0�(�), where Uj�s are constant square

matrices such that tr(JUj) = 0 and the number of quadratic moments q is �xed.26 At �0, E(g2(�0)) =

0, because �(�0) = J� and E(�0JUjJ�) = �20tr(JUj) = 0. As a normalization for notational simplicity,

let Uj replace JUjJ . The vector of combined linear and quadratic empirical moments for the GMM

estimation is given by g(�) = [g01(�); g
0
2(�)]

0. For analytic tractability, the following assumption

imposes uniform boundedness on the quadratic matrices Uj�s.

Assumption 6 The sequences of matrices fUjg with tr (JUj) = 0 are UB for j = 1; � � � ; q.

Similar to (7), we have

�(�) = JR(�)(Y � Z�) = f(�)(�0 � �) + JR(�)S(�)S�1R�1�; (9)

24The initial consistent estimator ~� is required to be
p
n-consistent. Such an estimator can be derived by using a

�xed number of IVs. On the other hand, the 2SLS estimator �̂ with an increasing number of IVs in Proposition 1 isp
n=K-consistent due to the bias. If such an estimator is used as the preliminary estimator, the FC2SLS estimator

can be properly centered under the stronger restriction on K such that K4=3=n! 0. This can be seen from the proof
of Proposition 3 in the appendix.
25For a typical SAR model with normal disturbances (without �xed e¤ects), the best selection of linear and quadratic

moments can provide a GMM estimator which is asymptotically as e¢ cient as the maximum likelihood estimator (see,
Lee, 2007a; Lee and Liu, 2010).
26For any n�n constant matrix B, de�ne A as A = B� tr(JB)I=tr(J), then tr(JA) = 0. Some simple examples of

Uj are U1 =M � tr(JM)I=tr(J) and U2 = W � tr(JW )I=tr(J). When the errors are normally distributed, the best
quadratic moments, thus optimal q, is given in section 4.3.
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where f(�) = JR(�)E(Z). The moment condition E(g1(�)) = Q0Kf(�)(�0 � �) = 0 has the unique

solution �0 under the rank condition in the following stronger version of Assumption 4.27 So iden-

ti�cation of �0 via the IV moments is possible, which is similar to the identi�cation of the 2SLS.

Assumption 4� limn!1
1
nf

0(�)f(�) is a nonsingular matrix for any � such that R(�) is nonsingular.

With �0 identi�ed, it follows from (9) that �(�j�=�0) = JR(�)R�1� and �0 can be identi�ed based

on the quadratic moment condition

E[g2(�j�=�0)] = [�20tr(R
0�1R0(�)U1R(�)R

�1); � � � ; �20tr(R
0�1R0(�)UqR(�)R

�1)]0 = 0:

As R (�)R�1 = I + (�0 � �)MR�1, it follows that

tr(R
0�1R0(�)UjR(�)R

�1) = (�0 � �) [tr(UsjMR�1) + (�0 � �) tr(R�10M 0UjMR
�1)];

for i = 1; � � � ; q. The following assumption gives a su¢ cient identi�cation condition for �0 via the

unique solution of E[g2(�j�=�0)] = 0 for a large enough n.

Assumption 7 limn!1
1
n tr(U

s
jMR

�1) 6= 0 for some j, and limn!1
1
n [tr(U

s
1MR

�1); � � � ; tr(UsqMR�1)]0

is linearly independent of limn!1
1
n [tr(R

�10M 0Us1MR
�1); � � � ; tr(R�10M 0UsqMR

�1)]0.

This identi�cation condition is similar to the one for the SAR model with SAR disturbances in Lee

and Liu (2010).

For any n� n matrix A = [aij ], let As = A+ A0 and vecD(A) = (a11; � � � ; ann)0. In general, �3
and �4 denote, respectively, the third and fourth moments of the error term. The variance matrix

of g(�0) is given by


 = Var(g(�0)) =

0B@ �20Q
0
KQK �3Q

0
K!

�3!
0QK (�4 � 3�40)!0! + �40�

1CA ;
where ! = [vecD(U1); � � � ; vecD(Uq)] and � = 1

2 [vec(U
s
1 ); � � � ; vec(Usq )]0[vec(Us1 ); � � � ; vec(Usq )]. By

the generalized Schwartz inequality, the optimal weighting matrix of the GMM is 
�1. As the

dimension of IV moments in g(�) increases with the number of groups, the limit of g(�) is not well

27For the feasible 2SLS approach, an initial consistent estimator of �0 is utilized, so one needs only the local behavior
of 1

n
f 0(�)f(�) at �0 as in Assumption 4. On the other hand, the GMM approach estimates simultaneously �0 and �0

in the model, Assumption 4 needs to be slightly generalized.
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de�ned and the usual argument for consistency does not directly apply.28 We �nd that if the optimal

GMM objective function can be properly rewritten, asymptotic analysis of the GMM estimator for

our case can become tractable. By the inverse of the partitioned matrix (Amemiya (1985), p.460),


�1 =

0B@ B11 B12

B21 B22

1CA, where B11 = ��20 (Q0KQK)
�1 + (�3

�20
)2(Q0KQK)

�1Q0K!B22!
0QK(Q

0
KQK)

�1,

B21 = B
0
12 = �

�3
�20
B22!

0QK(Q
0
KQK)

�1 and B22 = [(�4�3�40)!0!+�40��
�23
�20
!0PK!]

�1. Henceforth,

we drop the subscript n on Bij for simplicity. The optimal GMM minimizes

g0(�)
�1g(�)

= g01(�)B11g1(�) + g
0
1(�)B12g2(�) + g

0
2(�)B21g1(�) + g

0
2(�)B22g2(�)

= ��20 �0(�)PK�(�) + (
�3
�20
)2�0(�)PK!B22!

0PK�(�)� 2
�3
�20
�0(�)PK!B22g2(�) + g

0
2(�)B22g2(�)

= ��20 �0(�)PK�(�) + �g
0
2(�)B22�g2(�);

where �g2(�) =
�3
�20
!0PK�(�)� g2(�) is the error in the linear projection of g2(�) on g1(�). Note that

Var(�g2(�0)) =
�23
�20
!0PK! �

2�3
�20
E[!0PK�(U

0
1�; � � � ; U 0q�)0�] + Var[g2(�0)] = B�122 :

Hence, the optimal GMM objective function can be treated as a linear combination of the objective

functions of the 2SLS and the optimal GMM based on moments �g2(�), which has a �xed dimension.

Furthermore, as E[�g2(�0)g01(�0)] =E[
�3
�20
!0PK��

0QK ]�E[g2(�0)�0QK ] = �3!0QK��3!0QK = 0, g1(�0)

and �g2(�0) are uncorrelated.

The following assumption warrants the limit of nB22 exists. As usual for nonlinear estimation, the

parameter space � of � will be taken to be a bounded set with �0 in its interior.29 Let z = JME(Z).

Assumption 8 (i) limn!1 nB22 exists and is a nonsingular matrix. (ii) limn!1
1
n!

0f and limn!1
1
n!

0z

exist.

Assumption 9 The �0 is in the interior of the bounded parameter space �.

The optimal weighting matrix 
�1 involves unknown parameters �20, �3 and �4. In practice,

with initial consistent estimators ~�2, ~�3 and ~�4, 
 can be estimated as ~
 = 
(~�
2; ~�3; ~�4). The next

28With a high level of regularity conditions, Han and Phillips (2006) proposed an alternative framework for analysis.
However, that framework does not easily incorporate general feasible optimal GMM weighting matrices.
29Here we do not need the parameter space to be compact because the GMM objective function is a quadratic

function of the parameters of interest.
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proposition gives the consistency of the feasible optimal GMM estimator.

Proposition 4 Under Assumptions 1-3,4�,5-9, if K=n! 0 and ~
 = 
(~�2; ~�3; ~�4) where ~�
2; ~�3; ~�4

are consistent initial estimators of �20; �3; �4, then the feasible optimal GMM estimator �̂gmm =

argmin�2� g
0(�)~
�1g(�) is consistent.

4.2 Asymptotic Normality and Bias Correction

Let

D2 = E[
@

@�0
g2 (�0)] = ��20

0BBBB@
tr(Us1MR

�1) tr(Us1
�G) 01�k

...
...

...

tr(UsqMR
�1) tr(Usq �G) 01�k

1CCCCA :

The next result gives the asymptotic distribution of the feasible optimal GMM estimator.30

Proposition 5 Under Assumptions 1-3,4�,5-9, if K3=2=n! 0 and ~
 = 
(~�2; ~�3; ~�4) where ~�
2; ~�3; ~�4

are
p
n-consistent initial estimators of �20; �3; �4, then the feasible optimal GMM estimator �̂gmm =

argmin�2� g
0(�)~
�1g(�) has the asymptotic distribution

p
n(�̂gmm � �0 � bgmm)

d! N(0; (��20 D(0;H) + lim
n!1

1

n
�D0
2B22 �D2)

�1);

where bgmm = (��2D(0; Z 0R0PKRZ) + �D0
2B22

�D2)
�1[tr(PKMR

�1); tr(	K)e
0
1]
0 = O(K=n), �D2 =

D2 � �3
�20
(0; !0PKRZ), and �D2 = D2 � �3

�20
(0; !0f).

It is interesting to note that, although the identi�cation of �0 is based on a �xed number of

quadratic moments, joint estimation of �0 with other parameters introduces an asymptotic bias to

its GMM estimator due to the large number of linear moments.31 As the asymptotic bias is O(K=n),

the asymptotic distribution of the GMM estimator will be centered at �0 only when K2=n ! 0.

These are similar conditions to the 2SLS estimator in Proposition 1 and Corollary 1. Proposition

5 holds under the required regularity condition that K3=2=n ! 0, so that the remainder terms in

the asymptotic expansion vanish. The restriction on K via K3=2=n ! 0 is stronger than that of

30When the number of instruments increases at a slower rate than the sample size, the asymptotic distribution of
the 2SLS is not a¤ected by non-normality of the error term. This is so, because the asymptotic approximation of
the 2SLS estimator is linear in the error term when K=n ! 0. On the other hand, non-normality could a¤ect the
asymptotic distribution of the GMM estimator as the covariance matrix of the linear and quadratic moment conditions
involves the third and fourth order moments of the error term.
31For the e¢ cient estimation of a SAR model with SAR disturbances such as the method of maximum likelihood,

the asymptotic variances of the estimators of �0 and the other parameters such as �0 are not block diagonal. So the
e¢ cient estimates of �0 and �0, etc., are not asymptotically uncorrelated.
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K=n ! 0 in Proposition 1 for the 2SLS but is weaker than that of K2=n ! c for a �nite nonzero

constant c.

The bias term bgmm in the Proposition 5 can be estimated by

~bgmm = [~�
�2D(0; Z 0 ~R0PK ~RZ) +

e�D0
2
~B22

e�D2]
�1[tr(PKM ~R�1); tr(PK ~R ~G ~R

�1)e01]
0; (10)

where ~B22 = [(~�4 � 3(~�2)2)!0! + (~�2)2��
~�3
~�2
!0PK!]

