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Abstract

This paper introduces a discrete-choice simultaneous-equation social interaction

model. We provide a microfoundation for the econometric model by considering an

incomplete information game where individuals interact in multiple activities through

a network. We characterize the suffi cient condition for the existence of a unique BNE

of the game. We discuss the identification of the econometric model and propose a

two-stage estimation procedure, where the reduced form parameters are estimated by
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the NPL algorithm in the first stage and the structural parameters are recovered from

the estimated reduced form parameters by the AGLS estimator in the second stage.

Monte Carlo experiments show that the proposed estimation procedure performs well

in finite samples and remains computationally feasible when networks are large. We

also provide an empirical example to illustrate the empirical relevance of the proposed

model.

JEL classification: C31, C35

Key words: discrete choices, networks, rational expectations, simultaneous equa-

tions

1 Introduction

In everyday life, people make interrelated choices in various activities, many of which are

influenced by the choices of other people. This paper proposes a simultaneous-equation

social interaction model with binary outcomes to characterize the interdependence of indi-

vidual choices both across activities and across individuals.

In their seminal papers, Brock and Durlauf (2001a, 2001b) introduced a discrete-choice

group interaction model, where individuals are partitioned into groups and an individual’s

choice depends on his/her expectation of the average choice of the group he/she belongs

to.1 In this model, the expectation is formed based on group-level information. As beliefs

are rational, the subjective expectation on the average choice of the group is identical for

every individual in the group, and coincides with the mathematical expectation. Brock

and Durlauf (2007) treated the homogenous rational expectation as a data moment and

discussed nonparametric identification of the model.

More recently, discrete-choice network interaction models, where an individual’s choice

1A review of the recent development of social interaction models can be found in Blume et al. (2011).

2



is influenced by the expected outcomes of his/her direct connections (or peers) in the

network, have attracted great interest. As every individual in the network usually has a

different set of peers and the expectation is formed based on individual-level information,

the rational expectation is heterogenous in this model. Lee et al. (2014), Lin and Xu (2017),

Yang and Lee (2017) and Xu (2018) have studied different variations of this model.

The aforementioned works focus on social interactions within a certain activity. This

paper generalizes the single-activity social interaction model with discrete choices to a

simultaneous-equation model. To motivate the specification of the econometric model, we

consider an incomplete information game where individuals interact in multiple activities

through a network. We characterize the suffi cient condition for the existence of a unique

Bayesian Nash Equilibrium (BNE) of the game, which in turn guarantees the coherency

and completeness of the econometric model (Tamer, 2003). We discuss the identification

of the econometric model and propose a two-stage estimation procedure, where the re-

duced form parameters are estimated by the nested pseudo likelihood (NPL) algorithm

(Aguirregabiria and Mira, 2007) in the first stage and the structural parameters are re-

covered from the estimated reduced form parameters by the Amemiya generalized least

squares (AGLS) estimator (Amemiya, 1978) in the second stage. Monte Carlo experiments

show that the proposed estimation procedure performs well in finite samples and remains

computationally feasible when networks are large. Finally, to illustrate the empirical rel-

evance of the proposed model, we apply it to study peer effects of participating in sports

activities on underage smoking, using a representative sample of U.S. teenagers in the

National Longitudinal Study of Adolescent Health (Add Health) data.

The rest of the paper is organized as follows. Sections 2 introduces an incomplete

information network game with multiple activities. Section 3 presents the econometric

model implied by the network game and discusses the identification and estimation of the
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model. Section 4 gives Monte Carlo simulation results on the finite sample performance

of the proposed estimation procedure. Section 5 provides an empirical example. Section 6

briefly concludes. The proofs are collected in the appendix.

Throughout the paper we adopt the following notation. Let Φ(·) denote the standard

normal distribution function with the density function φ(·). For an n×m matrix A = [aij ],

the vectorization of A is given by vec(A) = (a11, · · · , an1, a12, · · · , anm)′,2 and the row sum

and column sum matrix norms of A are denoted by ||A||∞ = maxi=1,··· ,n
∑m

j=1 |aij | and

||A||1 = maxj=1,··· ,m
∑n

i=1 |aij | respectively.

2 Incomplete Information Network Game

To provide a microfoundation for the proposed econometric model, we consider an incom-

plete information network game. Suppose a set of individuals N = {1, · · · , n} interacts

within a network. Let W = [wij ] be an n × n predetermined adjacency matrix, where

the (i, j)-th element wij is a known nonnegative constant that captures the proximity of

individuals i and j in the network. As a normalization, wii = 0 for all i. We define the

peers of individual i as the set of individuals Ni = {j : wij > 0}.

The individuals in the network participate in m activities. Let I(·) be an indicator

function that equals one if its argument is true and zero otherwise. The observed binary

choice/outcome dik of individual i in activity k depends on a continuous latent variable

yik such that dik = I(yik > 0). We interpret yik as the underlying intention and dik as

the actual choice/outcome (Maddala, 1983). Thus, it’s natural to assume that individual

i knows his/her own intentions yi1, · · · , yim but not those of his/her peers. The utility of

2 IfA, B, C are conformable matrices, then vec(ABC) = (C′⊗A)vec(B), where ⊗ denotes the Kronecker
product.
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individual i is a linear-quadratic function of yi1, · · · , yim:3

Ui =
∑m

k=1(
∑m

l=1 %lk
∑n

j=1wijdjl +$ik − εik)yik︸ ︷︷ ︸
payoff

− 1
2

∑m
k=1

∑m
l=1 ϑlkyikyil︸ ︷︷ ︸
cost

, (2.1)

with ϑkl = ϑlk and ϑkk 6= 0 for all k and l. The utility has a payoff/cost structure. The cost

is a quadratic function of yi1, · · · , yim, where ϑlk (k 6= l) represents the complementarity or

substitutability (depending on the sign of ϑlk) between yik and yil. The marginal payoff of

yik depends on his/her peers’actual choices/outcomes dj1, · · · , djm for j ∈ Ni and his/her

own productivity $ik − εik. The coeffi cient %lk represents the spillover effect of the peers’

choices/outcomes in activity l on the marginal payoff of yik. The productivity of individual

i in activity k has two components, where $ik is commonly known by all individuals in the

network and εik is an idiosyncratic shock that is privately observed by individual i. We

assume that εik is independently distributed over i according to some commonly known

distribution and εik is independent of {$1l, · · · , $nl}l=1,··· ,m.

