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Abstract

This paper introduces a structural model for the coevolution of networks and

behavior. We characterize the equilibrium of the underlying game and adopt the

Bayesian Double Metropolis-Hastings algorithm to estimate the model. We fur-

ther extend the model to incorporate unobserved heterogeneity and show that

ignoring unobserved heterogeneity can lead to biased estimates in simulation

experiments. We apply the model to study R&D investment and collabora-

tion decisions in the chemical and pharmaceutical industry and find a positive

knowledge spillover effect. Our model also provides a tractable framework for a

long-run key player analysis.

Key words: network interactions, strategic network formation, stochastic best-

response dynamics, unobserved heterogeneity, double Metropolis-Hastings algorithm,

R&D collaboration networks, key players

JEL: C11, C31, C63, C73, L22
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1 Introduction

Since the seminal paper by Manski (1993), substantial progress has been made in the econo-

metric analysis of networks following two research strands. The first strand studies the

interdependence of individual behavior in a network under the assumption that the net-

work structure is exogenously given. A popular model in this literature is the linear social-

interaction model (see, e.g., Bramoullé et al., 2009; Lee et al., 2010; Liu and Lee, 2010;

Blume et al., 2015). The second strand focuses on the modeling and estimation of the net-

work formation process, with some recent developments including Christakis et al. (2010),

Snijders (2011), Graham (2015, 2017), Leung (2015), Boucher and Mourifié (2017), Mele

(2017, 2018), Menzel (2017), Sheng (2017), Chandrasekhar and Jackson (2018), De Paula

et al. (2018), Dzemski (2018), and Mele and Zhu (2019). To link these two research strands,

we introduce a unified framework to model the coevolution of networks and behavior in this

paper.

The microfoundation of our structural model is a network game where agents make

decisions on actions and network links to maximize their utilities. The utility function is a

generalization of the linear-quadratic utility function in Ballester et al. (2006) by including

direct payoffs from the network structure given by homophily/heterophily, congestion and

cyclic triangle effects. An important feature of the utility function is that it incorporates the

two-way interdependence between networks and behavior (see Figure 1 for an illustration).

We show that, under some mild assumptions, the utility function admits a potential function

(Monderer and Shapley, 1996). The potential function aggregates individual incentives to

change from the status quo and thus greatly simplifies the equilibrium analysis.

[insert Figure 1 here]

The coevolution of networks and behavior is modeled as stochastic best-response dynam-

ics (Blume, 1993). In each period, a randomly selected agent gets a chance to update his

action or meet with another agent to adjust the link between them as the best response to
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the current actions and links of the rest of the network. We show that this process follows

a Markov chain that converges to a unique stationary distribution of networks and actions

characterized by a Gibbs measure (i.e., an exponential family distribution that depends on

the potential function).

With a snapshot of the network and actions drawn from the stationary distribution,

the structural parameters can be estimated based on the maximum likelihood principle.

However, as pointed out in Mele (2017), the frequentist maximum likelihood method or

Bayesian Metropolis-Hastings (MH) algorithm (Chib and Greenberg, 1995) are computa-

tionally infeasible due to the intractable normalizing constant in the Gibbs measure. To

bypass the evaluation of the intractable normalizing constant, we adopt the Bayesian Dou-

ble Metropolis-Hastings (DMH) algorithm (Liang, 2010; Mele, 2017) to sample from the

posterior distribution of the structural parameters. Compared with Mele (2017), we face

the additional complication as we need to simulate actions as well as networks to generate

auxiliary data in the DMH algorithm. We propose a computationally simple MH algorithm

for this purpose. Another contribution relative to Mele (2017) is that we incorporate un-

observed heterogeneity in the empirical model to capture the potential correlation between

action choices and network formation decisions. In Monte Carlo simulations, we find that

ignoring unobserved heterogeneity leads to a biased estimate of the network spillover effect.

To illustrate the empirical relevance of our structural model, we apply it to study the

interdependence of R&D investment and collaboration decisions in the chemical and pharma-

ceutical industry. Using a unique dataset on R&D collaborations matched to firms’ balance

sheets, we find a positively significant knowledge spillover effect on firms’ R&D investment

decisions. We also find that an R&D collaboration is more likely to form between firms in the

same sub-sector (the homophily effect), firms with different productivities (the heterophily

effect), and firms with a common collaboration partner (the cyclic triangle effect). A firm

is less likely to form a new link if it has many existing R&D collaborations (the congestion

effect).
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Finally, the proposed structural model has important policy implications as it allows the

policy maker to identify the key player whose exit would have the largest impact on welfare

in the long run. Conventional key player analysis assumes the links between the other agents

are not affected by the exit of the key player (Ballester et al., 2006). This assumption makes

sense if the key player analysis is considered as a short-run policy analysis, because it takes

time for the other agents to adjust their links in response to the exit of the key player.

However, in the long run, it is difficult to justify this assumption. Our structural model

provides a tractable framework for a long-run key player analysis. In the empirical study,

we find that the key player rankings in the short run and in the long run do not coincide

with each other. We also find that the key player ranking is correlated with both R&D

expenditure and network centrality measures (including degree, betweenness, closeness and

eigenvector centralities) of a firm. Therefore, the key player ranking incorporates information

on both R&D investment and network centrality of a firm.

Our paper is related to recent papers that study the identification and estimation of

social interaction models with endogenous networks (Goldsmith-Pinkham and Imbens, 2013;

Hsieh and Lee, 2016; Auerbach, 2019; Battaglini et al., 2019; Johnsson and Moon, 2019; Lee

et al., 2020). The focus of these papers is to consistently estimate social interaction effects

controlling for the unobserved heterogeneity in the network formation process. In particular,

Auerbach (2019) and Johnsson and Moon (2019) take a fixed-effect approach and allow the

unobserved heterogeneity to affect link formation nonparametrically. Since it is difficult

to distinguish link externalities from a flexible form of unobserved heterogeneity (Graham,

2015), link externalities are excluded a priori from their network formation models. By

contrast, this paper takes a random-effect treatment of the unobserved heterogeneity and

develops a parametric framework that incorporates both link externalities and unobserved

heterogeneity. Hsieh et al. (2019) propose a two-stage network game, where the network is

formed in the first stage and, in the second stage, individuals choose their actions taking

the network as given. The equilibrium concept for the first stage of the game relies on a
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transferable utility assumption that allows agents to make side payments. The transferable

utility assumption is reasonable for small networks, but is difficult to justify when the network

is large. The closest work to ours is Badev (2018), which proposes a network formation game

where agents make decisions on binary actions and network links in the absence of unobserved

heterogeneity. Our model, on the other hand, considers continuous actions and allows for

unobserved heterogeneity.

The rest of the paper is organized as follows. Section 2 introduces the structural model,

Section 3 presents the estimation strategy, Section 4 provides an empirical illustration, and

Section 5 concludes. The proofs and technical details are collected in the online appendix.

2 Structural Model

2.1 Preferences

Consider a network g ∈ G consisting of a set of agents N ≡ {1, . . . , n}, where G is the set of

all networks with n nodes. The topology of the network is represented by an n×n adjacency

matrix G = [gij], where gij = 1 if agents i and j form a link and gij = 0 otherwise. The

network links are reciprocal, that is, gij = 1 implies gji = 1. As a normalization, we set

gii = 0 for all i ∈ N . Let Ni ≡ {j ∈ N|gij = 1} denote the set of agent i’s peers (or, loosely

speaking, “friends”).

Agent i, with his exogenous characteristics given by a (row) vector Xi, makes decisions on

network links gij and effort of action yi to maximize utility. We assume Xi can be observed

by all the agents. To introduce unobserved heterogeneity in the econometric model, we allow

some components of Xi to be unobservable to the econometrician. Let Y = (y1, · · · , yn)′,

and let Y−i denote the effort levels of all agents but i. The utility of agent i follows a

linear-quadratic function given by

Ui(g, Y,X) = ai(g,X) + b(Xi)yi + λ
∑
j∈N

gijyiyj −
1

2
y2i , (1)
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where

ai(g,X) =
∑
j∈N

gij

δ0 + h(Xi, Xj, δ1) + δ2
∑

k∈N\{i,j}

gik + δ3
∑

k∈N\{i,j}

gikgjk

 . (2)

The first term of Equation (1), ai(g,X), measures the direct utility from links.1 In partic-

ular, δ0 is the fixed cost of maintaining links, and h(Xi, Xj, δ1) captures the (dis)similarity

between agents i and j in exogenous characteristics, with the coefficient vector δ1 repre-

senting the homophily or heterophily effect depending on its sign.
∑

k∈N\{i,j} gik is the total

number of links of agent i excluding the link gij, with the coefficient δ2 representing the

congestion effect.
∑

k∈N\{i,j} gikgjk is the number of common “friends” between agents i and

j, with the coefficient δ3 representing the cyclic triangle effect.2 We impose the following

assumption on h(Xi, Xj, δ1) to guarantee the existence of a potential function.