�1 and e�D2 = ~D2 � ~�3
~�2
(0; !0PK ~RZ) with

~D2 = �~�2

0BBBB@
tr(Us1M

~R�1) tr(Us1
~R ~G ~R�1) 01�k

...
...

...

tr(UsqM ~R�1) tr(Usq ~R ~G ~R
�1) 01�k

1CCCCA :

With the consistently estimated leading order bias, the feasible bias-corrected GMM (FCGMM)

estimator is given by �̂fcgmm = �̂gmm � ~bgmm.32

Proposition 6 Under Assumptions 1-3,4�,5-9, if K3=2=n ! 0, ~� � �0 = Op(maxf1=
p
n;K=ng),

~� � �0 = Op(maxf1=
p
n;K=ng) and ~�2; ~�3; ~�4 are

p
n-consistent initial estimators of �20; �3; �4,

then the FCGMM estimator �̂fcgmm has the asymptotic distribution

p
n(�̂fcgmm � �0)

d! N(0; (��20 D(0;H) + lim
n!1

1

n
�D0
2B22

�D2)
�1):

The asymptotic variance matrix of the optimal GMM estimator can be compared with that of the

2SLS estimator. As �D0
2B22

�D2 is nonnegative de�nite, the asymptotic variance of �̂gmm is relatively

smaller than that of �̂2sls. Thus, the optimum GMM estimator improves e¢ ciency upon the 2SLS

estimator by the joint estimation of �0 and �0, with additional quadratic moments as expected.

4.3 The Best GMM under Normality

The preceding section has provided a general GMM estimation framework with many linear moments

but a �nite number of quadratic moments, where the �nite number of quadratic moments and the

quadratic matrices Uj�s satisfying Assumption 6 can be arbitrary. So there remains an issue of the

best selection of quadratic moments in this estimation framework. For the estimation of a SAR

model, Lee (2007a) has derived the best GMM moments under a normality assumption. Here,

32Note that the GMM estimators of �0 and �0, in Proposition 5 have the order Op(K=n), which can be used for
the construction of the bias-corrected estimator according to the following proposition.
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the best GMM moments can similarly be derived. Let V = D(Q0KQK ; �
2
0�). When � is normally

distributed, �3 = 0 and �4 = 3�40. It follows that 
 = Var (g (�0)) = �20V , B22 = (�40�)
�1 and

�D2 = D2. It follows Proposition 5 that, when K3=2=n! 0, the (infeasible) optimal GMM estimator

�̂gmm = argmin�2� g
0(�)V �1g(�) has the asymptotic distribution

p
n(�̂gmm � �0 � bgmm)

d! N(0; �20(D(0;H) + �
�2
0 lim

n!1

1

n
D0
2�

�1D2)
�1);

where the bias

bgmm = �
2
0[D(0; Z

0R0PKRZ) + �
�2
0 D0

2�
�1D2]

�1[tr(PKMR
�1); tr(	K)e

0
1]
0 = O(K=n):

For any n � n matrix A, let At = A � tr(A)J=tr(J). Note that tr(Usj �G) = 1
2 tr(U

s
j [(J

�GJ)t]s) =

1
2vec

0(Usj )vec([(J
�GJ)t]s) and, similarly, tr(UsjMR

�1) = 1
2vec

0(Usj )vec([(JMR
�1J)t]s). It follows

from the generalized Schwartz inequality that D0
2�

�1D2 � �40�g2 , where

�g2 =

0BBBB@
tr([(JMR�1J)t]sMR�1) tr([(J �GJ)t]sMR�1) 0

� tr([(J �GJ)t]s �G) 0

� � 0

1CCCCA :

Hence, under normality, the best choice of Uj�s for the quadratic moments are U�1 = (JMR�1J)t

and U�2 = (J �GJ)
t.

Let g�(�) = [g01(�); �
0(�)U�1 �(�); �

0(�)U�2 �(�)]
0 and V � = D(Q0KQK ; �

2
0�

�), where�� = 1
2 [vec(U

�s
1 ); vec(U

�s
2 )]

0�

[vec(U�s1 ); vec(U
�s
2 )]. From Proposition 5, if K3=2=n ! 0, the best GMM (BGMM) estimator

�̂bgmm = argmin�2� g
�0(�)V ��1g�(�) has the limiting distribution

p
n(�̂bgmm � �0 � bbgmm)

d! N(0; �20(D(0;H) + �
2
0 lim
n!1

1

n
�g2)

�1); (11)

where the bias

bbgmm = �
2
0[D(0; Z

0R0PKRZ) + �
2
0�g2 ]

�1[tr(PKMR
�1); tr(	K)e

0
1]
0 = O(K=n): (12)

In practice, with initial consistent estimators ~�, ~�, and ~�2, U�1 can be estimated as ~U�1 =
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(JM ~R�1J)t, U�2 can be estimated as ~U
�
2 = (J ~R ~G ~R�1J)t, and ~V � = V �(~�2; ~�; ~�; ).33 The fol-

lowing result shows that the feasible BGMM estimator has the same limiting distribution as �̂bgmm

given by (11).

Proposition 7 Under Assumptions 1-3,4�,5-9, if the disturbances are normally distributed, K3=2=n!

0, ~���0 = Op(maxf1=
p
n;K=ng), ~���0 = Op(maxf1=

p
n;K=ng), and ~�2 is a

p
n-consistent initial

estimator of �20, then the feasible BGMM estimator �̂fbgmm = argmin�2� ~g
�0(�) ~V ��1~g�(�), where

~g�(�) = [g01(�); �
0(�) ~U�1 �(�); �

0(�) ~U�2 �(�)]
0, has the limiting distribution given by (11).

5 Monte Carlo Experiments

To investigate the �nite sample performance of the 2SLS and GMM estimators, we conduct a limited

simulation study based on the following model

Y = �0WY +X�01 +WX�02 + ��0 + u; (13)

where u = �0Mu+�. For the experiment, we consider four samples with di¤erent numbers of groups

�r and group sizes mr. The �rst sample contains 30 groups with equal group sizes of mr = 10. The

second sample contains 60 groups with equal group sizes of mr = 10. To study the e¤ect of group

sizes, we also consider, respectively, 30 and 60 groups with equal group sizes of mr = 15.34 For each

group, the sociomatrix Wr is generated as follows.35 First, for the ith row of Wr (i = 1; � � � ;mr),

we generate an integer kri uniformly at random from the set of integers [0; 1; 2; 3]. Then we set the

(i+1)th; � � � ; (i+ kri)th elements of the ith row of Wr to be ones and the rest elements in that row

to be zeros, if i+ kri � mr; otherwise the entries of ones will be wrapped around such that the �rst

(kri �mr) entries of the ith row will be ones. In the case of kri = 0, the ith row of Wr will have all

zeros.36 M is the row-normalized W .
33Note that the best ~U�1 and ~U

�
2 in ~g

�(�) involve estimates of �0 and �0, while the U�s in Proposition 5 are constant
matrices.
34Note that the e¢ ciency of 2SLS estimator needs the average groups size to be large relative to the number

of groups, but the e¢ ciency of bias-corrected 2SLS estimator only needs the average group size to be large (see the
discussion after Propositions 2 and 3). To make the di¤erence in the �nite sample performance of these two estimators
more prominent, we generate samples in the simulation study such that �r= �m is not too small.
35Experiments have also been done based on the Addhealth sociomatrices. As the Add Health data has large

groups, the bias is less pronounced. We did not to report those results here to save space.
36Note that the parameter space of � depends on jjW jj1. If the maximum number of direct connections changes

with the group size mr , so does the parameter space of �. To facilitate comparison, we keep the maximum number
of direct connections �xed at 3 across di¤erent sample sizes. We have tried di¤erent values for the maximum number
of direct connections. The simulation results are similar to those reported here.
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The number of repetitions is 500 for each case in this Monte Carlo experiment. For each repeti-

tion,X and �0r (r = 1; � � � ; �r) are generated fromN(0; I) andN(0; �2�) respectively. The error terms,

�r;i�s, are independently generated from the following 2 distributions: (a) normal, �r;i � N(0; 1) and

(b) gamma, �r;i = 
r;i � 1 where 
r;i � gamma(1; 1). The �r;i�s have mean zero and variance one.

The skewness (�3 = �3=�
3) and kurtosis (�4 = �4=�

4) of these distributions are correspondingly:

(a) �3 = 0, �4 = 3 and (b) �3 = 2, �4 = 9. The data are generated with �10 = �20 = 0:2.
37 Values of

�0, �0 and �
2
� are varied in the experiment. For each experimental design, we also report the ratio

of concentration parameter to sample size as a measure of the quality of instruments to facilitate

comparison.

The estimation methods considered are: (i) the 2SLS with a �few�IVsQ1 = J [X;WX;MX;MWX];

(ii) the 2SLS in (6) with �many� IVs Q2 = [Q1; JW�];38 (iii) the FC2SLS; (iv) the optimal

GMM with g(�) = [Q1; U
�
1 �(�); U

�
2 �(�)]

0�(�), where U�1 = (JMR�1J)t and U�2 = (J �GJ)t; (v)

the optimal GMM with g(�) = [Q2; U
�
1 �(�); U

�
2 �(�)]

0�(�); and (vi) the FCGMM. For the 2SLS,

we need to estimate �0 in a preliminary step by the MOM, ~� = argmin� ~g
0(�)~g(�), where ~g(�) =

[(JWJ)t~�(�); (JMJ)t~�(�); (JMWJ)t~�(�)]0~�0(�), ~�(�) = JR(�)(Y�Z 0~�), and ~� = [Z 0Q1(Q01Q1)�1Q01Z]�1�

Z 0Q1(Q
0
1Q1)

�1Q01Y . Under the distribution (a), [U
�
1 �(�); U

�
2 �(�)]

0�(�) are the best quadratic mo-

ments. The optimal GMM estimator is given in Proposition 7 and the bias correction procedure is

based on the estimated bias given by (12). Under the distribution (b), the optimal GMM estimator

is given in Proposition 5 and the estimated bias is given by (10). We report the mean and standard

deviation (SD) of the empirical distributions of the estimates. To facilitate the comparison of various

estimators, we also report their root mean square errors (RMSE).

We consider four experimental designs. Table 1 reports estimation results for the benchmark case

with normally distributed errors and �0 = �0 = 0:1; �
2
� = 1. Table 2 reports the estimation results

when �0 = �0 = 0:1 and �2� = 0:04, which represents the case that the additional IVs based on

the centrality measure are less informative. To study how the estimators are a¤ected by increasing

the social dependence in the model, we consider the data generating process with �0 = �0 = 0:3.