The utility (2.1) differs from that in Cohen-Cole et al. (2018) in two ways. First, in

(2.1), yik represents the unobservable intention and the utility of individual i depends on

the actual choices/outcomes of the peers given by the signs of yj1, · · · , yjm for j ∈ Ni; while,

in Cohen-Cole et al. (2018), yik represents the observable action/outcome in a continuous

action/outcome space and the utility of individual i depends directly on yj1, · · · , yjm for

j ∈ Ni. Second, (2.1) has an privately observed random shock εik, while Cohen-Cole et al.

(2018) considered a complete information network game. As a result, maximization of

the utility (2.1) motivates a discrete-choice simultaneous-equation econometric model of

social interactions, while the network game in Cohen-Cole et al. (2018) leads to a linear

simultaneous-equation econometric model of social interactions.

3The linear-quadratic specification of the utility function is common for network games (see, e.g.,
Ballester et al., 2006; Blume et al., 2015).

5



Given the network topology and the observable components of the productivity, the in-

dividuals simultaneously choose yik, for k = 1, · · · ,m, to maximize their expected utilities4

E(Ui|{$1k, · · · , $nk, εik}k=1,··· ,m)

=
∑m

k=1(
∑m

l=1 %lk
∑n

j=1wijpjl +$ik − εik)yik − 1
2

∑m
k=1

∑m
l=1 ϑlkyikyil.

where pjl = E(djl|{$1k, · · · , $nk}k=1,··· ,m). From the first order condition of utility maxi-

mization, we have

∑m
l=1 θlkyil =

∑m
l=1 λlk

∑n
j=1wijpjl + πik − εik, (2.2)

where θlk = ϑlk/ϑkk, λlk = %lk/ϑkk, πik = $ik/ϑkk, and εik = εik/ϑkk.5 In matrix form,

(2.2) can be written as

∑m
l=1 θlkyl =

∑m
l=1 λlkWpl + πk − εk, (2.3)

where yl = (y1l, · · · , ynl)′, pl = (p1l, · · · , pnl)′, πk = (π1k, · · · , πnk)′, and εk = (ε1k, · · · , εnk)′.

Let Y = [y1, · · · ,ym], P = [p1, · · · ,pm], Π = [π1, · · · ,πm], and E = [ε1, · · · , εm]. For

all the m activities, it follows from (2.3) that

YΘ = WPΛ + Π−E, (2.4)

where Θ = [θlk] and Λ = [λlk] are m ×m parameter matrices.6 The off-diagonal element

4 In this paper, we consider a static network game with a predetermined network. Although not the focus
of this paper, it is worth pointing out rapid progress has recently been made on the modeling, identification
and estimation of the network formation process (see, e.g., Goldsmith-Pinkham and Imbens, 2013; Graham,
2015; Mele, 2017; Hsieh and Lee, 2017).

5The parameters in (2.1) are identifiable up to a proportionality factor (Maddala, 1983). As we show in
the next section, the scale-normalized parameters in (2.2) can be identified.

6Θ has unitary diagonal elements by construction.
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of Θ, θlk, represents the simultaneity effect, i.e., an individual’s choice in an activity k

may depend on his/her own choice in a related activity l. The diagonal element of Λ,

λkk, represents the within-activity peer effect, where an agent’s choice in an activity k

may depend on the expected choices/outcomes of the peers in the same activity. The off-

diagonal element of Λ, λlk, represents the cross-activity peer effect, where an agent’s choice

in an activity k may depend on the expected choices/outcomes of the peers in a related

activity l.

If Θ is nonsingular, then the reduced form of model (2.4) is

Y = WPΛ∗ + Π∗ −E∗, (2.5)

where Λ∗ = ΛΘ−1, Π∗ = ΠΘ−1, and E∗ = EΘ−1. From (2.5),

yik =
∑m

l=1 λ
∗
lk

∑n
j=1wijpjl + π∗ik − ε∗ik, (2.6)

where λ∗lk is the (l, k)-th element of Λ∗, and π∗ik and ε
∗
ik are the (i, k)-th elements of Π∗

and E∗ respectively. Then,

Pr(dik = 1|{$1k, · · · , $nk}k=1,··· ,m) = Fk(
∑m

l=1 λ
∗
lk

∑n
j=1wijpjl + π∗ik),

where Fk(·) is the distribution function of ε∗ik.

Let y = vec(Y), p = vec(P), π∗ = vec(Π∗), and ε∗ = vec(E∗). Let

~h(p) = [~h1(p)′, · · · ,~hm(p)′]′,

where ~hk(p) = [Fk(u1k), · · · , Fk(unk)]′ with uik =
∑m

l=1 λ
∗
lk

∑n
j=1wijpjl +π∗ik. In the BNE,

p = ~h(p) (Osborne and Rubinstein, 1994). A suffi cient condition for the existence of a
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unique solution of p = ~h(p) is given as follows.

Assumption 1. (i) Fk(·) is a continuous distribution function with a density function

denoted by fk(·). (ii) Θ is nonsingular, and either ||Λ∗||1 < [||W||∞maxk supu fk(u)]−1 or

||Λ∗||∞ < [||W||1 maxk supu fk(u)]−1.

Assumption 1 (ii) suggests that, for the equilibrium to be unique, the social interac-

tion effects cannot be too strong. If ε∗ik follows the standard normal distribution, then

maxk supu fk(u) = 1/
√

2π. Furthermore, in some empirical studies of social networks, it

may be reasonable to have W row-normalized (see, e.g., Lin, 2010; Boucher et al., 2014).