Assumption 1. h(Xi, Xj, δ1) = h(Xj, Xi, δ1) for any i, j ∈ N .

The second term of Equation (1), b(Xi)yi, measures the direct utility from effort, with

the marginal utility of effort given by b(Xi). The third term, λ
∑

j∈N gijyiyj, is the social

utility, with the coefficient λ representing the spillover effect. Finally, we assume the cost

of exerting effort is given by the last term of Equation (1), 1
2
y2i , which exhibits increasing

marginal cost. Maximizing Equation (1) with respect to yi gives the best response function

for the effort choice

yi = λ
∑
j∈N

gijyj + b(Xi), (3)

which coincides with the one in Ballester et al. (2006).

Remark 1. In the network formation game considered in Mele (2017), agents only make

decisions on links gij to maximize the direct utility from links. In our model, agents make
1We consider undirected network links to be consistent with the empirical study of R&D networks. If

network links are directed, ai(g,X) can be specified in a similar manner as Equation (1) in Mele (2017).
2It is possible to include additional terms in ai(g,X) as long as there exists a corresponding potential

function under suitable restrictions.
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decisions on links gij as well as effort yi, taking into account the direct utility from links,

the direct utility from effort, and the social utility. In the social interaction models with en-

dogenous networks (see, e.g., Auerbach, 2019; Johnsson and Moon, 2019), links are assumed

to be pairwise independent (conditional on observed and unobserved individual attributes).

In our model, links are interdependent with externalities given by the congestion and cyclic

triangle effects in ai(g,X). Furthermore, Auerbach (2019) and Johnsson and Moon (2019)

assume actions depend on links but not the other way around (conditional on observed and

unobserved individual attributes). In our model, the social utility component in Equation

(1) captures the two-way interdependence between actions and links. Badev (2018) consid-

ers a network formation game where agents make decisions on binary actions and network

links. In our model, the action space is allowed to be continuous and the utility function

implies a best response function given by Equation (3) that underlies many well known lin-

ear social-interaction models in the literature (see, e.g., Bramoullé et al., 2009; Liu and Lee,

2010; Blume et al., 2015).

2.2 Coevolution of Networks and Behavior

Let the realization of the network in period t be denoted by gt with the adjacency matrix

Gt = [gij,t], and let the network including all the current links but gij,t be denoted by g−ij,t.

Similarly, the effort profile of N in period t is given by the vector Yt = [yi,t], and the

effort profile of N\{i} is written as Y−i,t. To simplify notation, we drop X from Ui(g, Y,X)

henceforth.

The coevolution of networks and behavior is specified as stochastic best-response dynam-

ics (Blume, 1993). We assume time is discrete. Each time period is either a link-adjustment

period (with probability 0 < ρ0 < 1) or an effort-adjustment period (with probability 1−ρ0).

In the following, we give details of these two adjustment periods and characterize the sta-

tionary distribution of the stochastic process.
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Link Adjustment In a link-adjustment period, a pair of agents i and j is randomly

selected from the population with probability ρ(gt−1, Xi, Xj). To make the equilibrium anal-

ysis feasible, we impose the following assumption on the selection rule characterized by

ρ(gt−1, Xi, Xj).3

Assumption 2. (i) ρ(gt−1, Xi, Xj) = ρ(gt−1, Xj, Xi); (ii) ρ(gt−1, Xi, Xj) does not depend on

gij,t−1; and (iii) ρ(gt−1, Xi, Xj) > 0 for all (i, j) ∈ N ×N .

Conditional on being selected, agents i and j update the link gij to maximize their utilities

taking the rest of the network and effort choices as given. As in Mele (2017), we assume that

agents do not take into account the effect of their decisions on the future effort choices and

network evolution. To capture the uncertainty (from the perspective of the econometrician)

in the link adjustment process, we introduce an idiosyncratic shock to the utility and assume

that a link is formed if and only if it improves the average utility of agents i and j given by

U ij(g, Y ) = [Ui(g, Y ) + Uj(g, Y )]/2. More specifically, gij,t = 1 if and only if

U ij(gij,t = 1, g−ij,t−1, Yt−1) + ϵ
(1)
ij,t ≥ U ij(gij,t = 0, g−ij,t−1, Yt−1) + ϵ

(0)
ij,t, (4)

where ϵ(1)ij,t and ϵ
(0)
ij,t are independent from each other, i.i.d. across links and time periods, and

follow a Gumbel distribution with the distribution function F (ϵ) = exp[− exp(−ϵ/σ2)]. The

parameter σ2 captures the level of “noise” in link adjustment decisions.4

Effort Adjustment In an effort-adjustment period, an agent i is randomly selected

from the population with probability ρ(Xi). We assume any agent can be selected with

positive probability in the following assumption.

Assumption 3. ρ(Xi) > 0 for all i ∈ N .
3See Mele (2017) for more discussion on the selection (or meeting) rule.
4The parameter σ2 can be identified because the coefficient of y2i is normalized to −1/2 in the utility

function given by Equation (1).
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Conditional on being selected, agent i updates the effort level yit ∈ Y to maximize his

utility, where Y is the set of all possible effort choices. We allow Y to be continuous and

assume that, taking the network gt−1 and the effort levels of the other agents Y−i,t−1 as given,

the probability that agent i chooses an effort level in Z ⊂ Y in period t is given by

Pr(yit ∈ Z|gt = gt−1, Y−i,t = Y−i,t−1) =

∫
Z exp[σ−2Ui(gt−1, z, Y−i,t−1)]dz∫
Y exp[σ−2Ui(gt−1, y, Y−i,t−1)]dy

. (5)

Similar to Equation (4) in the link adjustment period, the probability given in Equation (5)

can be justified by an additive random utility model over a nonfinite choice set (McFadden,

1976), where the parameter σ2 captures the level of “noise” in effort adjustment decisions.

Equation (5) admits the probability density function

p(yit|gt = gt−1, Y−i,t = Y−i,t−1) =
exp[σ−2Ui(gt−1, yit, Y−i,t−1)]∫

Y exp[σ−2Ui(gt−1, y, Y−i,t−1)]dy
. (6)

Equilibrium In the stochastic process described above, the coevolution of the network

gt and effort choices Yt follows a Markov chain. In the following proposition, we show that

the Markov chain converges to a unique stationary distribution. Let γ denote the vector of

all unknown parameters in the potential function defined in Equation (7) and θ = (γ′, σ2)′.

Proposition 1. Let

Q(g, Y ) ≡ Q(g, Y,X) = a(g,X) +
∑
i∈N

b(Xi)yi +
λ

2

∑
i∈N

∑
j∈N

gijyiyj −
1

2

∑
i∈N

y2i , (7)

where

a(g,X) =
1

2

∑
i∈N

∑
j∈N

gij

δ0 + h(Xi, Xj, δ1) + δ2
∑

k∈N\{i,j}

gik +
2

3
δ3

∑
k∈N\{i,j}

gikgjk

 .

Under Assumptions 1-3, the coevolution process of the network and behavior converges to a
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unique stationary distribution characterized by the Gibbs measure

π(g, Y |θ) = c(θ)−1 exp[σ−2Q(g, Y |γ)], (8)

where c(θ) =
∑

g∈G
∫
Yn exp[σ

−2Q(g, Y |γ)]dY .

Remark 2. Q(g, Y ) defined in Equation (7) is known as the potential function (Monderer

and Shapley, 1996). As the change in the utility of an agent (or the average utility of a

pair of agents) from adjusting his effort level (or their link) is identical to the corresponding

change in the potential function, the potential function keeps track of individual incentives

to deviate from the status quo, and thus greatly simplifies the equilibrium characterization

of the coevolution process.

Remark 3. The Gibbs measure defined in Equation (8) bears a resemblance to that in an

exponential random graph model (ERGM) (Pattison and Wasserman, 1996). Nevertheless,

there is an important difference. As the ERGM only models the network formation process

without taking individual behavior into account, the corresponding Gibbs measure is a dis-

tribution of networks. By contrast, our framework jointly models the interdependent link

and effort adjustment processes, and the resulting Gibbs measure is a joint distribution of

networks and efforts. This poses a novel challenge for the estimation of model parameters.

2.3 Key Player Analysis

An advantage of the proposed structural model (compared to a reduced form model) is that

it can be used by policy makers to conduct counterfactual studies. In this paper, we focus on

a particular counterfactual study called key player analysis (Zenou, 2016). The key player

analysis measures the importance of a node according to the reduction in the total activity

level (Ballester et al., 2006) or social welfare (König et al., 2019), were it to be removed

from the network. The key player analysis has important policy implications. Take the

inter-firm R&D network as an example. The exit of a firm from the network could be due

11



to either financial reasons, such as the recession experienced by the American automobile

manufacturing industry during the global financial downturn of 2007-2008, or legal reasons,

such as the recent emission-fraud scandal of Volkswagen in 2015. In the former case, the

key player analysis can help the policy maker to know the overall welfare gain of “bailing

out” a bankrupting firm, while, in the latter case, the key player analysis can help the policy

maker to know the overall welfare cost by inflicting high penalties that might threaten the

continued existence of a firm.