Table 3 reports the estimation results when �0 = �0 = 0:3 and �2� = 1.39 The quadratic moment

37 In the previous version of the paper, we have also experimented with di¤erent values of �0. When �0 takes a
larger value, the linear moment would be more informative. In that case, the additional quadratic moments used by
GMM do not improve much of the e¢ ciency of the 2SLS except for �0.
38For the case with �many� IVs we have also tried to include additional IVs such as JMW� and JW 2�. The

estimation results with additional IVs are similar to those reported here with a slightly larger bias in the GMM
estimator of �0. And such a bias can be reduced by the proposed bias-correction procedure.
39The estimation results where �0 = �0 = 0:3 and �

2
� = 0:04 show a similar pattern.
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conditions for the GMM estimators in Section 4.3 are the best under the normality assumption. To

study the robustness of the GMM estimator, we consider the case where the disturbances follow the

gamma distribution.40 The estimation results when �0 = �0 = 0:1 and �
2
� = 1 are reported in Table

4. The simulation results are summarized as follows.

[Tables 1-4 approximately here]

(1) The additional linear moment conditions based on the centrality measure substantially reduce

SDs in 2SLS estimators of �0; �02 and GMM estimators of �0; �0; �02. For the benchmark results

reported in Table 1, SD reductions of 2SLS estimators of �0 and �02 with Q2 relative to those with

Q1 are, respectively, about 69% and 23% when mr = 10 and �r = 30. For the case in Table 2 when

the additional IVs are less informative, SD reductions are small relative to those of the benchmark

case. For the case when the social dependence is stronger, we �nd in Table 3 that SD reductions

of both 2SLS and GMM estimators of �0 are larger than those in Table 1. For the case under

non-normality in Table 4, we observe a similar pattern.

(2) The additional instruments in Q2 introduce biases into 2SLS estimators of �0; �02 and GMM

estimators of �0; �0. For the benchmark case reported in Table 1, the 2SLS estimator of �0 with Q2

is downwards biased by 38% and that of �02 is upwards biased by 7% whenmr = 10 and �r = 30. The

magnitude of the bias reduces as the group size increases. The impact of the number of groups on

the bias is less obvious. For the case in Table 2 where the additional instruments are less informative,

biases introduced by the additional IVs are much larger than those reported in Table 1. For the case

in Table 3 where the social dependence is stronger, the �many instrument�bias is smaller than the

benchmark case in Table 1.

(3) The proposed bias-correction procedure substantially reduces the many-instrument bias for

both the 2SLS and GMM estimators. In Table 1, bias reductions of 2SLS estimators of �0 and

�02 with Q2 are, respectively, about 79% and 57%, when mr = 10 and �r = 30. For other cases

considered in Tables 2-4, we observe a similar pattern.

(4) The optimal GMM improves the e¢ ciency upon the 2SLS method. Those optimal GMM

estimators given in (iv) have smaller SDs than corresponding 2SLS estimators with the IV matrix

Q1 in the estimation of �0, �0 and �02. In Table 1, SD reductions of GMM estimators of �0, �0

and �02 relative to 2SLS estimators are, respectively, about 43%, 30% and 16%, when mr = 10 and

40We also experimented with t distribution and mixed-normal distribution. The simulation results are similar to
those reported here.

21



�r = 30. The optimal GMM estimators with �many� IVs given in (v) have smaller SDs than the

2SLS with the IV matrix Q2 in the estimation of �0 and �0. In Table 1, SD reductions of GMM

estimators of �0 and �0 relative to 2SLS estimators are, respectively, about 16% and 52%, when

mr = 10 and �r = 30. Similarly, for the case in Table 2, the optimal GMM estimators have smaller

SDs than 2SLS estimators. Especially, the SD reduction in the GMM estimator of �0 with �many�

IVs given in (v) relative to the corresponding 2SLS estimator with Q2 is much larger than that

in Table 1. Under non-normality, we �nd in Table 4 that the quadratic moments in GMM help

to reduce SDs of 2SLS estimators. However, when the sample size is small, the magnitude of SD

reduction in the estimation of �0 is smaller than that in the case under normality. Furthermore, for

all cases considered, the optimal GMM estimator of �0 with �many�IVs given in (v) is less biased

than the 2SLS estimator with the IV matrix Q2.

6 Conclusion

This paper considers the speci�cation, identi�cation and estimation of social interaction models with

network structures and the presence of endogenous, contextual, correlated and group �xed e¤ects.

We pay special attention to the role of centrality of members in a network on the identi�cation and

estimation of interaction e¤ects on outcomes. The network structure in a group is captured by a

sociomatrix W . For the case that W is not row-normalized and the indegrees of its nodes are not

all equal, the di¤erent positions of members in the network as measured by the Bonacich (1987)

centrality provide additional information for identi�cation. In that case, the Bonacich centrality

measure for each group can be used as an IV to improve estimation e¢ ciency. However, the number

of such IVs depends on the number of groups. If the number of groups grows with the sample

size, so does the number of IVs. Taking into account the many possible IVs, we consider the 2SLS

and GMM estimation for the model. We show that the proposed estimators can be consistent and

asymptotically normal, and they can be e¢ cient relative to those with a �nite number of IV moment

conditions when the sample size grows fast enough relative to the number of IVs. We also suggest

bias-correction procedures for the proposed 2SLS and GMM estimators based on the estimated

leading order biases due to the presence of many IVs.

In a social interaction model, sometimes, more than one sociomatrix needs to be introduced to

capture di¤erent types of relationships. Following a similar strategy as in Lee and Liu (2010), the

proposed 2SLS and GMM methods can be easily generalized to estimate a general multi-relational

22



network.

APPENDICES

A Summary of Notations

� A� denotes the generalized inverse of a square matrix A.

� D(A1; � � � ; AK) is a block diagonal matrix with mk � nk diagonal blocks Ak�s.

� For an n� n matrix A = [aij ], vecD(A) = (a11; � � � ; ann)0.

� Z = (WY;X); �0 = (�0; �00)0; �0 = (�0; �00)0; �0 = (�01; � � � ; �0�r)0; � = D(lm1
; � � � ; lm�r

).

� ej is the jth unit (column) vector.

� S(�) = I � �W ; S = S(�0); R(�) = I � �M ; R = R(�0); G =WS�1; �G = RGR�1.

� IfMrlmr 6= clmr for any constant c, Jr = Imr�(lmr ;Mrlmr )[(lmr ;Mrlmr )
0(lmr ;Mrlmr )]

�(lmr ;Mrlmr )
0;

Otherwise, Jr = Imr
� 1

mr
lmr
l0mr
. J = D(J1; � � � ; J�r).

� For an n� n matrix A, As = A+A0 and At = A� tr(A)J=tr(J).

� f(�) = JR(�)E(Z); f = f(�0) = JRE(Z); v = J �G�; H = limn!1
1
nf

0f .

� PK = QK(Q0KQK)�Q0K ; 	K = PK �G; ef (K) = 1
nf

0(I � PK)f ; �K = tr(ef (K)).

� �(�) = JR(�)(Y �Z�) = d(�)+r(�)�, where d(�) = f(�)(�0��) = f(�0��)+(�0��)z(�0��),

r(�) = JR(�)S(�)S�1R�1, and z = JME(Z).

� ! = [vecD(U1); � � � ; vecD(Uq)]; � = 1
2 [vec(U

s
1 ); � � � ; vec(Usq )]0[vec(Us1 ); � � � ; vec(Usq )].

� �g2(�) = �3
�20
!0PK�(�)� g2(�), where g2(�) = [U1�(�); � � � ; Uq�(�)]0�(�).

� �D2 = D2 � �3
�20
(0; !0f), �D2 = D2 � �3

�2 (0; !
0PRZ), where

D2 = E(
@

@�0
g2 (�0)) = ��20

0BBBB@
tr(Us1MR

�1) tr(Us1
�G) 0

...
...

...

tr(UsqMR
�1) tr(Usq

�G) 0

1CCCCA :
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B Some Useful Lemmas

To simplify notations, we drop the K subscript on PK and 	K . Let MI refer to the Markov

Inequality, and CSI to the Cauchy-Schwartz inequality. Let kAk =
p
tr(A0A) denote the Frobenius

(Euclidean) norm for an m� n matrix A unless noted otherwise.

Lemma B.1 Under Assumption 5, there exists a K � (k + 1) matrix �K such that 1
n jjE(Z) �

Q0K�K jj2 ! 0 as n;K !1.

Proof. For any n-dimensional vector x, the Frobenius norm jjxjj and the row sum norm jjxjj1

satisfy 1
n jjxjj

2 � (jjxjj1)2. Hence, 1n jjE(Z)�Q
0
K�K jj2 � (jjE(Z)�Q0K�K jj1)2 ! 0 as n;K ! 1.

Lemma B.2 (i) tr(P ) = K. (ii) Suppose that fAg is a sequence of n�n UB matrices. For B = PA,

tr(B) = O(K), tr(B2) = O(K), and
P

i(Bii)
2 = O(K), where Bii�s are diagonal elements of B.

Proof. (i) Trivial. (ii) First we show that tr(B) = O(K). By eigenvalue decomposition, AA0 = ���0

where � is an orthonormal matrix and � is the eigenvalue matrix. It follows that PAA0P �

�maxP , where �max is the largest eigenvalue. By the spectral radius theorem, tr(PAA0P ) �

jjAA0jj1tr(P ) = O(K). By CSI, jtr(B)j � tr1=2(P )tr1=2(PAA0P ) = O(K). By CSI, tr(B2) �

tr(BB0) = tr(PAA0P ) = O(K). The last result holds because
P

i(Bii)
2 � tr(B0B) = O(K).

Lemma B.3 (i) �K = o(1), 1
n tr[z

0(I � P )z] = o(1) (ii) f 0(I � P )�=
p
n = Op(�

1=2
K ), f 0(I �

P )v=
p
n = Op(�

1=2
K ), 1

n!
0(I � P )f = O(�

1=2
K ), 1

n!
0(I � P )z = O(

q
1
n tr[z0(I � P )z]), (iii)

�0B0PA� = Op(K), C 0PA� = Op(
p
nK), C 0PD = O(n), where fAg and fBg are sequences

of n � n UB matrices and the elements of C and D are uniformly bounded constants, and (iv)

E(v0P��0Pv) = (�4 � 3�40)
P

i	
2
ii + �

4
0[tr

2(	) + tr(	0	) + tr(	2)] = �40tr
2(	) +Op(K).

Proof. The �rst part of (i) follows by Lemma A.3 (i) in Donald and Newey (2001) and Lemma

B.1. For the second part of (i), by Assumption 5 and Lemma B.1, 1
n tr(z

0(I � P )z) = 1
n tr[(z �

JMQ0K�K)
0(I �P )(z� JMQ0K�K)] � 1

n tr[(z� JMQ
0
K�K)

0(z� JMQ0K�K)]! 0. The �rst part

of (ii) is Lemma A.3 (ii) in Donald and Newey (2001). For the second half of (ii), Var[ 1p
n
f 0(I �

P )J �G�] =
�20
n f

0(I �P )J �G �G0J(I �P )f � �20
n f

0(I �P )f � jjJ �G �G0J jj1 = O(�K). So 1p
n
f 0(I �P )v =

Op(�
1=2
K ). By CSI, 1n je

0
i!
0(I � P )fej j �

q
1
ne

0
i!
0!ei

q
1
ne

0
jf
0(I � P )fej = O(�

1=2
K ), which implies

1
n!