When W is row-normalized,
∑m

j=1wij = 1 for all i and hence ||W||∞ = 1. In this case,

Assumption 1 (ii) holds if maxk=1,··· ,m
∑m

l=1 |λ∗lk| <
√

2π. It is worth pointing out that,

when m = 1, Assumption 1 (ii) coincides with the suffi cient condition for the existence of

a unique rational expectation equilibrium for the single-activity social interaction model in

Lee et al. (2014).

Under Assumption 1, the following proposition establishes the existence and uniqueness

of the pure strategy BNE of this incomplete information network game by the contraction

mapping theorem.

Proposition 2.1. If Assumption 1 holds, then the incomplete information network game

with the utility (2.1) has a unique pure strategy BNE with the equilibrium strategy profile

y? given by

y? = (Λ∗′ ⊗W)p? + π∗ − ε∗,

where the vector of equilibrium beliefs p? is the unique solution of

p = ~h(p). (2.7)

When Assumption 1 holds, the contraction mapping property of ~h(p) not only guar-
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antees the coherency and completeness of the model (Tamer, 2003), but also suggests the

NPL algorithm, based on the fixed point mapping (2.7), converges to a consistent estimator

(Kasahara and Shimotsu, 2012). In the following section, we introduce the econometric

model motivated by the network game, and discuss its identification and estimation.

3 Econometric Model

3.1 Model and Identification

Let πk = Xβk, for k = 1, · · · ,m, whereX = [x1, · · · ,xn]′ is an n×q matrix of observations

on q exogenous variables and βk is a q×1 vector of unknown parameters.7 The q×1 vector

of exogenous variables xi contains exogenous characteristics of individual i, and may also

include the exogenous characteristics of individual i’s peers. For instance, let χ be a matrix

of observations on exogenous individual characteristics. Then, a possible specification of

X is given by X = [χ,Wχ], with the coeffi cients of Wχ representing contextual effects

(Manski, 1993).

Substitution of Π = XB, with B = [β1, · · · ,βm], into (2.4) gives the structural econo-

metric model

YΘ = WPΛ + XB−E. (3.1)

We assume vec(E)|X ∼ N(0,Σ ⊗ In), where Σ = [σlk] is an m × m covariance matrix.

As we discuss in Section 2, what distinguishes this model from the single-activity social

interaction model in Lee et al. (2014) is that it allows for the simultaneity effect captured

by θlk (k 6= l), the cross-activity peer effect captured by λlk (k 6= l), besides the within-

activity peer effect captured by λkk. The main purpose of this paper is to identify and

estimate these different effects in model (3.1).

7As πik = $ik/ϑkk, this can be considered as a parameterization of $ik = x′ibk in the utility (2.1), with
bk = ϑkkβk.
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If Θ is nonsingular, the reduced form of model (3.1) is

Y = WPΛ∗ + XB∗ −E∗, (3.2)

where Λ∗ = ΛΘ−1, B∗ = BΘ−1, and E∗ = EΘ−1. As vec(E)|X ∼ N(0,Σ⊗ In), we have

vec(E∗)|X ∼ N(0,Σ∗ ⊗ In) with Σ∗ = [σ∗lk] = Θ′−1ΣΘ−1. Following Maddala (1983),

the diagonal elements of Σ∗ are normalized such that σ∗kk = 1 for all k = 1, · · · ,m. The

assumption on model disturbances is summarized as follows.8

Assumption 2. vec(E)|X ∼ N(0,Σ⊗In), which implies vec(E∗)|X ∼ N(0,Σ∗⊗In) with

Σ∗ = Θ′−1ΣΘ−1. We normalize the model parameters so that Σ∗ has a unity diagonal.

First, we consider the identification of the reduced form parameters Ψ∗ = [Λ∗′,B∗′]′.

Let λ∗lk denote the (l, k)-th element of Λ∗, and β∗k denote the k-th column of B
∗. Given the

observed adjacency matrixW and exogenous covariatesX, the parametersΨ∗ = [Λ∗′,B∗′]′

and the alternative parameters Ψ̃∗ = [Λ̃∗′, B̃∗′]′ are observationally equivalent if

Pr(yik = 1|W,X) = Φ(
∑m

l=1 λ
∗
lk

∑n
j=1wijpjl + x′iβ

∗
k) = Φ(

∑m
l=1 λ̃

∗
lk

∑n
j=1wij p̃jl + x′iβ̃

∗
k)

(3.3)

for all i = 1, · · · , n and k = 1, · · · ,m, where, under Assumption 1, pik and p̃ik are uniquely
8Brock and Durlauf (2007) considered a discrete-choice group interaction model, where the rational

expectation on the average choice of the group is homogenous (within a group) as it is formed based on
group-level information. Brock and Durlauf (2007) treated the rational expectation as a data moment and
established nonparametric identification of the model. However, in this paper, the rational expectation on
the average choice of the peers is heterogenous as it is formed based on individual-level information. It might
not be reasonable to assume the rational expectation can be directly identified from a sample moment as
in Brock and Durlauf (2007). Therefore, in this paper, we consider parametric identification following the
literature of discrete-choice network interaction models (e.g. Lee et al., 2014; Lin and Xu, 2017; Xu, 2018).
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determined by the fixed point mappings

pik = Φ(
∑m

l=1 λ
∗
lk

∑n
j=1wijpjl + x′iβ

∗
k) (3.4)

p̃ik = Φ(
∑m

l=1 λ̃
∗
lk

∑n
j=1wij p̃jl + x′iβ̃

∗
k) (3.5)

respectively. If (3.3)-(3.5) hold, then pik = p̃ik for all i = 1, · · · , n and k = 1, · · · ,m.

Substitution of pik = p̃ik into the observational equivalence condition (3.3) yields

∑m
l=1(λ∗lk − λ̃

∗
lk)
∑n

j=1wijpjl + x′i(β
∗
k − β̃

∗
k) = 0, ∀i, k

or

[WP,X](Ψ∗ − Ψ̃∗) = 0.