Conventional key player analysis assumes that the network is exogenously given and

does not adapt to the removal of a node (henceforth referred to as the invariant network

assumption).5 For a short-run key player analysis, this assumption is reasonable because

it takes time for the network to rewire after a node is removed. However, to conduct a

long-run key player analysis, it is desirable to relax this assumption and develop a model

that allows the remaining network to evolve to a new equilibrium. Our model can be used

for this purpose.

In the long run, the key player is the agent whose removal from the network leads to

the largest reduction in expected social welfare. More specifically, the reduction in expected

social welfare from the removal of agent i is given by ∆Wi = W (g, Y )−E[W (g̃−i, Ỹ−i)], where

W (g, Y ) =
∑n

i=1 Ui(g, Y ) is the initial welfare level with the observed network g and effort

profile Y , and E[W (g̃−i, Ỹ−i)] is the expected welfare level of the network without agent i.

The key player is defined as i∗ = argmaxi∈N ∆Wi.

The expected welfare level E[W (g̃−i, Ỹ−i)] is evaluated under the Gibbs measure π(g̃−i, Ỹ−i|θ)

defined in Equation (8), which is difficult to compute numerically. Hence, we take a simu-

lation approach to implement the long-run key player analysis. With the estimated model

parameters, we run a simulation of the above-described coevolution process starting from

the observed network g−i and effort profile Y−i without agent i, and calculate W (g̃−i, Ỹ−i)

5The only exception we know is Lee et al. (2020), which adopts the framework in Mele (2017) to model
the evolution process of the network after the key player is removed. Compared with our model, the network
formation model in Lee et al. (2020) assumes link formation decisions do not depend on individual behavior
conditional on observed and unobserved individual attributes.
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based on the network g̃−i and effort profile Ỹ−i after the process converges. We repeat the

simulation many times and use the average value of W (g̃−i, Ỹ−i) as an approximation for

E[W (g̃−i, Ỹ−i)].6

3 Estimation

In this section, we discuss how to estimate the structural parameters based on the Gibbs

measure defined in Equation (8). We first assume all components in Xi can be observed by

the econometrician in Sections 3.1 and 3.2. Then, to introduce unobserved heterogeneity, we

allow some components of Xi to be unobservable in Section 3.3.

3.1 Computational Problem and the Exchange Algorithm

Given an observation (g, Y ) from the stationary distribution defined in Equation (8), we

can estimate the parameter vector θ based on the maximum likelihood principle. How-

ever, as pointed out in Mele (2017), the frequentist maximum likelihood method is im-

practical due to the computational difficulty in evaluating the normalizing constant c(θ)

in Equation (8), and a standard Bayesian method would encounter the same problem be-

cause, with the prior distribution p(θ), the posterior distribution p(θ|g, Y ) ∝ π(g, Y |θ)p(θ) =

c(θ)−1 exp[σ−2Q(g, Y |γ)]p(θ) also contains the normalizing constant c(θ). To sample from

the posterior using Markov Chain Monte Carlo (MCMC) simulations, a standard MH al-

gorithm (Chib and Greenberg, 1995) updates θ to θ̃, a random draw from the proposal

distribution qθ(θ̃|θ), according to the acceptance probability

αθ,MH = min

{
1,

p(θ̃|g, Y )qθ(θ|θ̃)
p(θ|g, Y )qθ(θ̃|θ)

}
= min

{
1,

c(θ) exp[σ̃−2Q(g, Y |γ̃)]p(θ̃)qθ(θ|θ̃)
c(θ̃) exp[σ−2Q(g, Y |γ)]p(θ)qθ(θ̃|θ)

}
.

6This analysis can be extended to conduct a key group analysis as in Ballester et al. (2010), where one
calculates the expected welfare loss from removing every possible combination of a certain number of agents
and finds the group associated with the largest loss. As the analysis is simulation-based and computationally
expensive, the key group analysis is only feasible for small networks.
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The computational problem still exists as c(θ) and c(θ̃) in the acceptance probability do not

cancel each other.

A way to bypass the evaluation of the intractable normalizing constant c(θ) is to use the

exchange algorithm (Møller et al., 2006; Murray et al., 2006) as follows.

Algorithm 1 (Exchange Algorithm). At each iteration:

Step 1 Draw θ̃ from the proposal distribution qθ(θ̃|θ).

Step 2 Generate (g̃, Ỹ ) from the distribution π(g̃, Ỹ |θ̃) using a perfect sampler.

Step 3 Accept θ̃ according to the acceptance probability

αθ,EX = min

{
1,

p(θ̃|g, Y )qθ(θ|θ̃)π(g̃, Ỹ |θ)
p(θ|g, Y )qθ(θ̃|θ)π(g̃, Ỹ |θ̃)

}
(9)

= min

{
1,

exp[σ̃−2Q(g, Y |γ̃)]p(θ̃)qθ(θ|θ̃) exp[σ−2Q(g̃, Ỹ |γ)]
exp[σ−2Q(g, Y |γ)]p(θ)qθ(θ̃|θ) exp[σ̃−2Q(g̃, Ỹ |γ̃)]

}
.

The main advantage of the exchange algorithm is that the acceptance probability does not

contain the normalizing constant c(θ) and thus can be evaluated. The following proposition

shows that the unique stationary distribution of the above described exchange algorithm is

the posterior distribution p(θ|g, Y ) ∝ π(g, Y |θ)p(θ).

Proposition 2. The unique stationary distribution of Algorithm 1 is p(θ|g, Y ).

3.2 Double Metropolis-Hastings Algorithm

In the second step of the exchange algorithm, we need to generate auxiliary data using a

perfect sampler (Propp and Wilson, 1996), which is computationally costly. To overcome

this issue, Liang (2010) and Mele (2017) propose a DMH algorithm, which uses a finite run of

the MH algorithm initialized at the observed (g, Y ) to generate auxiliary data (g̃, Ỹ ). More

specifically, at each iteration, the DMH algorithm follows the same steps as the exchange

algorithm with the second step replaced by:

14



Step 2* Generate (g̃, Ỹ ) from the distribution π(g̃, Ỹ |θ̃) using a finite run of the MH

algorithm initialized at the observed (g, Y ).

Compared with Mele (2017), one additional complication is that we need to simulate both

networks g̃ and effort choices Ỹ in Step 2* of the DMH algorithm. To generate auxiliary data

(g̃, Ỹ ), one could design a sampler following the process described in Section 2.2. However,

the convergence of such a sampler could be slow in practice. To improve convergence and

reduce computational burden, we propose the following MH algorithm to generate (g̃, Ỹ ):

Algorithm 2 (Auxiliary Data Generation). Given θ, at each iteration:

Step 1 Draw g̃ from the proposal distribution qg(g̃|g). Let G̃ denote the adjacency matrix

of g̃.

Step 2 Generate Ỹ ∼ N(Ỹ ∗,ΣỸ ), where Ỹ ∗ ≡ (In−λG̃)−1B(X), with B(X) = [b(X1), · · · , b(Xn)]
′,

is the equilibrium effort vector derived from the best response function (3), and ΣỸ =

σ2(In − λG̃)−1.

Step 3 Accept (g̃, Ỹ ) according to the acceptance probability

α(g,Y ),MH = min

{
1,

π(g̃, Ỹ |θ)pY (Y |g)qg(g|g̃)
π(g, Y |θ)pY (Ỹ |g̃)qg(g̃|g)

}

= min

{
1,

exp[σ−2Q(g̃, Ỹ |γ)]pY (Y |g)qg(g|g̃)
exp[σ−2Q(g, Y |γ)]pY (Ỹ |g̃)qg(g̃|g)

}
,

where pY (Ỹ |g̃) denotes the density function of N(Ỹ ∗,ΣỸ ).

In the following proposition, we show that the long run stationary distribution of the

proposed MH algorithm is the Gibbs measure defined in Equation (8).

Proposition 3. The unique stationary distribution of Algorithm 2 is π(g, Y |θ).

Remark 4. If Step 1 of Algorithm 2 adopts a local sampler, where only one randomly

selected link is updated at each iteration, the convergence can be slow as shown in Mele
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(2017). Therefore, we follow Mele’s suggestion (see Appendix B of Mele, 2017) to allow for

large steps, where multiple links are swapped at the same time, to improve convergence.