0(I � P )f = O(�
1=2
K ). By the same argument, 1

n!
0(I � P )z = O(

q
1
n tr[z0(I � P )z]). For
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(iii), as Ej�0B0PA�j � [E(�0B0PB�)]1=2[E(�0A0PA�)]1=2 = �20[tr(B
0PB)tr(A0PA)]1=2 = O(K) by

Lemma B.2 (ii), �0B0PA� = Op(K) by MI. By CSI, je0jC 0PA�j �
q
e0jC

0Cej
p
�0A0PA� = Op(

p
nK).

Hence, C 0PA� = Op(
p
nK). By CSI, je0iC 0PDej j �

p
e0iC

0Cei
q
e0jD

0PDej = O(n), which implies

C 0PD = O(n). For (iv), E(v0P��0Pv) =E(�0	0��0	�) = (�4 � 3�40)
P

i	
2
ii + �

4
0[tr

2(	) + tr(	0	) +

tr(	2)] = �40tr
2(	) +Op(K) by Lemma B.2.

Lemma B.4 Suppose that fAg and fBg are sequences n� n UB matrices and K=n = O(1). Then

(i) 1nZ
0R0PRZ = 1

nf
0f+Op(

p
K=n)+O(�K) = Op(1), 1n!

0PRZ = 1
n!

0f+Op(
p
K=n)+O(�

1=2
K ) =

Op(1), (ii) [Z 0R0P���20tr(	)e1]=
p
n = f 0�=

p
n+Op(

p
K=n)+Op(�

1=2
K ) = Op(1), (iii) 1

nZ
0B0PA� =

Op(
p
K=n), 1nZ

0B0PAZ = Op(1), 1n!
0PAZ = Op(1).

Proof. For (i), as JRZ = f + ve01,
1
nZ

0R0PRZ = 1
nf

0f � ef (K) + 1
nv

0Pve1e
0
1 +

1
n (f

0Pve01)
s,

where ef (K) = O(�K), and 1
nv

0Pv = Op(K=n) and 1
nf

0Pv = Op(
p
K=n) by Lemma B.3 (iii).

1
n!

0PRZ = 1
n!

0Pf + 1
n!

0Pve01, where
1
n!

0Pf = 1
n!

0f � 1
n!

0(I � P )f = 1
n!

0f + O(�
1=2
K ) and

1
n!

0Pve01 = Op(
p
K=n) by Lemma B.3 (iii). For (ii), as JRZ = f+ve01, [Z

0R0P���20tr(	)e1]=
p
n =

f 0�=
p
n� f 0(I �P )�=

p
n+ [v0P���20tr(	)]e1=

p
n. By Lemma B.3 (ii), f 0(I �P )�=

p
n = Op(�

1=2
K ).

As E(v0P��0Pv) = �40tr
2(	) + O(K) by Lemma B.3 (iv) and E(v0P�) = �20tr(	), we have [v

0P� �

�20tr(	)]=
p
n = Op(

p
K=n). For (iii), as Z = [G(X�0 + ��0); X] + GR

�1�e01, the result follows by

Lemma B.3 (iii).

Lemma B.5 Suppose ~� is a consistent estimator of �0 and ~R = R(~�). Then, (i) 1
nZ

0 ~R0P ~RZ =

1
nZ

0R0PRZ+Op(~���0), (ii) 1
n!

0P ~RZ = 1
n!

0PRZ+Op(~���0), (iii) 1
nZ

0 ~R0P ~RR�1� = 1
nZ

0R0P�+

O((~�� �0)
p
K=n).

Proof. As ~R = R � (~� � �0)M , we have 1
nZ

0 ~R0P ~RZ = 1
nZ

0R0PRZ � (~� � �0) 1n (Z
0M 0PRZ)s +

(~���0)2 1nZ
0M 0PMZ, 1n!

0P ~RZ = 1
n!

0PRZ� (~���0) 1n!
0PMZ, and 1

nZ
0 ~R0P ~RR�1� = 1

nZ
0R0P��

(~���0) 1n (Z
0M 0P�+Z 0R0PMR�1�)+(~���0)2 1nZ

0M 0PMR�1�. The results hold as 1
nZ

0M 0PRZ =

Op(1), 1nZ
0M 0PMZ = Op(1), 1n!

0PMZ = Op(1), 1n (Z
0M 0P� + Z 0R0PMR�1�) = Op(

p
K=n), and

1
nZ

0M 0PMR�1� = Op(
p
K=n) by Lemma B.4.

Lemma B.6 �(�) = JR(�)(Y � Z�) = d(�) + r(�)�, where d(�) = f(�0 � �) + (�0 � �)z(�0 � �);

z = JME(Z), and r(�) = JR(�)S(�)S�1R�1 = J + (�0 � �)JMR�1 + (�0 � �)J �G+ (�0 � �)(�0 �

�)JMR�1 �G.
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Proof. As JR(�)� = 0, S(�)S�1 = I + (�0 � �)G and R(�) = R+ (�0 � �)M , it follows that �(�) =

JR(�)(Y �Z�) = JR(�)[X(�0��)+(�0��)G(X�0+��0)+S(�)S�1u] = d(�)+r(�)�, where d(�) =

JR(�)E(Z)(�0 � �) = JRE(Z)(�0 � �) + (�0 � �)JME(Z)(�0 � �), and r(�) = JR(�)S(�)S�1R�1.

Lemma B.7 If �� � �0 = Op(K=n), where K=n ! c < 1 and c � 0, then (i) 1
n
@�0(��)
@� P @�(��)

@�0 =

D(0; 1nZ
0R0PRZ)+Op(

p
K=n), (ii) 1

n
@�g2(��)
@�0 = 1

n
�D2+Op(

p
K=n), (iii) 1

n
@2�0(��)
@�0@� P�(

��) = Op(
p
K=n),

1
n!

0P @2�(��)
@�@�0 = Op(1),

1
n
@2g2(��)
@�@�0 = Op(1), and (iv)

~�3
~�2

1
n!

0P�(��)� 1
ng2(

��) = O(
p
K=n).

If ����0 = op(1), then (v) 1
n
@�0(��)
@� P @�(��)

@�0 = D(0;H)+op(1), (vi)
1
n
@�g2(��)
@�0 = limn!1

1
n
�D2+op(1),

(vii) 1
n
@2�0(��)
@�0@� P�(

��) = op(1), 1
n!

0P @2�(��)
@�@�0 = Op(1), 1

n
@2g2(��)
@�@�0 = Op(1), and (viii)

~�3
~�2

1
n!

0P�(��) �
1
ng2(

��) = op(1).

Proof. Here we show the �rst set of results holds when ����0 = Op(K=n). The second set of results

under �� � �0 = op(1) is a straightforward extension.

For (i), as JM� = 0 and R(�) = R + (�0 � �)M , we have
@�(�)
@�0 = �J [Mu +MZ(�0 � �); RZ +

(�0 � �)MZ]: As u = R�1�, by Lemma B.3 and B.4, 1
nu

0M 0PMu = Op(K=n), 1
nu

0M 0P sMZ =

Op(
p
K=n), and 1

nZ
0M 0PMZ = Op(1). As ����0 = Op(K=n), we have 1

n [Mu+MZ(�0���)]
0P [Mu+

MZ(�0 � ��)] = Op(K=n). Similarly, 1n [RZ + (�0 � ��)MZ]
0P [Mu+MZ(�0 � ��)] = Op(

p
K=n), and

1
n [RZ + (�0 � ��)MZ]

0P [RZ + (�0 � ��)MZ] = 1
nZ

0R0PRZ + Op(K=n). Hence, 1
n
@�0(��)
@� P @�(��)

@�0 =

D(0; 1nZ
0R0PRZ) +Op(

p
K=n).

For (ii), 1
n
@�g2(��)
@�0 = �3

n�20
!0P @�(��)

@�0 +
1
n
@g2(��)
@�0 . By Lemma B.3 (iii)

1
n!

0PMu = Op(
p
K=n), and

by Lemma B.4 1
n!

0PMZ = Op(1). It follows that 1
n!

0P [Mu + MZ(�0 � ��)] = Op(
p
K=n),

and 1
n!

0P [RZ + (�0 � �)MZ] = 1
n!

0PRZ + Op(K=n). Hence 1
n!

0P @�(��)
@�0 = �(0; 1n!

0PRZ) +

Op(
p
K=n). On the other hand, 1

n
@g2(��)
@�0 = 1

n [U
s
1 �(
��); � � � ; Usq �(��)]0

@�(��)
@�0 , where

1
n�
0(��)Uj

@�(��)
@�0 =

� 1
n�
0(��)Uj [Mu+MZ(�0 � ��); RZ + (�0 � ��)MZ]. By Lemma B.6 and Lee (2004), 1nd

0(��)UjMu =

1
n (�0���)

0f 0UjMu+
1
n (�0��)(�0���)

0z0UjMu = Op((����0)=
p
n), 1n�

0r0(��)UjMu =
1
n�
0UjMu+(�0�

�) 1n�
0(MR�1)0UjMu+(�0��) 1n�

0 �G0UjMu+(�0��)(�0��) 1n�
0(MR�1 �G)0UjMu =

�20
n tr(UjMR

�1)+

Op(maxf(�� � �0); 1=
p
ng); 1

nd
0(��)UjMZ(�0 � ��) = Op((�� � �0)2), and 1

n�
0r0(��)UjMZ(�0 � ��) =

Op((�� � �0)). It follows that �0(��)Uj [Mu+MZ(�0 � ��)] = 1
n tr(UjMR

�1) +Op(maxf1=
p
n;K=ng).

Similarly, as 1
nd

0(��)UjRZ = Op((�� � �0)), 1n�
0r0(��)UjRZ =

�20
n tr(Uj

�G) + Op(maxf(�� � �0); 1=
p
ng),

(�0 � ��) 1nd
0(��)UjMZ = Op((�0 � ��)(�� � �0)), and (�0 � ��) 1n�

0r0(��)UjMZ = Op((�0 � ��)), we have

� 1
n [d(

��) + r(��)�]0Uj [RZ + (�0 � ��)MZ] = 1
n tr(Uj

�G) + Op(maxf1=
p
n;K=ng). Hence, 1

n
@g2(��)
@�0 =
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1
nD2 +Op(maxf1=

p
n;K=ng). In summary, 1n

@�g2(��)
@�0 = 1

n
�D2 +Op(

p
K=n).

For (iii), @2

@�0@��(�) = JMZ. By Lemma B.4
1
nZ

0M 0Pd(��) = 1
nZ

0M 0Pf(�0���)+(�0���) 1nZ
0M 0Pz(�0�

��) = Op(��� �0), and 1
nZ

0M 0Pr(��)� = 1
nZ

0M 0P�+(�0� ��) 1nZ
0M 0P �G�+(�0� ��) 1nZ

0M 0PMR�1�+

(�0���)(�0� ��) 1nZ
0M 0PMR�1 �G� = Op(

p
K=n). Hence, 1nZ

0M 0P�(��) = Op(
p
K=n), which implies

that 1
n
@2�0(��)
@�0@� P�(

��) = Op(
p
K=n). Similarly, 1

n!
0P @2�(��)

@�@�0 = Op(1) by Lemma B.4. On the other

hand, 1n
@2g2(��)
@�@�0 =

1
n [U

s
1
@�(��)
@�0 ; � � � ; U

s
q
@�(��)
@�0 ]

0 @�(��)
@�0 +

1
n [U

s
1 �(
��); � � � ; Usq �(��)]0

@2�(��)
@�@�0 = Op(1).