If [WP,X] has full column rank, then the observational equivalence of Ψ∗ and Ψ̃∗ implies

Ψ∗ = Ψ̃∗, i.e., the reduced form parameters Ψ∗ are identifiable.

With the reduced form parameters identified, the structural parameters Θ, Λ and B

can be identified from the equations Λ∗ = ΛΘ−1 and B∗ = BΘ−1 under the usual rank

conditions. Let Γ = [Θ′,−Λ′,−B′]′ and γk denote the k-th column of Γ. Suppose Rk is a

conformable matrix representing zero restrictions on the coeffi cients of the k-th equation

such that Rkγk = 0. The suffi cient and necessary rank condition for the identification of

the structural parameters Γ from the reduced form parameters is rank(RkΓ) = m− 1 for

k = 1, · · · ,m (Schmidt, 1976). The above rank conditions are summarized in the following

assumption.

Assumption 3. (i) [WP,X] has full column rank. (ii) rank(RkΓ) = m − 1 for k =

1, · · · ,m.
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Remark 1. The matrix of equilibrium beliefs P is implicitly defined by

pik = Φ(
∑m

l=1 λ
∗
lk

∑n
j=1wijpjl + x′iβ

∗
k). (3.6)

To help understand the rank condition of [WP,X] in Assumption 3 (i), we consider a linear

probability model, where Equation (3.6) becomes pik =
∑m

l=1 λ
∗
lk

∑n
j=1wijpjl + x′iβ

∗
k. In

matrix form, the equilibrium beliefs of the linear probability model are given by

P = WPΛ∗ + XB∗,

which implies vec(P) = (Imn−Λ∗′⊗W)−1(Im⊗X)vec(B∗) assuming the nonsingularity of

Imn−Λ∗′⊗W. IfX = [χ,Wχ], where χ is a matrix of observations on exogenous individual

characteristics, and all off-diagonal elements of the zero-diagonal adjacency matrix W are

(n− 1)−1, then, it follows by a similar argument as in Bramoullé et al. (2009) that, for the

linear probability model, [WP,X] does not have full column rank. This non-identification

result due to the perfect collinearity of WP and [χ,Wχ] is referred to as the “reflection

problem” (Manski, 1993). By contrast, due to the nonlinearity of Equation (3.6), Brock

and Durlauf (2007) pointed out that the “reflection problem”does not arise in the binary-

choice social interaction model.

Remark 2. To help understand the rank condition in Assumption 3 (ii), we consider a

“triangular”system. Suppose m = 2 and θ21 = λ21 = λ12 = 0. Then, model (3.1) becomes

y1 = λ11Wp1 + Xβ1 − ε1 (3.7)

y2 = −θ12y1 + λ22Wp2 + Xβ2 − ε2. (3.8)

In this case, an individual’s choice is influenced by the expectation on the peers’choices
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in the same activity. Furthermore, an individual’s choice in activity 2 is influenced by

his/her own choice in activity 1, but not the other way around. The exclusion restrictions

θ21 = λ21 = 0 can be represented by R1γ1 = 0 where

R1 =

 0 −1 0 0 01×q

0 0 0 −1 01×q


and γ1 = (1,−θ21,−λ11,−λ21,−β′1)′. The exclusion restriction λ12 = 0 can be represented

by R2γ2 = 0 where R2 = (0, 0,−1, 0,01×q) and γ2 = (−θ21, 1,−λ12,−λ22,−β′2)′. It is

easy to check Assumption 3 (ii) holds because

R1Γ =

 0 −1

0 λ22


has rank one, and R2Γ = [λ11, 0] also has rank one if λ11 6= 0. When Assumption 3

(ii) holds, the structural parameters can be identified if the reduced form parameters are

identifiable. The reduced form of the model is

y1 = λ∗11Wp1 + Xβ∗1 − ε∗1

y2 = λ∗12Wp1 + λ∗22Wp2 + Xβ∗2 − ε∗2,

where

λ∗11 = λ11, β∗1 = β1, λ∗12 = −θ12λ11, λ∗22 = λ22, and β∗2 = β2 − θ12β1. (3.9)

It is easy to see that, indeed, if the reduced form parameters λ∗11, β
∗
1, λ

∗
12, λ

∗
22, β

∗
2 are

identifiable, then structural parameters λ11, β1, θ12, λ22, β2 can be identified from the
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linear restrictions given in (3.9).

Under Assumptions 1-3, the next section proposes a two-stage estimation procedure for

the consistent estimation of the structural parameters in model (3.1).

3.2 Estimation

The estimation of model (3.1) follows the above identification strategy. First, we estimate

the reduced form parameters Ψ∗ = [Λ∗′,B∗′]′ using the NPL algorithm. The NPL al-

gorithm was proposed by Aguirregabiria and Mira (2007) for the estimation of dynamic

discrete-choice games, and has recently been adopted by Lin and Xu (2017) for the esti-

mation of large network games. For the estimation of the reduced form equation (3.2), the

NPL algorithm starts from an arbitrary initial value p(0) ∈ [0, 1]nm and takes the following

iterative steps:

Step 1 Given p(j−1), obtain ψ̂
∗(j)
k ≡ (λ̂

∗(j)
1k , · · · , λ̂∗(j)mk , β̂

∗(j)′
k )′ = arg max lnL(ψ∗k; p

(j−1)),

where

lnL(ψ∗k; p
(j−1)) =

∑n
i=1 dik ln Φ(

∑m
l=1 λ

∗
lk

∑n
j=1wijp

(j−1)
jl + x′iβ

∗
k)

+
∑n

i=1(1− dik) ln[1− Φ(
∑m

l=1 λ
∗
lk

∑n
j=1wijp

(j−1)
jl + x′iβ

∗
k)],

for k = 1, · · · ,m.