Remark 5. In Step 2 of Algorithm 2, we generate Ỹ from a multivariate normal distribution

because (i) it is computationally simple to sample from a normal distribution, and (ii) it

resembles the effort adjustment process described in Section 2.2. To see the second point,

we assume that link adjustment periods arrive much less frequent than effort adjustment

periods in the coevolution process. Given the network g̃, it follows a standard Gibbs sampler

argument that the transition density defined in Equation (6) converges to

pY (Ỹ |g̃) = exp[σ−2Q(g̃, Ỹ )]∫
Yn exp[σ−2Q(g̃, Y )]dY

. (10)

where

Q(g, Y ) = a(g) +
∑
i∈N

b(Xi)yi +
λ

2

∑
i∈N

∑
j∈N

gijyiyj −
1

2

∑
i∈N

y2i (11)

= a(g) +B(X)′Y − 1

2
Y ′(In − λG)Y.

Inserting Equation (11) into Equation (10), it follows by the Gaussian integral formula

(Bronshtein et al., 2015) that

pY (Ỹ |g̃) =
exp[σ−2B(X)′Ỹ − 1

2
σ−2Ỹ ′(In − λG̃)Ỹ ]∫

Yn exp[σ−2B(X)′Y − 1
2
σ−2Y ′(In − λG̃)Y ]dY

= (2π)−n/2| detΣỸ |
−1/2 exp[−1

2
(Ỹ − Ỹ ∗)′Σ−1

Ỹ
(Ỹ − Ỹ ∗)],

which is the density function of N(Ỹ ∗,ΣỸ ).

Remark 6. In Algorithm 2, we often need to evaluate (In − λG̃)−1 and det(In − λG̃),

where G̃ is the adjacency matrix of the network g̃ resulting from adding/removing a link

to/from the network g. The computational cost of the inverse and determinant can be high

when the network size is large. To alleviate the computational burden, we adopt a matrix
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perturbation technique detailed in the online appendix, and derive a result that facilitates

the computation of (In − λG̃)−1 and det(In − λG̃) when (In − λG)−1 and det(In − λG) are

known.

3.3 Unobserved Heterogeneity

The structural model introduced in Section 2 allows some component of exogenous charac-

teristics Xi to be unobservable to the econometrician. More specifically, let Xi = [XO
i , x

U
i ],

where XO
i = (xO

i1, · · · , xO
iK) is a K-dimensional vector of exogenous characteristics observable

to the econometrician and xU
i ∼ i.i.d.(0, ς2x) is a scalar random variable capturing unobserved

heterogeneity. Further, let Zij be a vector of dyad-specific exogenous characteristics based

on XO
i and XO

j . For example, one could define the lth element of Zij as zij,l = |xO
il − xO

jl| if

xO
il is a continuous variable or zij,l = 1(xO

il = xO
jl) if xO

il is a binary indicator variable. In the

empirical model, we assume that b(Xi) in Equation (1) is given by

b(Xi) = β0 +XO
i β1 + β2x

U
i (12)

and h(Xi, Xj, δ1) in Equation (2) is given by

h(Xi, Xj, δ1) = Zijδ1 + xU
i + xU

j . (13)

As the unobserved heterogeneity shows up in both the direct utility from links and the direct

utility from effort, it introduces an additional layer of correlation between links and effort.

We regard xU = (xU
1 , · · · , xU

n )
′ as individual random effects with a density function

denoted by p(xU). Instead of sampling θ from the marginal posterior distribution

p(θ|g, Y ) =

∫
p(θ|g, Y, xU)p(xU)dxU ,

which does not have a closed form expression, we adopt the Bayesian data augmentation
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approach (Tanner and Wong, 1987; Albert and Chib, 1993) to sample θ together with xU

from the joint posterior distribution p(θ, xU |g, Y ) ∝ π(g, Y |θ, xU)p(θ)p(xU) in the MCMC

procedure. The details of the MCMC procedure can be found in the online appendix.

3.4 Monte Carlo Experiments

We conduct a Monte Carlo simulation with 100 repetitions to examine the performance of

the proposed MCMC procedure. In each repetition, we generate a network of size n = 100

and the corresponding effort levels according to the Gibbs measure defined in Equation (8).

The detailed data generating process (DGP) runs as follows. First, we generate exogenous

individual characteristics xO
i and xU

i in Equation (12) from log-normal distribution lnxO
i ∼

N(1.5, 0.5) and normal distribution xU
i ∼ N(0, 1), respectively, with the coefficients β1 = 0.5

and β2 = 0.5.7 The dyad variable Zij in Equation (13) is generated by Zij = |xO
i − xO

j |

using the variable xO
i previously produced. We set the spillover effect λ = 0.03, the fixed

linking cost δ0 = −2.5, the homophily effect δ1 = 0.5, the congestion effect δ2 = −0.25,

the cyclic triangle effect δ3 = 0.15, and the noise parameter σ2 = 0.5.8 Then, we generate

the network and effort levels by Algorithm 2 in Section 3.2 with 1,000,000 iterations and

treat the realization of the last iteration as the generated sample. On average, the generated

network has the average degree equals to 3.306, the density equals to 0.033, and the clustering

coefficient equals to 0.028. The average effort level is 2.952.

We perform the MCMC procedure for estimation, with and without controlling for un-

observed heterogeneity, for 20,000 iterations. We drop the first 10,000 draws for burn-in

and use the rest draws for computing the posterior mean as the estimate of each parameter.

The simulation results are reported in Table 1 and the values reported are the mean and

standard deviation of the 100 repetitions.

[insert Table 1 here]
7We suppress the intercept β0 in Equation (12) in the Monte Carlo experiment.
8The parameter values we choose in the Monte Carlo experiment are comparable to the empirical estimates

in Section 4.
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From the estimation results of Model 1 reported in the left panel of Table 1, we can see

that the spillover effect λ is overestimated by 54.3% when unobserved heterogeneity is not

controlled for. The estimates of other parameters are also affected: the estimate of β1 is

downward biased by 9.7%; the estimates of the fixed linking cost δ0 and the homophily effect

δ1 are downward biased by 14.1% and 38.5%, respectively; the estimates of the congestion

effect δ2 and the cyclic triangle effect δ3 are upward biased by 58.6% and 28.4%, respectively;

and the estimate of the noise parameter σ2 is also upward biased by 31.2%. These numbers

reveal that neglecting unobserved heterogeneity could cause severe biases in the estimation.

On the other hand, the estimation results of Model 2 reported in the right panel of Table 1

show that the proposed MCMC procedure can successfully recover the true model parameters

under the correct model specification that takes unobserved heterogeneity into account.

Furthermore, to see how ignoring unobserved heterogeneity affects the direction of es-

timation bias of the spillover effect parameter λ, we redo the simulation experiment with

β2 = −0.5 and other parameters unchanged. The simulation results are reported in Table

2. Comparing Tables 1 and 2, we find that the spillover effect parameter λ is overestimated

when β2 is positive and underestimated when β2 is negative. Our intuition for this result is

the following. In Equation (13), xU captures the unobserved degree heterogeneity (Graham,

2017). That is, an agent with a higher xU is likely to form more links. If β2 > 0 in Equation

(12), then an agent with a higher tendency to form links is likely to spend more effort. Thus,

ignoring xU would confound this effect with the spillover effect and lead to an upward bias

for the estimated spillover effect. For the same reason, when β2 < 0, ignoring xU would

cause a downward bias on the estimated spillover effect.9

[insert Table 2 here]
9More simulation results on the performance of the proposed MCMC procedure can be found in the online

appendix.
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4 Empirical Illustration

To illustrate the empirical relevance of our model and estimation strategy, we apply it to

study R&D investment and collaborations. R&D collaborations have become a widespread

phenomenon especially in industries with rapid technological innovations such as the chem-

ical and pharmaceutical industries (Hagedoorn, 2002; Roijakkers and Hagedoorn, 2006).

Through such collaborations firms generate knowledge spillovers not only to their collabora-

tion partners but also to other firms that are indirectly connected to them within a complex

R&D network (König et al., 2019). The network perspective is thus crucial to understand

outcomes in R&D intensive markets where collaborations can be frequently observed (Powell

et al., 1996, 2005).