For (iv), as 1
n!

0Pd(��) = O(�� � �0) and 1
n!

0Pr(��)� = O(
p
K=n), it follows that 1

n!
0P�(��) =

O(
p
K=n). On the other hand, by Lemma B.6 and Lee (2004), 1

nd
0(��)Ujd(��) = Op((�0 � ��)2),

1
nd

0(��)Ujr(��)� = Op((�0 � ��)=
p
n) and 1

n�
0r0(��)Ujr(��)� = Op(1=

p
n). It follows that 1

ng2(
��) =

1
n [U

s
1 �(
��); � � � ; Usq �(��)]0�(��) = Op(maxf(�0 � ��)2; 1=

p
ng). In summary, ~�3

~�2
1
n!

0P�(��) � 1
ng2(

��) =

O(
p
K=n).

Lemma B.8 Suppose that K3=2=n ! 0, z1 and z2 are n-dimensional column vectors of uniformly

bounded constants, the sequence of n�n constant matrices fAg is UBC, and fB1g and fB2g are UB,

and �1; � � � ; �n are i.i.d. with zero mean and �nite second moment. (�̂��0) = Op(maxf1=
p
n;K=ng)

where �0 is a p-dimensional vector in the interior of its convex parameter space. For notational

simplicity, denote (�̂��0)<i> =
Pp

j1=1
� � �
Pp

ji=1
(�̂j1 ��j10) � � � (�̂ji ��ji0). The matrix C(�̂) has

the expansion that

C(�̂)� C(�0) =
Pm�1

i=1 (�̂� �0)
<i>Ki (�0) + (�̂� �0)<m>Km(�̂); (14)

for some m � 2, where fC(�0)g and fKi (�0)g are UB for i = 1; � � � ;m � 1, and fKm (�)g is UB

uniformly in a small neighborhood of �0. Then, for �1 = C(�̂) � C(�0), (i) 1
nz

0
1�1z2 = op(1); (ii)

1p
n
z01�1A� = op(1); (iii) if (14) holds for m > 2, 1

n�
0B01�1B2� = op(1); and (iv) if (14) holds for

m > 4 with tr(Ki (�0)) = 0 for i = 1; � � � ;m� 1, 1p
n
�0�1� = op(1).

Furthermore, suppose another matrix D(
̂) has the expansion that

D(
̂)�D(
0) =
Pm�1

i=1 (
̂ � 
0)
<i>Li (
0) + (
̂ � 
0)<m>Lm(
̂); (15)

for some m � 2, where all the components on the right hand side have the same properties of

corresponding ones in (14). Then, for �2 = (C(�̂)� C(�0))(D(
̂)�D(
0)), (v) 1
nz

0
1�2z2 = op(1);

(vi) 1p
n
z01�2A� = op(1); (vii) if (14) and (15) hold for m > 2, 1

n�
0B01�2B2� = op(1); and (viii) if
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(14) and (15) hold for m > 4 with tr(Ki (�0)Lj (
0)) = 0 for i; j = 1; � � � ;m� 1, 1p
n
�0�2� = op(1).

Proof. If K2=n! c <1, then (�̂��0) = Op(1=
p
n), and, so, the results follow Lemma D.10 in Liu

et al. (2009). For the case thatK2=n!1 andK3=2=n! 0 such that (�̂��0) = Op(K=n), the proof

follows a similar argument as that in Lemma D.10 in Liu et al. (2009). Here, we only detail the proof

of (ii). Let U = 1p
n
z01(C(�̂) � C(�0))A�. Then, with (14), U = U1 + U2 where U1 =

Pm�1
i=1 (�̂ �

�0)
<i> 1p

n
z01Ki(�0)A� = op(1), because 1p

n
z01Ki (�0)A� = Op(1) by Lee (2004), and U2 = (�̂ �

�0)
<m> 1p

n
z01Km(�̂)A�. Because the product of UBC matrices is UBC, jjKm(�̂)Ajj1 � c1 for some

constant c1 for all n. As elements of z1 are uniformly bounded, kz01k1 � c2 for some constant c2. It

follows that jjU2jj1 � n1=2jj�̂��0jjm1 �jjz01jj1�jjKm(�̂)Ajj1� 1n jj�jj1 � c1c2n
1=2jj�̂� �0jjm1 � ( 1n

Pn
i=1 j�ij):

As K3=2=n! 0, U2 = op(1) for m � 2 because (�̂��0) = Op(K=n) and 1
n

Pn
i=1 j�ij = Op(1) by the

strong law of large numbers. The desired result follows.

Lemma B.9 Suppose that K3=2=n ! 0, z1 and z2 are n-dimensional column vectors of constants

which are uniformly bounded, the sequence of n � n constant matrices fAg is UBC, fB1g and

fB2g are UB, and �1; � � � ; �n are i.i.d. with zero mean and �nite fourth moment. (�̂ � �0) =

Op(maxf1=
p
n;K=ng). Let C be eitherMR�1 or �G, and let Ĉ be its estimated counterpart with �̂ for

�0. For � = Ĉ�C, �L represents its linearly transformed matrix which preserves the UB property.

Then, we have (i) 1
nz

0
1�

Lz2 = op(1), 1p
n
z01�

LA� = op(1), 1
n�
0B01�

LB2� = op(1), 1p
n
�0�t� = op(1);

(ii) 1
n tr(A

0�L) = op(1). In addition, if fD (
)g is UB uniformly in a small neighborhood of 
0 that

is in the interior of its parameter space, then (iii) 1
n tr[D

0 (
̂)�L] = op(1), where 
̂ � 
0 = op(1).

Proof. Based on Lemma B.8, with an estimator of order Op(maxf1=
p
n;K=ng), Lemma B.9 follows

the same argument as in the proof of Lemma D.11 in Liu et al. (2009).

C Proofs

Proof of Lemma 3.1. Let �(p)0 = (1; �0; � � � ; �p0), and 
 denote the Kronecker product. For

�
(p)
K =

0B@ �
(p)
0 
 �00 ��(p)0 
 (�0�00) �

(p)
0 
 �00 ��(p)0 
 (�0�00) 0 0

0 0 0 0 Ik ��0Ik

1CA
0

;

Q
(p)
K �

(p)
K = JR[(

Pp
j=0 �

j
0W

j+1)(X�0 + ��0); X]. Hence, when sup jj�0W jj1 < 1, it follows that

jjf�Q(p)K �
(p)
K jj1 = jjJR[�p+10 W p+2S�1(X�0+��0); 0]jj1 = jjJRjj1�jj�0W jjp+11 �jjG(X�0+��0)jj1 =

o(1) as p!1.
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Proof of Proposition 1. As J ~R� = 0,
p
n(�̂2sls � �0) =

p
n(Z 0 ~R0P ~RZ)�1Z 0 ~R0P ~RR�1�. By

Lemmas B.5 and B.4, 1nZ
0 ~R0P ~RZ = 1

nZ
0R0PRZ+Op(1=

p
n) = H+ op(1). As

p
n(~���0) = Op(1),

by Lemmas B.5 and B.4, [Z 0 ~R0P ~RR�1�� �20tr(	)e1]=
p
n = [Z 0R0P�� �20tr(	)e1]=

p
n+O(

p
n(~��

�0)
p
K=n) = f 0�=

p
n+ op(1)

d! N(0; �20H). The conclusion follows by the Slutzky theorem.

Proof of Corollary 1. (i) and (ii) are trivial. For (iii), as 0 < � < 1, K�=
p
n <

p
K1+�=n! 0.

As
p
n(�̂2sls��0�b2sls) = Op(1), (K�=

p
n)
p
n(�̂2sls��0�b2sls) = op(1). Note that b2sls = Op(K=n)

andK�b2sls = Op(K
1+�=n) = op(1). It follows thatK�(�̂2sls��0) = K�(�̂2sls��0�b2sls)+K�b2sls =

op(1).

Proof of Proposition 2. The 2SLS estimator satis�es �̂2sls��0�b2sls = (Z 0 ~R0P ~RZ)�1(Z 0 ~R0P ~RR�1��

�20tr(	)e1)+[(
1
nZ

0 ~R0P ~RZ)�1�( 1nZ
0R0PRZ)�1]�20

1
n tr(	)e1: By Lemmas B.5 and B.4, (

1
nZ

0 ~R0P ~RZ)�1 =

( 1nZ
0R0PRZ)�1+op(1) = Op(1). Also 1

n tr(	) = O(K=n) = O(1). By Lemma B.5,
1
n [Z

0 ~R0P ~RR�1��

�20tr(	)e1] =
1
n [Z

0R0P�� �20tr(	)e1] +Op((~�� �0)
p
K=n) = 1

n [Z
0R0P�� �20tr(	)e1] + op(1), where

1
n [Z

0R0P���20tr(	)e1] = Op(1=
p
n) by Lemma B.4. The conclusion follows by the Slutzky theorem.

Proof of Proposition 3. From the proof of Proposition 1, it is su¢ cient to show that [~�2tr(P ~R ~G ~R�1)�

�20tr(	)]=
p
n = op(1). As ~G � G = (~� � �0) ~GG, ~R � R = �(~� � �0)M , and ~R�1 � R�1 =

(~�� �0) ~R�1MR�1, it follows that ~R ~G ~R�1�RGR�1 = ( ~R�R) ~G ~R�1+R( ~G�G) ~R�1+RG( ~R�1�

R�1) = �(~�� �0)M ~G ~R�1 + (~�� �0)R ~GG ~R�1 + (~�� �0)RG ~R�1MR�1: Hence, [~�2tr(P ~R ~G ~R�1)�

�20tr(	)]=
p
n =

p
n(~�2 � �20)tr(P ~G)=n+

p
n�20tr[P (

~R ~G ~R�1 �RGR�1)]=n = Op(K=n) = op(1).

Proof of Proposition 4. The GMM minimizes 1
ng

0(�)~
�1g(�) = 1
ng

0(�)
�1g(�) + 1
ng

0(�)(~
�1 �


�1)g(�), where 1ng
0(�)
�1g(�) = ��20

1
n�
0(�)P�(�)+[�3�

�2
0

1
n!

0P�(�)� 1
ng2(�)]

0nB22[�3�
�2
0

1
n!