Step 2 Given Ψ̂∗(j) = [ψ̂
∗(j)
1 , · · · , ψ̂∗(j)m ], obtain p(j) = ~h(p(j−1); Ψ̂∗(j)), where

~h(p(j−1); Ψ̂∗(j)) = [~h1(p(j−1); Ψ̂∗(j))′, · · · ,~hm(p(j−1); Ψ̂∗(j))′]′,
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with

~hk(p
(j−1); Ψ̂∗(j)) =


Φ(
∑m

l=1 λ̂
∗(j)
lk

∑n
j=1w1jp

(j−1)
jl + x′1β̂

∗(j)
k )

...

Φ(
∑m

l=1 λ̂
∗(j)
lk

∑n
j=1wnjp

(j−1)
jl + x′nβ̂

∗(j)
k )

 ,

for k = 1, · · · ,m. Update p(j−1) in Step 1 to p(j). Repeat Steps 1 and 2 until the

process converges.

Kasahara and Shimotsu (2012) have shown that a key determinant of the convergence

of the NPL algorithm is the contraction property of the fixed point mapping (2.7), which is

ensured by Assumption 1. When the NPL algorithm converges, the NPL estimator Ψ̂∗ =

[ψ̂
∗
1, · · · , ψ̂

∗
m] satisfies ψ̂

∗
k = arg max lnL(ψ∗k; p̂), for k = 1, · · · ,m, where p̂ is implicitly

defined in p̂ = ~h(p̂; Ψ̂∗). Under regularity conditions, it follows by a similar argument as

in Aguirregabiria and Mira (2007) and Lin and Xu (2017) that the NPL estimator is root-n

consistent and asymptotically normal. The asymptotic distribution of the NPL estimator

is given in Appendix A.

Remark 3. Alternatively, the reduced form parameters can be estimated by the nested

fixed point (NFXP) algorithm (Rust, 1987), which has been adopted by Lee et al. (2014)

and Yang and Lee (2017) to estimate discrete-choice social interaction models with rational

expectations. In our case, the NFXP estimator is given by Ψ̃∗ = arg max lnL(Ψ∗; p(Ψ∗)),

where lnL(Ψ∗; p(Ψ∗)) is the log-likelihood function based on the multivariate normal dis-

tribution of (y1, · · · ,ym) and p(Ψ∗) is the (unique) solution of p = ~h(p; Ψ∗). Compared to

the proposed NPL algorithm, the NFXP algorithm is computationally demanding because

it repeatedly solves the fixed point mapping p = ~h(p; Ψ∗) for p(Ψ∗) at each candidate

parameter value of Ψ∗ in the search for the maximum of the log-likelihood function. Fur-
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thermore, the NFXP algorithm has to estimate the reduced form equations

yk =
∑m

l=1 λ
∗
lkWp(Ψ∗) + Xβ∗k − ε∗k, for k = 1, · · · ,m, (3.10)

jointly, because the k-th reduced form equation depends not only onψ∗k = (λ∗1k, · · · , λ∗mk,β∗′k )′

but also on Ψ∗ = [ψ∗1, · · · ,ψ∗m] via p(Ψ∗). On the other hand, as the NPL algorithm max-

imizes the “pseudo”log-likelihood functions of the reduced form equations

yk =
∑m

l=1 λ
∗
lkWp(j−1) + Xβ∗k − ε∗k, for k = 1, · · · ,m, (3.11)

for a given p(j−1) at each iteration, it can estimate (3.11) equation-by-equation for ψ∗k.

Therefore, the proposed NPL algorithm is asymptotically less effi cient than the NFXP al-

gorithm but computationally much less costly, especially when the number of simultaneous

equations m is large.

Let Z = [WP,X]. Then, the reduced form (3.2) can be written more compactly as

Y = ZΨ∗ −E∗. (3.12)

With the estimated reduced form parameters Ψ̂∗, we can estimate the structural para-

meters Γ = [Θ′,−Ψ′]′ with Ψ = [Λ′,B′]′ by the AGLS procedure (Amemiya, 1978).

Amemiya (1978) and Lee (1981) have shown that the AGLS estimator is more effi cient

than a Heckman-type two-stage estimator for the simultaneous-equation probit model.

Without loss of generality, we describe the AGLS procedure for the first equation of the

structural model (3.1). According to Assumption 3 (ii), the identification of the structural

parameters Γ from the reduced form parameters Ψ∗ requires exclusion restrictions on Γ.

Under appropriate exclusion restrictions, the first equation of the structural model (3.1)
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can be written as, with a slight abuse of notation,

y1 = −Y1θ1 + Z1ψ1 − ε1, (3.13)

where Y1 and Z1 denote, respectively, submatrices of observations on the variables (other

than y1) in Y and Z that are included in the first equation, with their coeffi cients θ1 and

ψ1 being, respectively, vectors of unrestricted parameters in the first columns of Θ and Ψ.

Let JY and JZ be selection matrices such that Y1 = YJY and Z1 = ZJZ . Then, (3.13)

can be rewritten as

y1 = −YJY θ1 + ZJZψ1 − ε1. (3.14)

Substitution of (3.12) into (3.14) gives

y1 = −Z(Ψ∗JY θ1 − JZψ1) + E∗JY θ1 − ε1. (3.15)

Comparing (3.15) with (3.12), we have

ψ∗1 = −Ψ∗JY θ1 + JZψ1, (3.16)

where ψ∗1 is the first column of Ψ∗. (3.16) implies the following regression equation

ψ̂
∗
1 = −Ψ̂∗JY θ1 + JZψ1 + v1, (3.17)

where v1 = (ψ̂
∗
1−ψ∗1)+(Ψ̂∗−Ψ∗)JY θ1. Let Ω11 denote the asymptotic covariance matrix

of v1, and Ω̂11 denote a consistent estimator of Ω11. The AGLS estimator of δ1 = (θ′1,ψ
′
1)′

is given by

δ̂1 = (Ĥ′1Ω̂
−1
11 Ĥ1)−1Ĥ′1Ω̂

−1
11 ψ̂

∗
1,
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where Ĥ1 = [−Ψ̂∗JY ,JZ ]. The AGLS procedure estimates the m equations in the form

of (3.17) equation by equation. Lee (1982) extends the AGLS estimator to a seemingly

unrelated regressions (SUR) type estimator that estimate the m equations jointly. The

detailed derivation of the SUR-type AGLS estimator and its asymptotic covariance matrix

is given in Appendix A.