4.1 A Simple Model of R&D Collaborations

The microfoundation of our empirical illustration is a Cournot competition model with firms

engaging in R&D investment and collaborations to lower production cost. This model has

been adopted by d’Aspremont and Jacquemin (1988), Goyal and Moraga-Gonzalez (2001),

Petrakis and Tsakas (2018) and König et al. (2019) to study R&D networks. More specif-

ically, consider a set of firms N = {1, . . . , n} with their characteristics given by Xi. Firms

can reduce their production costs by investing in R&D as well as by benefiting from an R&D

collaboration with another firm. The amount of cost reduction depends on the R&D effort

yi of firm i and the R&D efforts of firm i’s collaboration partners. The marginal production

cost ci of firm i is given by

ci = −b1(Xi)− yi − λ
n∑

j=1

gijyj, (14)

where b1(Xi) captures firm heterogeneity with regard to productivity and gij indicates

whether firms i and j have an R&D collaboration. The parameter λ captures the knowledge

spillover effect. We assume that the cost of R&D effort is given by 1
2
y2i . We further assume it
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is costly to maintain R&D collaborations with the collaboration cost given by −ai(g). With

output qi, firm i’s profit is given by

Πi = (pi − ci)qi −
1

2
y2i + ai(g), (15)

where pi is the price of the good produced by firm i. We assume firms are local monop-

olies with the inverse demand function pi = b0 − qi, where b0 represents the market size.

Substitution of the inverse demand function and Equation (14) into Equation (15) yields

Πi = [b0 − qi + b1(Xi) + yi + λ

n∑
j=1

gijyj]qi −
1

2
y2i + ai(g). (16)

Profit maximization with respect to yi gives qi = yi. Substitution of qi = yi into Equation

(16) gives

Πi = ai(g) + b(Xi)yi + λ
n∑

j=1

gijyiyj −
1

2
y2i , (17)

where b(Xi) = b0 + b1(Xi). Equation (17) conforms to the general payoff function defined

in Equation (1). In the empirical study, we assume that ai(g) is given by Equation (2) with

h(Xi, Xj, δ1) defined in Equation (13) and that b(Xi) is given by Equation (12).

4.2 Data

In the empirical illustration, we focus on the sector “Chemicals and Allied Products” (with

two-digit SIC code 28), as it is one of the most active sectors regarding R&D collaborations.

Our data of inter-firm R&D collaborations stems from two sources which have been widely

used in the literature (Schilling, 2009). The first is the Cooperative Agreements and Technol-

ogy Indicators (CATI) database (Hagedoorn, 2002). The database only records agreements

for which a combined innovative activity or an exchange of technology is at least part of the

agreement. The second is the Thomson Securities Data Company (SDC) alliance database.

SDC collects data from the U.S. Securities and Exchange Commission (and their interna-
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tional counterparts) filings, trade publications, wires, and news sources. We include only

alliances from SDC which are classified explicitly as R&D collaborations.10 We then merge

the CATI database with the Thomson SDC alliance database. For the matching of firms

across datasets we adopt and extend the name matching algorithm developed as part of the

NBER patent data project (Trajtenberg et al., 2009).11 The systematic collection of inter-

firm alliances in CATI started in 1987 and ended in 2006. We take 2006 as the base year and

assume that an alliance lasts for 5 years (Rosenkopf and Padula, 2008). We construct the

R&D collaboration network by coding gij as one if an alliance between firms i and j exists

in 2006, and zero otherwise.

The combined CATI-SDC database only provides the names of the firms in an alliance.

To obtain information about their balance sheets and income statements we match the firms’

names in the CATI-SDC database with the firms’ names in Standard & Poor’s Compustat

U.S. and Global Fundamentals databases, as well as Bureau van Dijk’s Orbis database

(Bloom et al., 2013). For the purpose of matching firms across databases, we employ the

above mentioned name matching algorithm. Compustat and Orbis databases only contain

firms listed on the stock market, so they typically exclude small private firms. However,

they should include most R&D intensive firms, as R&D is typically concentrated in publicly

listed firms (Bloom et al., 2013).

We use a firm’s log-R&D expenditure to measure its R&D effort. Moreover, the firms’

productivities are measured by their log-R&D capital stocks (lagged by one year). As in

Hall et al. (2000), Bloom et al. (2013) and König et al. (2019), the R&D capital stock is

computed using a perpetual inventory method based on the firms’ R&D expenditures with

a 15% depreciation rate. We drop firm observations with missing values on either R&D

expenditure or R&D capital stock which results in a sample of 347 firms and 139 R&D

alliances in the SIC-28 sector. The SIC-28 sector has eight sub-sectors coded with 3-digit
10For a comparison and summary of different alliance databases, including CATI and SDC, see Schilling

(2009).
11See https://sites.google.com/site/patentdataproject. We would like to thank Enghin Atalay and Ali

Hortacsu for sharing their name matching algorithm with us.
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SIC codes. Among them, the sub-sector “Drugs” (SIC-283) is the largest in our sample with

256 firms and 119 R&D alliances. Descriptive statistics of the sample are shown in Table 3.

[insert Table 3 here]

4.3 Estimation Results

Assuming the observed R&D expenditures and collaborations follow the stationary distribu-

tion defined in Equation (8), we estimate the model parameters using the MCMC procedure

described in Section 3. We run the MCMC algorithm for 35,000 iterations and drop the first

5,000 draws for burn-in and keep every 20th of the remaining draws to conduct the posterior

analysis, i.e., compute the posterior mean (as a point estimate) and posterior variance for

each parameter. To check the convergence of the MCMC algorithm, we provide the trace

plot of draws for the spillover effect parameter λ in Figure 2. The trace plot of MCMC draws

for λ and its posterior distribution in the upper and middle panels show that the MCMC

draws are stable and have good variations. The autocorrelation function (ACF) plotted in

the bottom panel indicates that the correlation among draws decline gradually over itera-

tions. The draws pass the convergence diagnostic test of Geweke (1992) with a p-value of

0.4698.12

[insert Figure 2 here]

[insert Table 4 here]

The estimation results are reported in Table 4. To capture firm heterogeneity in the

marginal production cost given by Equation (14), we include a productivity measure defined

as a firm’s one-year-lagged log-R&D capital stock and sub-sector dummies (defined at the 3-

digit SIC level). As expected, the estimate of β1 shows that higher time-lagged R&D capital

stock reduces the marginal production cost.
12The convergence diagnostic test tests for an equal mean of the first 10% versus the last 50% of the draws.

We also try different proportions (e.g., 30% versus 70%), and obtain similar results for the convergence of
the MCMC algorithm.
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The estimated spillover effect λ is statistically significant. As the estimated coefficient β2

of unobserved heterogeneity in the marginal production cost is statistically insignificant, the

spillover effect is only slightly overestimated when unobserved heterogeneity is ignored. On

the other hand, unobserved heterogeneity still plays an important role in the estimation of the

collaboration cost given by Equation (2). When unobserved heterogeneity is controlled for,

we find that the collaboration cost is lower between firms in the same sub-sector (reflected by

δ11; the homophily effect), firms with different productivities (reflected by δ12; the heterophily

effect), and firms with a common collaboration partner (reflected by δ3; the cyclic triangle

effect). A firm is less likely to form a new link if it has many existing R&D collaborations

(reflected by δ2; the congestion effect).

[insert Figure 3 here]

Finally, we evaluate the model’s goodness-of-fit following Hunter et al. (2008). We gener-

ate 1000 networks with the estimates of Model 1 and Model 2 reported in Table 4 respectively.

The model’s goodness-of-fit is examined by comparing the 1000 generated networks with the

observed network in terms of three network statistics: the degree (the number of links of

a firm), the minimum geodesic distance (the number of links in the shortest path between

two firms), and the number of edge-wise shared partners (the number of shared partners

of two connected firms). The degree is included because it is a fundamental measure of

network structure and it often does a reasonably good job of explaining other higher-order

network statistics (Faust, 2007; Graham, 2015). The geodesic distance is included because

it is relevant to the speed of knowledge diffusion, which is especially important for R&D

networks. The geodesic distance is also the basis of some well-known network centrality

measures (Wasserman and Faust, 1994). The number of edge-wise shared partners is in-

cluded based on the work by Snijders et al. (2006). The three network statistics are related

to different aspects of network structure and provide independent criteria for goodness-of-fit.

We plot the distributions of the three network statistics of the observed network (in

solid lines) and the corresponding means and 95% confidence intervals of the 1000 generated
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networks (in dashed lines) for both models in Figure 3. From the figure we can see that

Model 2 provides a better fit to the observed network than Model 1. We also calculate the

spectral goodness-of-fit (SGOF) proposed by Shore and Lubin (2015) for both models. The

SGOF is analogous to the standard R2 in a linear regression. It measures how well a network

model explains the structure of an observed network based on the spectrum of the graph

Laplacian. We calculate the SGOF based on the 1000 networks previously generated, and

find that Model 2 improves the goodness-of-fit of Model 1 by 51% and this improvement is

significant at the 5% level.13

4.4 Key Player Analysis

[insert Table 5 here]

With the estimates of Model 2 reported in the right panel of Table 4, we can conduct the

key player analysis described in Section 2.3. We consider both short-run and long-run key

player analyses. For the short-run key player analysis, we assume the network does not rewire

after a firm is removed. For the long-run key player analysis, we simulate the coevolution

process of R&D investment and collaborations for the remaining n−1 firms using Algorithm

2 in Section 3.2 after a firm is removed. We run the simulation for n2 iterations and use the

observation of the last iteration to calculate the welfare loss. We then repeat this procedure

200 times and report the average welfare loss of removing that firm. The results for the key

player analysis are reported in Table 5. Some main findings are summarized as follows.