0P�(�)�
1
ng2(�)]: First, we show that the minimizer of 1

ng
0(�)
�1g(�) in � is a consistent estimator of

�0. As �(�) = d(�) + r(�)� by Lemma B.6, 1
n�
0(�)P�(�) = 1

nd
0(�)Pd(�) + 2

n
(�) +
1
nq(�), where


(�) = d0(�)Pr(�)� and q(�) = �0r0(�)Pr(�)�. 
(�) is linear in � and is a third degree polynomial

of �. By Lemma B.3 (iii), 1n
(�) = Op(
p
K=n) = op(1) and, similarly, 1nq(�) = Op(K=n) = op(1)

uniformly in � 2 �. The uniform convergence in probability follows because 
(�) and q(�) are simply
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polynomial functions of � and � is a bounded set. It follows that

1

n
�0(�)P�(�) =

1

n
d0(�)Pd(�) + op(1)

=
1

n
(�0 � �)0ff 0f � f 0(I � P )f + (�0 � �)[f 0z� f 0(I � P )z]s

+(�0 � �)2[z0z�z0(I � P )z]g(�0 � �) + op(1)

= (�0 � �)0[H + (�0 � �)
1

n
(f 0z)s + (�0 � �)2

1

n
z0z](�0 � �) + op(1)

! (�0 � �)0 lim
n!1

1

n
f 0(�)f(�)(�0 � �): (16)

By Assumption 4, H is nonsingular, so (�0 � �)0 limn!1
1
nf

0(�)f(�)(�0 � �) � 0, with equality i¤

� = �0. Similarly, as 1
n!

0Pr(�)� = Op(
p
K=n) = op(1) uniformly in � 2 �,

1

n
!0P�(�) =

1

n
!0Pd(�) + op(1)

= [
1

n
!0f � 1

n
!0(I � P )f ](�0 � �) + (�0 � �)[

1

n
!0z� 1

n
!0(I � P )z](�0 � �) + op(1)

! lim
n!1

1

n
!0f(�0 � �) + (�0 � �) lim

n!1

1

n
!0z(�0 � �): (17)

Hence, 1n!
0P�(�) has a limit of zero at � = �0. Lastly, because the number of quadratic moments

does not depend on sample size, by a similar argument in the proof of Proposition 1 of Lee (2007a),

1
ng2(�)�

1
nE[g2(�)]

p! 0 uniformly in � in any bounded set for �. The consistency follows from the

uniform convergence in probability and the identi�cation uniqueness of the limiting function.

It remains to show that 1
ng

0(�)(~
�1 � 
�1)g(�) = op(1) uniformly in � 2 �. 1
ng

0(�)(~
�1 �


�1)g(�) = (~��2���20 ) 1n�
0(�)P�(�)+ 1

n�
0(�)P![( ~�3

~�2
)2n ~B22�(�3�20 )

2nB22]
1
n!

0P�(�)� 2
n�
0(�)P!( ~�3

~�2
n ~B22�

�3
�20
nB22)

1
ng2(�) +

1
ng

0
2(�)(n

~B22 � nB22) 1ng2(�): From (16), as 1
nf

0Pz and 1
nz

0Pz are O(1) by

Lemma B.3 (iii), 1
n�
0(�)P�(�) = Op(1) uniformly in � 2 �. From (17), as 1

n!
0Pz = O(1) by

Lemma B.3 (iii), 1
n jj!

0P�(�)jj = Op(1) uniformly in � 2 �. By a similar argument in the proof

of Proposition 2 in Lee (2007a), 1
n jjg2(�)jj = Op(1) uniformly in � 2 �. As 1

n!
0P! = O(1) by

Lemma B.3 (iii), 1
n
~B�122 � 1

nB
�1
22 = [(~�4 � 3(~�2)2) � (�4 � 3�40)] 1n!

0! + ((~�2)2 � �40) 1n� � (
~�23
~�2
�

�23
�20
) 1n!

0P! = op(1). It follows that n ~B22�nB22 = op(1) by the continuous mapping theorem. Hence,

jj 1n�
0(�)P![( ~�3

~�2
)2n ~B22 � (�3�20 )

2nB22]
1
n!

0P�(�)jj � ( 1n jj!
0P�(�)jj)2jj( ~�3

~�2
)2n ~B22 � (�3�20 )

2nB22jj = op(1),

jj 1n�
0(�)P!( ~�3

~�2
n ~B22 � �3

�20
nB22)

1
ng2(�)jj � jj

1
n�
0(�)P!jj � jj ~�3

~�2
n ~B22 � �3

�20
nB22jj � jj 1ng2(�)jj = op(1), and

jj 1ng
0
2(�)(n

~B22� nB22) 1ng2(�)jj � (
1
n jjg2(�)jj)

2jjn ~B22� nB22jj = op(1) uniformly in � 2 �. It follows
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that 1
ng

0(�)(~
�1 � 
�1)g(�) = op(1) uniformly in � 2 �.

Proof of Proposition 5. By the Taylor expansion of @g
0(�̂)
@�

~
�1g(�̂) = 0 at �0,

p
n(�̂ � �0) = �[

1

n

@g0(��)

@�
~
�1

@g(��)

@�0
+
1

n

@2g0(��)

@�0@�
~
�1g(��)]�1

1p
n

@g0(�0)

@�
~
�1g(�0): (18)

First, 1n
@g0(��)
@�

~
�1 @g(
��)

@�0 = 1
n
@g0(��)
@� 
�1 @g(

��)
@�0 +

1
n
@g0(��)
@� (~
�1 �
�1)@g(��)@�0 . By Lemma B.7 (v) and (vi),

1
n
@g0(��)
@� 
�1 @g(

��)
@�0 =

��20
n

@�0(��)
@� P @�(��)

@�0 + 1
n
@�g02(

��)
@� B22

@�g2(��)
@�0 = D(0;H) + lim 1

n
�D0
2B22

�D2 + op(1). As

1
n (
~B�122 �B�122 ) = [(~�4�3(~�2)2)�(�4�3�40)] 1n!

0!+((~�2)2��40) 1n��(
~�23
~�2
� �23
�20
) 1n!

0P! = Op(1=
p
n),

n( ~B22 � B22) = Op(1=
p
n). As 1

n
@�0(��)
@� P @�(��)

@�0 = Op(1), we have
1
n
@�0(��)
@� P! = Op(1), and 1

n
@g2(��)
@�0 =

Op(1) by Lemma B.7 (v) and (vi), it follows that

1

n

@g0(��)

@�
(~
�1 � 
�1)@g(

��)

@�0

= (~��2 � ��20 )
1

n

@�0(��)

@�
P
@�(��)

@�0
+
1

n

@�0(��)

@�
P![(

~�3
~�2
)2n ~B22 � (

�3
�20
)2nB22]

1

n
!0P

@�(��)

@�0

�2 1
n

@�0(��)

@�
P!(

~�3
~�2
n ~B22 �

�3
�20
nB22)

1

n

@g2(��)

@�0
+
1

n

@g02(
��)

@�
(n ~B22 � nB22)

1

n

@g2(��)

@�0

= Op(1=
p
n): (19)

Next,

1

n

@2g0(��)

@�0@�
~
�1g(��)

=
1

n~�2
@2�0(��)

@�0@�
P�(��) + [

~�3
n~�2

!0P
@2�(��)

@�@�0
� 1

n

@2g2(��)

@�@�0
]0n ~B22[

~�3
n~�2

!0P�(��)� 1

n
g2(��)]: (20)

It follows from Lemma B.7 (vii) that 1
n
@2�0(��)
@�0@� P�(

��) = op(1). As
~�3
n~�2
!0P�(��) � 1

ng2(
��) = op(1) by

Lemma B.7 (viii), the remaining term in (20) is op(1), noting that by Lemma B.7 (vii) 1n!
0P @2�(��)

@�@�0 =

Op(1), 1n
@2g2(��)
@�@�0 = Op(1), and n

~B22 = Op(1). In summary, [ 1n
@g0(��)
@�

~
�1 @g(
��)

@�0 +
1
n
@2g0(��)
@�0@�

~
�1g(��)]�1 =

[��20 D(0;H) + lim 1
n
�D0
2B22

�D2]
�1+ op(1), as �

�2
0 D(0;H) + lim 1

n
�D0
2B22

�D2 is nonsingular implied by

Assumptions 4�and 8.

Next, 1p
n
@g0(�0)
@�

~
�1g(�0) =
1p
n
@g0(�0)
@� 
�1g(�0)+

1p
n
@g0(�0)
@� (~
�1�
�1)g(�0). As���20p

n
@�0(�0)
@� P� =

��20p
n
(Mu;RZ)0P� =

��20p
n
(MR�1�; f + ve01)

0P� = 1p
n
[tr(PMR�1); tr(	)e01]

0 +
��20p
n
(0; f 0�) + op(1); we

have � 1p
n
@g0(�0)
@� 
�1g(�0) = ���20p

n
@�0(�0)
@� P� + 1p

n

@�g02(�0)
@� B22�g2(�0) =

1p
n
(tr(PMR�1); tr(	)e01)

0 +

��20p
n
(0; f 0�)+ 1p

n
�D0
2B22�g2(�0)+op(1): As E[�g2(�0)�

0Pf ] = E[�3
�20
!0P��0Pf ]�E[g2(�0)�0Pf ] = �3!0Pf�
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�3!
0Pf = 0, and E[�g2(�0)�0(I�P )f ] = ��3!0(I�P )f , it follows that 1nE[�g2(�0)�

0f ] = 1
nE[�g2(�0)�

0Pf ]+

1
nE[�g2(�0)�

0(I � P )f ] = � 1
n�3!

0(I � P )f = o(1). Hence 1p
n
f 0� and 1p

n
�g2(�0) are asymptoti-

cally uncorrelated. By the CLT in Kelejian and Prucha (2001), �
�2
0p
n
(0; f 0�) + 1p

n
�D0
2B22�g2(�0)

d!

N(0; ��20 D(0;H) + limn!1
1
n
�D0
2B22

�D2). It remains to show that 1p
n
@g0(�0)
@� (~
�1 � 
�1)g(�0) =

op(1). As
@�(�0)
@�0 = �J(Mu;RZ), 1

n
@�0(�0)
@� P� = op(1) and 1

n
@�0(�0)
@� P! = Op(1). As shown above,

n( ~B22 �B22) = op(1), and 1p
n
!0P� = Op(1) and 1p

n
g2(�0) = Op(1), it follows that

1p
n

@g0(�0)

@�
(~
�1 � 
�1)g(�0)

=
p
n(~��2 � ��20 )

1

n

@�0(�0)

@�
P�+

1

n

@�0(�0)

@�
P![(

~�3
~�2
)2n ~B22 � (

�3
�20
)2nB22]

1p
n
!0P�

� 1
n

@�0(�0)

@�
P!(

~�3
~�2
n ~B22 �

�3
�20
nB22)

1p
n
g2(�0)�

1

n

@g02(�0)

@�
(
~�3
~�2
n ~B22 �

�3
�20
nB22)

0 1p
n
!0P�

+
1

n

@g02(�0)

@�
(n ~B22 � nB22)

1p
n
g2(�0) = op(1):

From (18),
p
n(�̂ � �0) = Op(K=

p
n), which implies that �� � �0 = Op(K=n). 1

n
@g0(��)
@� (~
�1 �


�1)@g(
��)

@�0 = Op(1=
p
n) by (19). As 1n

@2�0(��)
@�0@� P�(

��) = Op(
p
K=n), 1n!