4 Monte Carlo Experiment

To investigate the finite sample performance of the proposed estimation procedure, we

conduct a limited simulation study on the following model

y1 = −θ21y2 + λ11Wp1 + λ21Wp2 + X1β1 − ε1 (4.1)

y2 = −θ12y1 + λ12Wp1 + λ22Wp2 + X2β2 − ε2, (4.2)

where X1 = [χ1,Wχ1] and X2 = [χ2,Wχ2]. χ1 and χ2 are n × 1 vectors of random

variables representing observable individual characteristics. The coeffi cients of Wχ1 and

Wχ2 represent contextual effects (Manski, 1993). In the data generating process, we

consider two specifications of the adjacency matrix W = [wij ]. The first one is based on a

circular network where the n individuals are equidistantly located around a circle and are

only connected with the nearest neighbors. The non-zero elements of the corresponding

adjacency matrix are w1,2 = w1,n = wn,1 = wn,n−1 = 1/2 and wi,i−1 = wi,i+1 = 1/2 for

i = 2, · · · , n − 1. The second one is based on a random network, where each individual

randomly nominates five friends. wij = 1/5 if i nominates j as a friend.

We conduct 1000 repetitions in the simulation with n ∈ {500, 1000, 2000}. In each

repetition, χ1 and χ2 are generated from N(0, In) and the reduced form disturbances
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given by (ε∗′1 , ε
∗′
2 )′ are generated from N(0,Σ∗ ⊗ In), where

Σ∗ =

 1 σ∗12

σ∗12 1

 .
We set θ21 = θ12 = 0.5, λ11 = λ22 = 0.9, λ21 = λ12 = 0.6, and β1 = β2 = (1, 1)′, and

experiment with different values for σ∗12.

[Tables 1 and 2 approximately here]

For the estimation of the structural parameters from the reduced form parameters,

we consider both the equation-by-equation AGLS estimator (AGLS-1) and the SUR-type

AGLS estimator (AGLS-2). We report the mean and standard deviation (SD) of the

empirical distributions of the estimates. The estimation results for Equation (4.1) are

reported in Tables 1 and 2. The estimates are essentially unbiased when the sample size is

large. The standard deviations of all estimators reduce as the sample size increases. The

AGLS-2 estimator reduces the standard deviation of the AGLS-1 estimator. In general,

the reduction in the standard deviation is more prominent when σ∗12 is larger. For the

circular network, when n = 2000 and σ∗12 = 0.9, the AGLS-2 estimators of λ11, λ21,

β11 and β21 reduce the standard deviations of the AGLS-1 estimators by, respectively,

7.3%, 6.7%, 7.4%, and 27.9%. Furthermore, the proposed estimation procedure remains

computationally feasible when the network size is large. For the circular network, when

n = 2000 and σ∗12 = 0.5, the average computation time of one simulation repetition is less

than 5 seconds.9

9The computation is conducted on a PC with an Intel(R) Core(TM) i7-6700 CPU @ 3.4 GHz and 32
GB RAM.
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5 Empirical Example

To illustrate the empirical relevance of the proposed model, we study the peer effect of

participating in sports activities on underage smoking using a unique and now widely

used data set provided by the National Longitudinal Study of Adolescent Health. The

Add Health data provides national representative information on 7th-12th graders in the

United States. The in-school survey was conducted during the 1994-1995 year with four

follow-up in-home interviews. Here we only use the first wave of Add Health data.

In this empirical example, we consider the estimation of model (3.1) with di1 = I(yi1 >

0) and di2 = I(yi2 > 0) being indicators of smoking and participating in sports activities re-

spectively. To be more specific, di1 is one if student i smokes once a week or more in the last

12 months, and zero otherwise. di2 is one if student i participates in cheerleading/dance,

baseball/softball, basketball, field hockey, football, ice hockey, soccer, swimming, tennis,

track, volleyball, wrestling, and/or other sport team this year, and zero otherwise.

The adjacency matrix W = [wij ] is constructed based on the friend-nomination infor-

mation in the Add Health data. In the survey, students were asked to nominate their best

friends (up to 5 male friends and 5 female friends) from a school roster.10 Let ni denote the

number of friends that student i nominates. We set wij = 1/ni if student i nominates j as

a friend and wij = 0 otherwise. After removing students with missing observations on the

dependent variables, the sample consists of 71,918 students distributed over 141 schools.

A summary of the data can be found in Table 3.

[Table 3 approximately here]

As discussed in Section 3.1, the identification of model (3.1) requires exclusion restric-

10 In the data, the average number of friends of a student is 3.29 with the standard deviation 2.40. Less
than 1% of the students nominated 10 friends and thus the bound on the number of friend-nominations is
not binding.
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tions. In this empirical application, we impose the following exclusion restrictions. First,

whether or not a student’s parent smokes cigarettes and whether or not cigarettes are

easily available in a student’s home only indirectly affect his/her decision to participate

in sport teams through his/her smoking behavior and the smoking behavior of his/her

friends.11 Second, whether or not a student is well coordinated only indirectly affects a

student’s smoking behavior through his/her participation in sport teams and the sports

participation decisions of his/her friends.

[Table 4 approximately here]

Under the above exclusion restrictions, the rank condition given by Assumption 3 is

satisfied. We apply the estimation procedure described in Section 3.2 and Appendix A to

estimate the model. The estimation results are reported in Table 4.12 The left panel of

Table 4 reports the estimates from Lee et al.’s (2014) single-equation network model without

taking into account the potential interdependence of smoking and sports participation

decisions. The right panel of Table 4 reports the SUR-type AGLS estimates from the

simultaneous-equation network model proposed in this paper.