• In general, the welfare loss is lower in the long run, because firms can mitigate the

welfare loss by forming new links with other remaining firms.

• The short-run and long-run key player rankings do not always coincide with each other.

However, there is a high correlation (0.9277) between short-run and long-run welfare
13The details on how to calculate the SGOF can be found in the online appendix.
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losses. This suggests the key player analysis has some robustness with respect to the

invariant network assumption.

• The long-run welfare loss is highly correlated with the log-R&D expenditure, degree

centrality, betweenness centrality, closeness centrality, and eigenvector centrality with

correlation coefficients 0.7378, 0.8829, 0.8222, 0.7974, and 0.8368 respectively. There-

fore, the key player ranking incorporates information on both R&D investment and

network centrality of a firm.

5 Conclusion

This paper proposes a structural model for the coevolution of networks and behavior. We

provide a microfoundation for the model and characterize the equilibrium of the coevolution

process. We show the model can be estimated using an MCMC algorithm and investigate

the finite sample performance of the estimation procedure in a Monte Carlo simulation

experiment. We then apply the model to study R&D investment and collaboration decisions

in the chemicals and pharmaceutical industry and find a positive knowledge spillover effect.

We also demonstrate how to use the model estimates to conduct a long-run key player

analysis.

Due to the generality of the utility function we consider, we believe that our structural

framework – from both theoretical and empirical perspectives – can be applied to a variety

of related contexts, where externalities can be modelled in the form of an adaptive network.

Examples include peer effects in education, crime, risk sharing, scientific coauthorship, etc.

(Jackson and Zenou, 2014).
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Table 1: Monte Carlo simulation results (Part I)

True value Model 1 Model 2

λ 0.0300 0.0463 (0.0117) 0.0280 (0.0049)

β1 0.5000 0.4516 (0.0332) 0.5029 (0.0220)
β2 0.5000 0.4930 (0.0591)

δ0 -2.5000 -2.8531 (0.5701) -2.4361 (0.3476)
δ1 0.5000 0.3075 (0.0786) 0.5332 (0.0708)
δ2 -0.2500 -0.1035 (0.0548) -0.2860 (0.0700)
δ3 0.1500 0.1927 (0.0929) 0.1423 (0.0417)

σ2 0.5000 0.6562 (0.1136) 0.4755 (0.0735)
ς2x 1.0000 1.1684 (0.1410)

Notes: Model 1 ignores unobserved heterogeneity and Model
2 controls for unobserved heterogeneity. Standard deviations
in parentheses.

Table 2: Monte Carlo simulation results (Part II)

True value Model 1 Model 2

λ 0.0300 -0.0027 (0.0092) 0.0316 (0.0077)

β1 0.5000 0.5531 (0.0197) 0.5009 (0.0187)
β2 -0.5000 -0.4675 (0.0441)

δ0 -2.5000 -2.9573 (0.3369) -2.4445 (0.3690)
δ1 0.5000 0.3266 (0.0808) 0.5371 (0.0744)
δ2 -0.2500 -0.0593 (0.0478) -0.2951 (0.0748)
δ3 0.1500 0.2172 (0.1075) 0.1513 (0.0452)

σ2 0.5000 0.7023 (0.0715) 0.4663 (0.0904)
ς2x 1.0000 1.1993 (0.1549)

Notes: Model 1 ignores unobserved heterogeneity and Model
2 controls for unobserved heterogeneity. Standard deviations
in parentheses.
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Table 3: Descriptive statistics.

log-R&D expenditure productivity # of R&D alliances
Sector # of firms mean min max mean min max mean min max

SIC-28 347 9.6574 3.2109 15.2467 11.1018 5.0706 16.8160 0.8012 0 15

SIC-283 256 9.4861 3.2109 15.2467 10.8352 5.0706 16.8160 0.9297 0 15

Notes: R&D expenditure is measured by thousand U.S. dollars in 2006. A firm’s productivity is measured
by its log-R&D capital stock (lagged by one year).
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Table 4: Estimation results.

Model 1 Model 2

spillover effect (λ) 0.0125 (0.0027)*** 0.0113 (0.0021)***

Production Cost
productivity (β1) 0.8599 (0.0284)*** 0.8807 (0.0074)***
unobs. heterogeneity (β2) 0.0275 (0.0219)
sub-sector dummies Yes Yes

Collaboration Cost
constant (δ0) -4.6716 (0.6963)*** -4.2383 (0.4652)***
same sub-sector (δ11) 0.8086 (0.2420)*** 0.6498 (0.1115)***
diff-in-productivity (δ12) 0.0618 (0.0461) 0.1599 (0.0332)***
congestion (δ2) 0.0319 (0.0355) -0.2215 (0.0635)***
cyclic triangle (δ3) 0.3151 (0.1386)** 0.1219 (0.0565)**

Noise Parameters
noise in decisions (σ2) 0.4833 (0.0744)*** 0.2674 (0.0481)***
unobs. heterogeneity (ς2x) 0.7697 (0.0773)***

Notes: Model 1 ignores unobserved heterogeneity and Model 2 controls for un-
observed heterogeneity. Standard errors in parentheses. ***, **, and * indicate
that the highest density range does not cover zero at 99%, 95%, and 90% levels.
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Table 5: Key player ranking.

short run long run

log-R&D expenditure degree welfare loss rank welfare loss rank

Pfizer Inc. 15.2467 15 -0.5322 1 -0.4224 1
Novartis 14.7913 15 -0.4789 2 -0.3697 2
Amgen Inc 14.6398 13 -0.3837 5 -0.2848 3
Johnson & Johnson Inc 15.1535 7 -0.4254 3 -0.2767 4
Merck & Co Inc 14.6794 10 -0.4178 4 -0.2714 5
Bayer 14.1742 10 -0.3755 7 -0.2522 6
Bristol-Myers Squibb Co 14.2351 6 -0.3775 6 -0.2137 7
Wyeth 14.2487 2 -0.3123 8 -0.1471 8
Takeda Pharmaceutical Co Ltd 13.6225 7 -0.2749 11 -0.1454 9
Abbott Laboratories Inc. 14.5658 3 -0.3119 9 -0.1398 10

Notes: In the short run, the remaining network is assumed to be fixed after a firm exits. In the long run,
the network evolves to a new equilibrium after a firm exits. R&D expenditure is measured by thousand U.S.
dollars in 2006. Welfare loss is measured in percentage.
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Figure 1: Interdependence between networks and behavior in R&D networks.
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Figure 2: Trace plot for MCMC draws of λ.
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Figure 3: Goodness-of-fit statistics.
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(b) Model 2
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Notes: Network statistics of the observed network are in solid lines and the corresponding means and

95% confidence intervals of the 1000 generated networks are in dashed lines.
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Online Appendix for “A Structural Model for the Coevolution of
Networks and Behavior”

by Chih-Sheng Hsieh, Michael D. König, and Xiaodong Liu

A Proofs

Proof of Proposition 1. The proof consists of two parts. Part (I) proves that Q(g, Y,X)

defined in Equation (7) is the potential function. Part (II) proves the Gibbs measure given

in Equation (8) is the unique stationary distribution of the coevolution process.

(I) First, we consider the case where the effort level of agent i is updated from y0 to y1,

while g and Y−i remain unchanged. In this case,

Q(g, yi = y1, Y−i, X)−Q(g, yi = y0, Y−i, X)

= b(Xi)(y1 − y0) + λ(y1 − y0)
∑
j∈N

gijyj −
1

2
(y21 − y20)

= Ui(g, yi = y1, Y−i, X)− Ui(g, yi = y0, Y−i, X).

Next, we consider the case where the network is updated from g0 = {gij = 0, g−ij} to

g1 = {gij = 1, g−ij}, while Y remains unchanged. In this case,

Q(g1, Y,X)−Q(g0, Y,X) = a(g1, X)− a(g0, X) + λyiyj.

As

a(g1, X)− a(g0, X) = δ0 + hij(δ1) + δ2
∑

k∈N\{i,j}

(gik + gjk) + 2δ3
∑

k∈N\{i,j}

gikgjk

=
1

2
[ai(g1, X) + aj(g1, X)]− 1

2
[ai(g0, X) + aj(g0, X)],

1



we have

Q(g1, Y,X)−Q(g0, Y,X) = U ij(g1, Y,X)− U ij(g0, Y,X).

Therefore, Q(g, Y,X) defined in Equation (7) is the potential function.