0P @2�(��)
@�@�0 = Op(1) and

1
n
@2g2(��)
@�@�0 =

Op(1) by Lemma B.7 (vii), n ~B22 = Op(1), and
~�3
n~�2
!0P�(��) � 1

ng2(
��) = Op(

p
K=n) by Lemma

B.7 (viii), it follows from (20) that 1
n
@2g0(��)
@�0@�

~
�1g(��) = Op(
p
K=n). By Lemma B.7 (v) and

(vi), 1n
@g0(��)
@� 
�1 @g(

��)
@�0 =

��20
n

@�0(��)
@� P @�(��)

@�0 +
1
n
@�g02(

��)
@� B22

@�g2(��)
@�0 = 1

n [�
�2D(0; Z 0R0PRZ)+ �D0

2B22
�D2] +

Op(
p
K=n). It follows that

1

n

@g0(��)

@�
~
�1

@g(��)

@�0
+
1

n

@2g0(��)

@�0@�
~
�1g(��)

=
1

n

@g0(��)

@�

�1

@g(��)

@�0
+
1

n

@g0(��)

@�
(~
�1 � 
�1)@g(

��)

@�0
+
1

n

@2g0(��)

@�0@�
~
�1g(��)

=
1

n
��2D(0; Z 0R0PRZ) +

1

n
�D0
2B22 �D2 +Op(

p
K=n):

Hence,

p
n(�̂ � �0) = f[ 1

n
��2D(0; Z 0R0PRZ) +

1

n
�D0
2B22 �D2]

�1 +Op(
p
K=n)g

�[ 1p
n
(tr(PMR�1); tr(	)e01)

0 +
��20p
n
(0; f 0�) +

1p
n
�D0
2B22�g2(�0) + op(1)];

= [��20 D(0;H) + lim
1

n
�D0
2B22 �D2]

�1[
��20p
n
(0; f 0�) +

1p
n
�D0
2B22�g2(�0)]

+
p
nbgmm +Op(K

3=2=n) + op(1). (21)
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When K3=2=n! 0, the conclusion then follows by the Slutzky theorem.

Proof of Proposition 6. Based on (21) in the proof of Proposition 5, it is su¢ cient to show

that
p
n(~bgmm � bgmm) = op(1).

p
n(~bgmm � bgmm) = f[~��2 1nD(0; Z

0 ~R0P ~RZ) + 1
n
e�D0
2
~B22

e�D2]
�1 �

(��2 1nD(0; Z
0R0PRZ)+ 1

n
�D0
2B22

�D2)
�1g[tr(PM ~R�1); tr(P ~R ~G ~R�1)e01]

0=
p
n+(��2 1nD(0; Z

0R0PRZ)+

1
n
�D0
2B22

�D2)
�1[tr(PM( ~R�1 �R�1)); tr(P ~R ~G ~R�1 �	)e01]0=

p
n: By Lemma B.5 and our assumption

that ~� � �0 = Op(K=n), 1
nZ

0 ~R0P ~RZ � 1
nZ

0R0PRZ = Op(~� � �0) = Op(K=n), and 1
n!

0P ~RZ �
1
n!

0PRZ = Op(~�� �0) = Op(K=n). Also, 1n ( ~D2�D2) = Op(1=
p
n) and n( ~B22�B22) = Op(1=

p
n).

Hence, 1n [~�
�2D(0; Z 0 ~R0P ~RZ)+e�D0

2
~B22

e�D2]� 1
n [�

�2
0 D(0; Z 0R0PRZ)+ �D0

2B22
�D2] = Op(maxfK=n; 1=

p
ng).

On the other hand, as ~G�G = (~���0) ~GG, ~R�R = �(~���0)M , and ~R�1�R�1 = (~���0) ~R�1MR�1,

we have tr[PM( ~R�1 � R�1)]=
p
n = (~� � �0)tr(PM ~R�1MR�1)=

p
n = Op(K

2=n3=2) = op(1),

and, similarly, tr(P ~R ~G ~R�1 � 	)=
p
n = Op(K

2=n3=2) = op(1), because (K2=n3=2)=(K3=2=n) =p
K=n ! 0. The desired result follows since 1

n [�
�2
0 D(0; Z 0R0PRZ) + �D0

2B22
�D2] = Op(1) and

[tr(PM ~R�1); tr(P ~R ~G ~R�1)e01]
0=
p
n = O(K=

p
n).

Proof of Proposition 7. It follow from Proposition 5, the infeasible BGMM estimator �̂bgmm =

argmin�2� L(�), where L(�) = g�0(�)V ��1g�(�) = �0(�)P�(�)+g�02 (�)(�20��)�1g�2(�); has the limiting

distribution given by (11). The objective function of the feasible BGMM estimator is given by

L�(�) = ~g�0(�) ~V ��1~g�(�) = �0(�)P�(�) + ~g�02 (�)(~�
2 ~��)�1~g�2(�); where ~g

�
2(�) = [ ~U�1 �(�);

~U�2 �(�)]
0�(�)

and ~�� =

0B@ tr( ~U�s1
~U�1 ) tr( ~U�s1

~U�2 )

tr( ~U�s2
~U�1 ) tr( ~U�s2

~U�2 )

1CA. We shall show that the objective functions of the feasible
and infeasible GMM will satisfy the conditions of the CLT in Lee (2004). If so, the estimator from

the minimization of the objective functions of the feasible and infeasible GMM will have the same

limiting distribution.

First, 1n (~g
�
2(�)� g�2(�))0 = 1

n [(
~U�1 �U�1 )�(�); ( ~U�2 �U�2 )�(�)]0�(�) = op(1) uniformly in � 2 �. The

derivatives of ~g�2(�) and g
�
2(�) are

@g�2(�)

@�0
=

0B@ �0(�)U�s1
@�(�)
@�0

�0(�)U�s2
@�(�)
@�0

1CA ; and @2g�2(�)
@�@�0

=

0B@ @�0(�)
@� U�s1

@�(�)
@�0 + �

0(�)U�s1
@2�(�)
@�@�0

@�0(�)
@� U�s2

@�(�)
@�0 + �

0(�)U�s2
@2�(�)
@�@�0

1CA :
@�(�)
@�0 = �J [MS(�)Y �MX�;R(�)WY;R(�)X] where Y = S�1(X�0 + ��0) + S

�1R�1�. @2�(�)
@�@�0 =

J [0;MWY;MX], @2�(�)
@�@�0 = J [MWY; 0; 0], and @2�(�)

@�@�0 = J [MX; 0; 0]. It follows from Lemma B.9

that 1
n (

@~g�2 (�)
@�0 � @g�2 (�)

@�0 ) = op(1) and 1
n (

@2~g�2 (�)
@�@�0 � @2g�2 (�)

@�@�0 ) = op(1) uniformly in � 2 �. Consider
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1
n (~�

2 ~�� � �20��). As f ~U�j g is UBC in probability, it follows from Lemma B.9 that 1
n tr(

~U�si
~U�j ) �

1
n tr(U

�s
i U

�
j ) = op(1). Hence,

1
n (~�

2 ~����20��) = op(1), as �̂2��20 = op(1). As the limit of 1n�
� exists

and is a nonsingular matrix, ( 1n ~�
2 ~��)�1� ( 1n�

2
0�

�)�1 = op(1) by the continuous mapping theorem.

Furthermore, because 1
n (~g

�
2(�)� g�2(�)) = op(1), and 1

n [g
�
2(�)�E(g�2(�))] = op(1) uniformly in � 2 �,

and sup�2�
1
n jE(g

�
2(�))j = O(1) (Lee, 2007a, p. 21), 1

ng
�
2(�) and

1
n ~g

�
2(�) are Op(1) uniformly in

� 2 �. Similarly, 1n
@g�2 (�)
@�0 ,

1
n
@~g�2 (�)
@�0 ,

1
n
@2g�2 (�)
@�@�0 and 1

n
@2~g�2 (�)
@�@�0 are Op(1) uniformly in � 2 �.

With the uniform convergence in probability and uniformly stochastic boundedness proper-

ties, the di¤erence of L�(�) and L(�) can be investigated. By expansion, 1
n (L

�(�) � L(�)) =
1
n ~g

�0
2 (�)(~�

2 ~��)�1[~g�2(�)�g�2(�)]+ 1
n ~g

�0
2 (�)[(~�

2 ~��)�1�(�20��)�1]g�2(�)+ 1
n [~g

�
2(�)�g�2(�)]0(�20��)�1g�2(�),

which is op(1) uniformly in � 2 �. Similarly, for each component �l of �, 1
n
@2L�(�)
@�l@�0

� 1
n
@2L(�)
@�l@�0

=

2
n [
@~g�02 (�)
@�l

(~�2 ~��)�1
@~g�2 (�)
@�0 +~g�02 (�)(~�

2 ~��)�1
@2~g�2 (�)
@�l@�0

� @g�02 (�)
@�l

(�20�
�)�1

@g�2 (�)
@�0 �g�02 (�)(�20��)�1

@2g�2 (�)
@�l@�0

] =

op(1):

Finally, because [@~g
�0
2 (�)
@� (~�2 ~��)�1 � @g�02 (�)

@� (�20�
�)�1] = op(1) as above, and 1p

n
g�2(�0) = Op(1),

1p
n
(
@L�(�0)
@�

� @L(�0)
@�

)

= 2f@~g
�0
2 (�)

@�
(~�2 ~��)�1

1p
n
(~g�2(�0)� g�2(�0)) + [

@~g�02 (�)

@�
(~�2 ~��)�1 � @g

�0
2 (�)

@�
(�20�

�)�1]
1p
n
g�2(�0)g

= 2
@~g�02 (�)

@�
(~�2 ~��)�1

1p
n
(~g�2(�0)� g�2(�0)) + op(1):

As 1p
n
(~g�2(�0) � g�2(�0)) = op(1) by Lemma B.9, 1p

n
(@L

�(�0)
@� � @L(�0)

@� ) = op(1). The desired result

follows from the CLT in Lee (2004).
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Table 1: 2SLS and GMM estimation (normal)

�2� = 1 �0 = 0:1 �0 = 0:1 �01 = 0:2 �02 = 0:2

mr = 10 �r = 30 cn=n = 0:609

2SLS (few IVs) :099(:219)[:219] :148(:309)[:313] :201(:072)[:072] :208(:074)[:074]

2SLS (many IVs) :062(:068)[:078] � :194(:065)[:066] :214(:057)[:059]

FC2SLS :108(:082)[:082] � :198(:066)[:066] :206(:058)[:059]

GMM (few IVs) :096(:125)[:125] :120(:215)[:216] :197(:068)[:068] :206(:062)[:062]

GMM (many IVs) :085(:057)[:059] :065(:146)[:150] :196(:066)[:066] :207(:058)[:058]

FCGMM :099(:064)[:064] :121(:169)[:170] :197(:067)[:067] :204(:058)[:058]

�r = 60 cn=n = 0:660

2SLS (few IVs) :104(:151)[:151] :126(:241)[:242] :203(:048)[:048] :205(:051)[:051]

2SLS (many IVs) :069(:046)[:055] � :198(:047)[:047] :212(:041)[:043]

FC2SLS :105(:056)[:056] � :201(:047)[:047] :205(:042)[:042]

GMM (few IVs) :100(:089)[:089] :105(:144)[:144] :201(:047)[:047] :203(:044)[:044]

GMM (many IVs) :087(:040)[:042] :070(:094)[:099] :199(:046)[:046] :205(:041)[:041]