First of all, for the single-equation network model, the estimated within-activity peer

effect parameters λ̂kk lie within the parameter space |λkk| <
√

2π that guarantees the

existence of a unique BNE (Lee et al., 2014). For the simultaneous-equation network model,

the estimated reduced form parameters by the NPL algorithm are λ̂
∗
11 = 1.4016, λ̂

∗
21 =

−0.4666, λ̂
∗
12 = −1.2111, and λ̂

∗
22 = 0.8487. The estimated reduced form parameters satisfy

11The information on whether or not a student’s parent smokes cigarettes and whether or not cigarettes
are easily available in a student’s home is only available for a subsample of the students who are randomly
selected to participate in the in-home interviews. Hence, we introduce dummy variables “parent smokes:
missing”and “cigarettes in the home: missing”to indicate missing observations.
12 In the estimation, we control for exogenous contextual effects (i.e. the influence on a student’s behavior

from his/her friends’exogenous characteristics, see, Manski, 1993) and school fixed effects. To save space,
the estimates of contextual effects and school fixed effects are not reported in Table 4.
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the parameter constraint, max{|λ∗11|+ |λ∗21|, |λ∗12|+ |λ∗22|} <
√

2π, implied by Assumption

1 (ii).

For both single-equation and simultaneous-equation network models, we find evidence

of positive within-activity peer effects, i.e., a student is more likely to smoke when his/her

friends smoke and a student is more likely to participate in sport teams when his/her friend

participate in sport teams. However, compared with the simultaneous-equation network

model, the single-equation network model tends to overestimate the within-activity peer

effect. More interestingly, from the simultaneous-equation network model, we also find

that participation in sport teams not only reduces a student’s own smoking behavior (a

negative simultaneity effect) but also reduces the likelihood for his/her friend to smoke (a

negative cross-activity peer effect).

6 Summary

In this paper, we consider a simultaneous-equation social interaction model with binary

outcomes. The specification of the model is based on an incomplete information network

game with individuals interacting in multiple activities. We give a suffi cient condition for

the existence of a unique BNE of the game. Following the identification strategy of the

econometric model, we propose a two-stage estimation procedure and investigate its finite

sample performance by Monte Carlo simulation experiments. We also provide an empirical

example to illustrate the proposed estimation procedure.

Some possible extensions of the current work are in order. For example, people may

form different social networks for different activities they participate. So it would be a

natural extension to introduce activity-specific networks to the current model. However,

the formation of activity-specific networks is likely to be correlated with the choices of

actions, which may render a problem of endogenous networks. We leave this extension to
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future research.
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Appendices

A AGLS Estimator

For exposition purpose, we consider the case with m = 2. The result can be generalized

to the case with an arbitrary m in a similar manner as in Lee (1981, 1982). When m = 2,

the structural model (3.1) is

y1 = −y2θ21 + Z1ψ1 − ε1 (A.1)

y2 = −y1θ12 + Z2ψ2 − ε2,

with the reduced form equations

y1 = Zψ∗1 − ε∗1 (A.2)

y2 = Zψ∗2 − ε∗2,

where Z = [Wp1,Wp2,X], and Z1 and Z2 contain columns of Z that appear, respectively,

in the two structural equations (A.1). The i-th row of Z is z′i = (wip1,wip2,x
′
i), where

wi = (wi1, · · · , win) denotes the i-th row of W. We assume (ε∗i1, ε
∗
i2)′ ∼ i.i.d.N(0,Σ∗) with

Σ∗ =

 1 σ∗12

σ∗12 1

 .
The reduced form parameters ψ∗1 and ψ

∗
2 can be estimated by the NPL algorithm de-

scribed in Section 3.2. Let the NPL estimator of ψ∗ = (ψ∗′1 ,ψ
∗′
2 )′ be denoted by ψ̂

∗
=

(ψ̂
∗′
1 , ψ̂

∗′
2 )′. Let p̂ = (p̂′1, p̂

′
2)′ be a NPL fixed point implicitly defined by p̂k = ~hk(p̂; ψ̂

∗
k) =

[Φ(ẑ′1ψ̂
∗
k), · · · ,Φ(ẑ′nψ̂

∗
k)]
′ for k = 1, 2, where ẑi = (wip̂1,wip̂2,x

′
i)
′. Then, the NPL esti-
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mator is given by ψ̂
∗
k = arg max lnL(ψ∗k; p̂), where

lnL(ψ∗k; p̂) =
∑n

i=1 dik ln Φ(ẑ′iψ
∗
k) +

∑n
i=1(1− dik) ln[1− Φ(ẑ′iψ

∗
k)], for k = 1, 2.

Let J1 and J2 be selection matrices such that Z1 = ZJ1 and Z2 = ZJ2. Then, the

structural model can be rewritten as

y1 = −y2θ21 + ZJ1ψ1 − ε1 (A.3)

y2 = −y1θ12 + ZJ2ψ2 − ε2.

Substitution of (A.2) into (A.3) gives

y1 = Z(−ψ∗2θ21 + J1ψ1) + ε∗2θ21 − ε1 (A.4)

y2 = Z(−ψ∗1θ12 + J2ψ2) + ε∗1θ12 − ε2.

By comparing (A.4) with (A.2), we have

ψ∗1 = −ψ∗2θ21 + J1ψ1

ψ∗2 = −ψ∗1θ12 + J2ψ2,

which implies the regression equations

ψ̂
∗
1 = −ψ̂∗2θ21 + J1ψ1 + v1

ψ̂
∗
2 = −ψ̂∗1θ12 + J2ψ2 + v2
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with

v1 = (ψ̂
∗
1 −ψ∗1) + (ψ̂

∗
2 −ψ∗2)θ21

v2 = (ψ̂
∗
2 −ψ∗2) + (ψ̂

∗
1 −ψ∗1)θ12.