(II) The sequence {(gt, Yt)} is a Markov chain. A sufficient condition for the station-

arity of the Gibbs measure given in Equation (8) is the detailed balance condition, i.e.,

π(ω0)p(ω0, ω1) = π(ω1)p(ω1, ω0), where p(ω0, ω1) is the transition density from state ω0 to

state ω1. Here, we only need to verify the detailed balance condition for (i) ω0 and ω1 dif-

fer by only one element of g and (ii) ω0 and ω1 differ by only one element of Y , since the

transition density for other cases is zero.

(i) ω0 and ω1 differ by only one element of g. Let ω0 = (gij = 0, g−ij, Y ) and ω1 = (gij =

1, g−ij, Y ). Then,

π(ω0)p(ω0, ω1)

= π(ω0)ρ0ρ(gt−1, Xi, Xj)
exp[σ−2Q(gij = 1, g−ij, Y )]

exp[σ−2Q(gij = 0, g−ij, Y )] + exp[σ−2Q(gij = 1, g−ij, Y )]

= π(ω1)ρ0ρ(gt−1, Xi, Xj)
exp[σ−2Q(gij = 0, g−ij, Y )]

exp[σ−2Q(gij = 0, g−ij, Y )] + exp[σ−2Q(gij = 1, g−ij, Y )]

= π(ω1)p(ω1, ω0).

(ii) ω0 and ω1 differ by only one element of Y . Let ω0 = (g, y0, Y−i) and ω1 = (g, y1, Y−i).

2



Then,

π(ω0)p(ω0, ω1)

= π(ω0)(1− ρ0)ρ(Xi)
exp[σ−2Ui(g, y1, Y−i)]∫

Y exp[σ−2Ui(g, y, Y−i,t−1)]dy

= π(ω0)(1− ρ0)ρ(Xi)
exp[σ−2Q(g, y1, Y−i)]∫

Y exp[σ−2Q(g, y, Y−i,t−1)]dy

= π(ω1)(1− ρ0)ρ(Xi)
exp[σ−2Q(g, y0, Y−i)]∫

Y exp[σ−2Q(g, y, Y−i,t−1)]dy

= π(ω1)(1− ρ0)ρ(Xi)
exp[σ−2Ui(g, y0, Y−i)]∫

Y exp[σ−2Ui(g, y, Y−i,t−1)]dy

= π(ω1)p(ω1, ω0).

The desired result follows by the reversibility, irreducibility, and Harris recurrence of the

Markov chain.

Proof of Proposition 2. To show p(θ|g, Y ) is the stationary distribution, we need to check

the detailed balance condition, i.e., p(θ|g, Y )p(θ̃|θ) = p(θ̃|g, Y )p(θ|θ̃) where

p(θ̃|θ) = qθ(θ̃|θ)π(g̃, Ỹ |θ̃)min

{
1,

p(θ̃|g, Y )qθ(θ|θ̃)π(g̃, Ỹ |θ)
p(θ|g, Y )qθ(θ̃|θ)π(g̃, Ỹ |θ̃)

}
.

Indeed,

p(θ|g, Y )p(θ̃|θ) = p(θ|g, Y )qθ(θ̃|θ)π(g̃, Ỹ |θ̃)min

{
1,

p(θ̃|g, Y )qθ(θ|θ̃)π(g̃, Ỹ |θ)
p(θ|g, Y )qθ(θ̃|θ)π(g̃, Ỹ |θ̃)

}
= min

{
p(θ|g, Y )qθ(θ̃|θ)π(g̃, Ỹ |θ̃), p(θ̃|g, Y )qθ(θ|θ̃)π(g̃, Ỹ |θ)

}
= min

{
p(θ|g, Y )qθ(θ̃|θ)π(g̃, Ỹ |θ̃)
p(θ̃|g, Y )qθ(θ|θ̃)π(g̃, Ỹ |θ)

, 1

}
p(θ̃|g, Y )qθ(θ|θ̃)π(g̃, Ỹ |θ)

= p(θ̃|g, Y )p(θ|θ̃).

The desired result follows by the reversibility, irreducibility, and Harris recurrence of the

Markov chain.

3



Proof of Proposition 3. To show π(g, Y |θ) is the stationary distribution, we need to check

the detailed balance condition, i.e., π(g, Y |θ)p(g̃, Ỹ |g, Y ) = π(g̃, Ỹ |θ)p(g, Y |g̃, Ỹ ) where

p(g̃, Ỹ |g, Y ) = pY (Ỹ |g̃)qg(g̃|g)min

{
1,

π(g̃, Ỹ |θ)pY (Y |g)qg(g|g̃)
π(g, Y |θ)pY (Ỹ |g̃)qg(g̃|g)

}
.

Indeed,

π(g, Y |θ)p(g̃, Ỹ |g, Y )

= c(θ)−1 exp[σ−2Q(g, Y |γ)]pY (Ỹ |g̃)qg(g̃|g)min

{
1,

exp[σ−2Q(g̃, Ỹ |γ)]pY (Y |g)qg(g|g̃)
exp[σ−2Q(g, Y |γ)]pY (Ỹ |g̃)qg(g̃|g)

}
= c(θ)−1min

{
exp[σ−2Q(g, Y |γ)]pY (Ỹ |g̃)qg(g̃|g), exp[σ−2Q(g̃, Ỹ |γ)]pY (Y |g)qg(g|g̃)

}
= min

{
exp[σ−2Q(g, Y |γ)]pY (Ỹ |g̃)qg(g̃|g)
exp[σ−2Q(g̃, Ỹ |γ)]pY (Y |g)qg(g|g̃)

, 1

}
c(θ)−1 exp[σ−2Q(g̃, Ỹ |γ)]pY (Y |g)qg(g|g̃)

= π(g̃, Ỹ |θ)p(g, Y |g̃, Ỹ ).

The desired result follows by the reversibility, irreducibility, and Harris recurrence of the

Markov chain.

B Implementation Details

B.1 MCMC

In our empirical study of R&D collaboration networks, we want to estimate the spillover

effect parameter λ, parameters in the marginal cost of production β = (β0, β
′
1, β2)

′ (with

the dimension denoted by K), parameters in the collaboration cost δ = (δ0, δ
′
1, δ2, δ3)

′ (with

the dimension denoted by S), and the noise parameter σ2. These parameters are denoted

by θ = (λ, β′, δ′, σ2)′. Other than θ, there are also unobservable individual-specific random

variables xU = (xU
1 , · · · , xU

n )
′, which are regarded as individual random effects, in the model.

We assign the prior distributions of model parameters and unknown variables as follows:
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1. Individual latent variable: xU ∼ N(0, ς2xIn), with ς2x ∼ κInvχ2(α).

2. Spillover effect parameter: λ ∼ U(−∥G∥−1
∞ , ∥G∥−1

∞ ).

3. Parameters in the marginal cost of production: β ∼ N(µβ, ς
2
βIK).

4. Parameters in the collaboration cost: δ ∼ N(µδ, ς
2
δ IS).

5. Noise parameter: σ2 ∼ N[0,∞)(µσ, ς
2
σ).

The above prior distributions are conjugate priors commonly used in the Bayesian litera-

ture. First, treating xU
i as an individual random effect, we specify a hierarchical prior for xU

i

with a prior for the variance given by ς2x ∼ κInvχ2(α). The hyper-parameters κ and α are

to be specified by the user. The spillover effect parameter λ shares similar properties as the

spatial lag parameter in the spatial econometrics literature and we use a uniform prior for λ

following Smith and LeSage (2004) and assume λ ∈ (−∥G∥−1
∞ , ∥G∥−1

∞ ) to guarantee that the

best response function (3) has a unique equilibrium. Finally, to guarantee that σ2 is non-

negative, we assume it follows a truncated normal distribution on [0,∞). We also assume

independence across prior distributions of parameters and latent variables. We set µβ = 0,

µδ = 0, µσ = 0, ς2β = ς2δ = ς2σ = 100, κ = 1 and α = 2 to ensure our prior distributions cover

a wide range of parameter spaces and thus be uninformative in our empirical analysis.

We adopt the Bayesian data augmentation approach (Tanner and Wong, 1987; Albert

and Chib, 1993) to sample θ together with xU from the joint posterior distribution by the

MCMC procedure. In an iteration of the MCMC procedure with the current values of the

parameters and individual latent variables denoted by θ and xU , we perform the following

steps sequentially. Let xU
−i = (xU

1 , · · · , xU
i−1, x

U
i+1, · · · , xU

n )
′.

Step I. Simulate x̃U
i from p(x̃U

i |g, Y, xU
−i, θ) by the DMH algorithm, for i = 1, · · · , n.

I.1. Propose x̃U
i from a random walk proposal density qx(x̃

U
i |xU

i ).