FCGMM :098(:044)[:044] :120(:111)[:112] :200(:046)[:046] :203(:041)[:041]

mr = 15 �r = 30 cn=n = 0:615

2SLS (few IVs) :100(:166)[:166] :124(:270)[:271] :204(:052)[:052] :203(:056)[:056]

2SLS (many IVs) :091(:056)[:056] � :201(:052)[:052] :206(:042)[:043]

FC2SLS :108(:063)[:063] � :202(:052)[:052] :203(:044)[:044]

GMM (few IVs) :101(:097)[:097] :104(:160)[:160] :202(:051)[:051] :201(:046)[:046]

GMM (many IVs) :098(:046)[:046] :089(:116)[:116] :201(:051)[:051] :200(:042)[:042]

FCGMM :102(:048)[:048] :103(:120)[:120] :201(:051)[:051] :199(:042)[:042]

�r = 60 cn=n = 0:629

2SLS (few IVs) :095(:106)[:106] :112(:190)[:190] :199(:037)[:037] :199(:041)[:041]

2SLS (many IVs) :083(:038)[:042] � :198(:038)[:038] :203(:033)[:033]

FC2SLS :099(:040)[:040] � :199(:038)[:038] :199(:033)[:033]

GMM (few IVs) :094(:057)[:057] :107(:104)[:104] :198(:037)[:037] :199(:035)[:035]

GMM (many IVs) :093(:033)[:034] :090(:078)[:079] :198(:037)[:037] :198(:032)[:032]

FCGMM :097(:034)[:034] :104(:080)[:080] :198(:037)[:037] :197(:033)[:033]

Mean(SD)[RMSE] cn : average empirical concentration parameter; n : sample size
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Table 2: 2SLS and GMM estimation (normal)

�2� = 0:04 �0 = 0:1 �0 = 0:1 �01 = 0:2 �02 = 0:2

mr = 10 �r = 30 cn=n = 0:149

2SLS (few IVs) :089(:220)[:220] :155(:329)[:334] :201(:070)[:070] :210(:072)[:072]

2SLS (many IVs) �:009(:120)[:162] � :189(:067)[:067] :226(:060)[:065]

FC2SLS :108(:151)[:151] � :199(:068)[:068] :206(:065)[:065]

GMM (few IVs) :095(:122)[:122] :121(:219)[:220] :197(:068)[:068] :206(:062)[:062]

GMM (many IVs) :062(:084)[:092] :100(:169)[:169] :195(:067)[:067] :211(:058)[:060]

FCGMM :088(:099)[:100] :144(:203)[:208] :197(:067)[:068] :206(:060)[:060]

�r = 60 cn=n = 0:154

2SLS (few IVs) :102(:149)[:149] :130(:249)[:251] :203(:048)[:048] :205(:050)[:050]

2SLS (many IVs) :013(:094)[:128] � :195(:047)[:047] :222(:043)[:048]

FC2SLS :103(:117)[:117] � :202(:048)[:048] :205(:046)[:046]

GMM (few IVs) :100(:097)[:097] :107(:148)[:148] :201(:047)[:047] :203(:044)[:044]

GMM (many IVs) :071(:060)[:066] :095(:113)[:113] :198(:046)[:046] :208(:041)[:042]

FCGMM :091(:071)[:072] :134(:139)[:143] :200(:047)[:047] :204(:042)[:042]

mr = 15 �r = 30 cn=n = 0:162

2SLS (few IVs) :098(:167)[:167] :125(:286)[:287] :203(:052)[:052] :203(:056)[:056]

2SLS (many IVs) :056(:120)[:128] � :200(:052)[:052] :212(:047)[:048]

FC2SLS :105(:135)[:135] � :203(:052)[:053] :202(:051)[:051]

GMM (few IVs) :100(:097)[:097] :104(:164)[:164] :202(:051)[:051] :201(:047)[:047]

GMM (many IVs) :089(:076)[:077] :103(:150)[:151] :201(:051)[:051] :202(:044)[:044]

FCGMM :097(:082)[:082] :113(:160)[:161] :201(:051)[:051] :201(:044)[:044]

�r = 60 cn=n = 0:160

2SLS (few IVs) :095(:108)[:108] :114(:197)[:197] :199(:037)[:037] :199(:041)[:041]

2SLS (many IVs) :046(:083)[:099] � :196(:037)[:038] :210(:037)[:038]

FC2SLS :097(:091)[:092] � :199(:037)[:037] :199(:039)[:039]

GMM (few IVs) :095(:056)[:057] :106(:105)[:105] :198(:037)[:037] :199(:035)[:035]

GMM (many IVs) :085(:050)[:052] :103(:096)[:096] :198(:037)[:038] :200(:034)[:034]

FCGMM :093(:053)[:053] :112(:101)[:101] :198(:037)[:037] :198(:034)[:034]

Mean(SD)[RMSE] cn : average empirical concentration parameter; n : sample size
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Table 3: 2SLS and GMM estimation (normal)

�2� = 1 �0 = 0:3 �0 = 0:3 �01 = 0:2 �02 = 0:2

mr = 10 �r = 30 cn=n = 1:182

2SLS (few IVs) :308(:198)[:198] :356(:253)[:259] :201(:076)[:076] :206(:065)[:065]

2SLS (many IVs) :278(:042)[:048] � :194(:065)[:065] :206(:055)[:055]

FC2SLS :309(:064)[:065] � :198(:067)[:067] :203(:057)[:057]

GMM (few IVs) :304(:123)[:123] :311(:200)[:201] :199(:069)[:069] :205(:060)[:060]

GMM (many IVs) :288(:038)[:040] :238(:136)[:149] :195(:066)[:066] :203(:056)[:056]

FCGMM :297(:042)[:042] :319(:157)[:158] :196(:066)[:066] :203(:056)[:056]

�r = 60 cn=n = 1:300

2SLS (few IVs) :310(:138)[:138] :330(:186)[:189] :204(:050)[:051] :206(:045)[:045]

2SLS (many IVs) :282(:028)[:033] � :198(:046)[:046] :206(:040)[:041]

FC2SLS :303(:045)[:045] � :201(:046)[:046] :205(:041)[:041]

GMM (few IVs) :306(:091)[:091] :301(:123)[:123] :202(:048)[:049] :204(:042)[:043]

GMM (many IVs) :289(:026)[:029] :249(:087)[:101] :199(:046)[:046] :203(:040)[:040]

FCGMM :297(:028)[:028] :321(:102)[:104] :200(:046)[:046] :203(:040)[:041]

mr = 15 �r = 30 cn=n = 1:051

2SLS (few IVs) :314(:141)[:142] :333(:224)[:226] :206(:053)[:054] :203(:049)[:049]

2SLS (many IVs) :293(:034)[:035] � :202(:051)[:051] :204(:042)[:042]

FC2SLS :307(:045)[:045] � :203(:051)[:051] :202(:043)[:043]

GMM (few IVs) :301(:086)[:086] :310(:144)[:144] :203(:052)[:052] :202(:044)[:044]

GMM (many IVs) :296(:031)[:031] :290(:104)[:104] :201(:050)[:050] :200(:042)[:042]

FCGMM :301(:032)[:032] :307(:107)[:108] :201(:050)[:050] :199(:042)[:042]

�r = 60 cn=n = 1:101

2SLS (few IVs) :296(:089)[:089] :320(:153)[:154] :200(:037)[:037] :199(:036)[:036]

2SLS (many IVs) :288(:024)[:026] � :198(:037)[:038] :200(:032)[:032]

FC2SLS :300(:025)[:025] � :199(:037)[:037] :199(:032)[:032]

GMM (few IVs) :297(:049)[:050] :305(:089)[:089] :198(:037)[:037] :198(:033)[:033]

GMM (many IVs) :294(:022)[:023] :286(:069)[:070] :198(:037)[:037] :197(:032)[:032]

FCGMM :299(:023)[:023] :304(:070)[:070] :199(:037)[:037] :197(:032)[:032]

Mean(SD)[RMSE] cn : average empirical concentration parameter; n : sample size
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Table 4: 2SLS and GMM estimation (gamma)

�2� = 1 �0 = 0:1 �0 = 0:1 �01 = 0:2 �02 = 0:2

mr = 10 �r = 30 cn=n = 0:616

2SLS (few IVs) :097(:262)[:263] :163(:330)[:336] :205(:071)[:071] :211(:073)[:074]

2SLS (many IVs) :065(:073)[:081] � :198(:068)[:068] :215(:053)[:055]

FC2SLS :113(:096)[:097] � :203(:068)[:068] :208(:055)[:056]

GMM (few IVs) :096(:168)[:168] :134(:235)[:238] :202(:066)[:066] :208(:061)[:062]

GMM (many IVs) :085(:059)[:061] :067(:162)[:165] :199(:067)[:067] :206(:053)[:053]

FCGMM :100(:067)[:067] :137(:189)[:193] :201(:067)[:067] :203(:053)[:053]

�r = 60 cn=n = 0:642

2SLS (few IVs) :091(:157)[:157] :142(:241)[:245] :204(:048)[:048] :207(:047)[:047]

2SLS (many IVs) :065(:050)[:061] � :199(:046)[:046] :213(:039)[:041]

FC2SLS :099(:056)[:056] � :202(:046)[:046] :206(:040)[:040]

GMM (few IVs) :094(:099)[:099] :124(:157)[:159] :203(:047)[:047] :206(:043)[:043]

GMM (many IVs) :085(:041)[:044] :074(:105)[:108] :200(:046)[:046] :206(:040)[:040]

FCGMM :095(:047)[:047] :133(:124)[:129] :202(:046)[:046] :204(:040)[:040]

mr = 15 �r = 30 cn=n = 0:620

2SLS (few IVs) :093(:164)[:164] :126(:252)[:253] :206(:054)[:054] :206(:054)[:054]

2SLS (many IVs) :085(:054)[:056] � :204(:053)[:054] :209(:043)[:044]

FC2SLS :102(:060)[:060] � :205(:053)[:054] :206(:043)[:044]

GMM (few IVs) :096(:091)[:091] :111(:158)[:159] :205(:052)[:053] :204(:045)[:045]

GMM (many IVs) :095(:045)[:045] :089(:110)[:111] :205(:053)[:053] :203(:042)[:042]

FCGMM :099(:047)[:047] :104(:114)[:114] :205(:053)[:053] :202(:042)[:042]

�r = 60 cn=n = 0:627

2SLS (few IVs) :094(:105)[:105] :117(:195)[:195] :198(:037)[:037] :203(:038)[:038]

2SLS (many IVs) :085(:040)[:042] � :197(:036)[:036] :206(:031)[:032]

FC2SLS :101(:042)[:042] � :198(:036)[:036] :203(:032)[:032]

GMM (few IVs) :098(:062)[:062] :103(:115)[:115] :198(:036)[:036] :201(:033)[:033]

GMM (many IVs) :096(:033)[:033] :087(:080)[:081] :197(:036)[:036] :201(:031)[:031]

FCGMM :100(:035)[:035] :102(:084)[:084] :198(:036)[:036] :200(:031)[:031]

Mean(SD)[RMSE] cn : average empirical concentration parameter; n : sample size
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