5



I.2. Simulate auxiliary data (g̃, Ỹ ) by R runs of Algorithm 2 defined in Section 3.2,

starting from the observed (g, Y ). In the first step of Algorithm 2, we allow for

both a “local update” (with probability 1−pglobal), where only one link is flipped,

and a “global update” (with probability pglobal), where all links are flipped.1

I.3. Accept x̃U
i according to the acceptance probability

αx = min

{
1,

π(g, Y |θ, x̃U)

π(g, Y |θ, xU)
· p(x̃

U
i |ς2x)

p(xU
i |ς2x)

· π(g̃, Ỹ |θ, xU)

π(g̃, Ỹ |θ, x̃U)

}

= min

{
1,

exp[σ−2Q(g, Y |γ, x̃U)]

exp[σ−2Q(g, Y |γ, xU)]
· p(x̃

U
i |ς2x)

p(xU
i |ς2x)

· exp[σ
−2Q(g̃, Ỹ |γ, xU)]

exp[σ−2Q(g̃, Ỹ |γ, x̃U)]

}
,

where p(xU
i |ς2x) denotes the density function of N(0, ς2xIn). Otherwise, set x̃U

i =

xU
i .

Step II. Simulate ς̃2x from [κ+
∑n

i=1(x̃
U
i )

2]Invχ2(α + n) by a standard Gibbs sampler.

Step III. Simulate θ̃ from p(θ̃|g, Y, x̃U) by the DMH algorithm.

III.1. Propose θ̃ from a random walk proposal density qθ(θ̃|θ).

III.2. Simulate auxiliary data (g̃, Ỹ ) by R runs of Algorithm 2 defined in Section 3.2,

starting from the observed (g, Y ) and allowing for both local and global updates

as described in Step I.2.

1Similar local and global updates are suggested in Snijders (2002) and Mele (2017) to

improve the convergence of graph sampling, particularly when the graph distribution exhibits

a bimodal shape, one mode having low and the other high graph densities. In the simulation

and empirical studies, we set the probability of global update pglobal = 0.01.
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III.3. Accept θ̃ according to the acceptance probability

αθ = min

{
1,

π(g, Y |θ̃, x̃U)

π(g, Y |θ, x̃U)
· p(θ̃)
p(θ)

· π(g̃, Ỹ |θ, x̃U)

π(g̃, Ỹ |θ̃, x̃U)

}

= min

{
1,

exp[σ̃−2Q(g, Y |γ̃, x̃U)]

exp[σ−2Q(g, Y |γ, x̃U)]
· p(θ̃)
p(θ)

· exp[σ
−2Q(g̃, Ỹ |γ, x̃U)]

exp[σ̃−2Q(g̃, Ỹ |γ̃, x̃U)]

}
,

where x̃U = (x̃U
1 , · · · , x̃U

n )
′. Otherwise, set θ̃ = θ.

B.2 Matrix Perturbation

In the MCMC algorithm, we need to evaluate (In−λG)−1 and det(In−λG) whenever a link

is added or removed in the network g. The following lemma is helpful for this purpose.

Lemma 1. Let ei be the ith unit basis vector in Rn. Let A denote an n× n matrix and

Bij =
A−1eie

′
jA

−1

1 + αe′jA
−1ei

.

Adding a perturbation α to the matrix A in the (i, j)th and the (j, i)th position can be written

as A+ αeie
′
j + ρeje

′
i.

(i) The inverse of the perturbed matrix can be written as

(A+ αeie
′
j + αeje

′
i)
−1 = A−1 − αBij − α

(A−1 − αBij)eje
′
i(A

−1 − αBij)

1 + αe′i(A
−1 − αBij)ej

. (1)

(ii) The determinant of the perturbed matrix can be written as

det(A+ αeie
′
j + αeje

′
i) = [1 + αe′i(A

−1 − αBij)ej](1 + αe′jA
−1ei) det(A). (2)

Proof. We first prove part (i) of Lemma 1. By the Sherman-Morrison formula (Meyer, 2000),

(A+ αeie
′
j)

−1 = A−1 − α
A−1eie

′
jA

−1

1 + αe′jA
−1ei

= A−1 − αBij.

7



Therefore,

(A+αeie
′
j+αeje

′
i)
−1 = [(A−1−αBij)

−1+αeje
′
i]
−1 = A−1−αBij−α

(A−1 − αBij)eje
′
i(A

−1 − αBij)

1 + αe′i(A
−1 − αBij)ej

,

where the last equality holds by the Sherman-Morrison formula.

We next prove part (ii) of Lemma 1. By the matrix determinant lemma (Horn and

Johnson, 1985),

det(A+ αeie
′
j + αeje

′
i) = det[(A+ αeie

′
j) + αeje

′
i]

= [1 + αe′i(A+ αeie
′
j)

−1ej] det(A+ αeie
′
j)

= [1 + αe′i(A+ αeie
′
j)

−1ej](1 + αe′jA
−1ei) det(A)

= [1 + αe′i(A
−1 − αBij)ej](1 + αe′jA

−1ei) det(A),

where the last equality holds by the Sherman-Morrison formula.

With Lemma 1 the inverse and determinant of the perturbed matrix A + αeie
′
j + αeje

′
i

can be easily computed if the inverse and determinant of A are known.

C Additional Monte Carlo Experiments

We conduct additional Monte Carlo experiments to investigate the performance of the pro-

posed MCMC procedure. We consider a model misspecification scenario where the DGP

does not include any externality effect from network structure, but we estimate the model in

Equation (7) with both congestion and cyclic triangle effects. In other words, compared to

the Monte Carlo study setting in Section 3.4, we change the true parameter values of δ3 from

-0.25 to 0, and δ4 from 0.15 to 0. Meanwhile, we also change δ0 from -2.5 to -5 and δ1 from

0.5 to 0.25 in order to maintain similar network statistics as in Section 3.4. We maintain

network size at n = 100.
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The estimation results across 100 repetitions are reported in the second column of Table

C1. One can see that our proposed MCMC estimation procedure is able to identify zero

effects from network congestion and cyclic triangle terms as the estimates of δ2 and δ3 are

small and insignificant. The estimate of other parameters are close to their true values. This

simulation study demonstrates that our estimation procedure will not generate spurious

network externality effects if these effects are indeed non-existent in the real data.

D Spectral Goodness of Fit

We follow Shore and Lubin (2015) to compute the spectral goodness of fit (SGOF) to measure

how well a network model explains the structure of an observed network. For an undirected

network represented by an adjacency matrix G = [gij], where gij = gji = 1 if agents i

and j form a link and gij = 0 otherwise, a Laplacian matrix L is defined as L = D − G,

where D is the “degree matrix” containing the row sums of G on its diagonal and zero

elsewhere. The spectrum of L is the set of ordered eigenvalues, ν = (ν0, ν1, · · · , νn), such

that ν0 ≤ ν1 ≤ · · · ≤ νn. We normalize all spectra to sum to unity: ν̂i =
1∑n
j=1

νi.

Given the structural information contained in the spectrum, the Euclidean spectral dis-

tance (ESD) between two spectra, ∥ νA−νB ∥ is used as a measure of the structural similarity

of two adjacency matrices A and B. From our estimated network model we can simulate a

number of artificial networks and calculate the ESD for the kth simulated network as

ESDobs,simk
=∥ νobs − νsimk ∥=

√√√√ n∑
i=1

(|ν̂obs
i − ν̂simk

i |)2.

In the paper we consider two empirical network models, Model 1 that ignores unob-

served heterogeneity and Model 2 that controls for unobserved heterogeneity. The SGOF is

computed by

SGOF12 = 1− ESDobs,Model1

ESDobs,Model2

,
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where ESDobs,Models =
1

Ksim

∑Ksim

k=1 ESDobs,Models,k is the arithmetic mean of the ESDs from

each of individual simulated networks based on Model s, for s = 1, 2. In practice, we set the

number of simulated networks Ksim = 1000. Other than checking the SGOF evaluated at

the mean ESD values, it is also important to examine the SGOF with the 2.5th and 97.5th

percentile results of ESD to get a quantitative sense of the range of networks that a given

network model produces. Based on the simulation from the estimated Model 1 and Model

2, we obtain the value of SGOF12 equals 0.5050, and the 2.5th and 97.5th percentile results

equal (0.0869, 0.7589), which implies that Model 2 improves the goodness of fit of Model 1

by 51% and this improvement is significant at the 5% level.
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Table C1: Monte Carlo simulation results
(Part III)

True value Estimation result

λ 0.0300 0.0291 (0.0047)

β1 0.5000 0.5023 (0.0194)

β2 0.5000 0.4950 (0.0682)

δ0 -5.0000 -5.0221 (0.2413)

δ1 0.2500 0.2629 (0.0846)

δ2 0.0000 -0.0173 (0.0558)

δ3 0.0000 0.0004 (0.0570)

σ2 0.5000 0.5001 (0.0751)

ς2x 1.0000 1.1317 (0.2194)
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