Let the asymptotic covariance matrix of v = (v′1,v
′
2)′ be denoted by Ω. Let δ1 = (θ21,ψ

′
1)′

and δ2 = (θ12,ψ
′
2)′. Then, the SUR-type AGLS estimator of δ = (δ′1, δ

′
2)′ is given by

δ̂ = (Ĥ′Ω̂−1Ĥ)−1Ĥ′Ω̂−1ψ̂
∗
,

where

Ĥ =

 Ĥ1 0

0 Ĥ2


with Ĥ1 = [−ψ̂∗2,J1] and Ĥ2 = [−ψ̂∗1,J2], and Ω̂ is a consistent estimator of Ω.

To derive the explicit form of Ω, we need to find the asymptotic covariance matrix of

ψ̂
∗
. The first order condition of the NPL estimator is

∂ lnL(ψ̂
∗
k; p̂)

∂ψ∗k
=
∑n

i=1

[dik − Φ(ẑ′iψ̂
∗
k)]φ(ẑ′iψ̂

∗
k)

Φ(ẑ′iψ̂
∗
k)[1− Φ(ẑ′iψ̂

∗
k)]

ẑi = 0.

A Taylor expansion of the above equation around ψ∗ gives

∑n
i=1

(dik − Φik)φik
Φik(1− Φik)

zi−
∑n

i=1

φ2
ik

Φik(1− Φik)
zi[z

′
i+λ

∗
1kwi

∂p1

∂ψ∗′k
+λ∗2kwi

∂p2

∂ψ∗′k
](ψ̂
∗
k−ψ∗k) = Op(1)

where Φik = Φ(z′iψ
∗
k) and φik = φ(z′iψ

∗
k). As pk = ~hk(p) = (Φ1k, · · · ,Φnk)

′, the implicit
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function theorem implies that

∂p1

∂ψ∗′1
= S−1

1 D1Z

∂p2

∂ψ∗′2
= S−1

2 D2Z

∂p1

∂ψ∗′2
= λ∗21S

−1
1 D1W(In − λ∗22D2W)−1D2Z

∂p2

∂ψ∗′1
= λ∗12S

−1
2 D2W(In − λ∗11D1W)−1D1Z

where

S1 = In − λ∗11D1W − λ∗12λ
∗
21D1W(In − λ∗22D2W)−1D2W

S2 = In − λ∗22D2W − λ∗12λ
∗
21D2W(In − λ∗11D1W)−1D1W

with Dk = diag(φ1k, · · · , φnk) for k = 1, 2. Therefore, by the standard asymptotic theory,

√
n(ψ̂

∗
k−ψ∗k)

A
= { 1

n

∑n
i=1

φ2
ik

Φik(1− Φik)
zi[z

′
i+λ

∗
1kwi

∂p1

∂ψ∗′k
+λ∗2kwi

∂p2

∂ψ∗′k
]}−1 1√

n

∑n
i=1

(dik − Φik)φik
Φik(1− Φik)

zi,

where a
A
= bmeans vectors a and b have the same asymptotic distribution. The asymptotic

covariance matrix of ψ̂
∗

= (ψ̂
∗′
1 , ψ̂

∗′
2 )′ is

V =

 V11 V12

V′12 V22

 ,
where

Vkl = [Z′Ak(Z+λ∗1kW
∂p1

∂ψ∗′k
+λ∗2kW

∂p2

∂ψ∗′k
)]−1Z′BklZ[(Z+λ∗1lW

∂p1

∂ψ∗′l
+λ∗2lW

∂p2

∂ψ∗′l
)′AlZ]−1,
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with Ak = diagni=1(
φ2ik

Φik(1−Φik)) and Bkl = diagni=1(φikφilE[(dik−Φik)(dil−Φil)]
ΦikΦil(1−Φik)(1−Φil)

), for k = 1, 2.

Note E[(di1 − Φi1)2] = Φi1(1− Φi1), E[(di2 − Φi2)2] = Φi2(1− Φi2), and

E[(di1 − Φi1)(di2 − Φi2)] =

2∑
t=1

2∑
s=1

t∗s∗Φ(t∗z′iψ
∗
1)Φ(s∗z′iψ

∗
2)Φ2(−t∗z′iψ∗1,−s∗z′iψ∗2, t∗s∗σ∗12)

where t∗ = 2t− 3, s∗ = 2s− 3, and Φ2(·, ·, σ∗12) denotes the standardized bivariate normal

distribution function with correlation coeffi cient σ∗12. The unknown tetrachoric correlation

coeffi cient σ∗12 can be estimated by the bivariate probit ML method (see, e.g., Greene, 2012).

Then, the asymptotic covariance matrix of v = (v′1,v
′
2)′ is

Ω =

 Ω11 Ω12

Ω′12 Ω22


where Ω11 = V11 + θ2

21V22 + θ21(V12 + V′12), Ω22 = V22 + θ2
12V11 + θ12(V12 + V′12), and

Ω12 = θ12V11 + θ21V22 + V12 + θ12θ21V
′
12.

B Proof

Proof of Proposition 2.1. As ~h(·) is continuous Assumption 1 (i), it follows by the Brouwer

fixed-point theorem that p = ~h(p) has at least one solution. By the contraction mapping

theorem, p = ~h(p) has a unique solution if ||∂~h(p)/∂p′|| < 1 for some matrix norm || · ||.

∂~h(p)

∂p′
=


∂~h1(p)/∂p′1 · · · ∂~h1(p)/∂p′m

...
...

∂~hm(p)/∂p′1 · · · ∂~hm(p)/∂p′m

 ,
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where

∂~hk(p)

∂p′l
=λ∗lk


w11fk(u1k) · · · w1nfk(u1k)

...
...

wn1fk(unk) · · · wnnfk(unk)

 .
It follows that

∥∥∥∥∥∂~h(p)

∂p′

∥∥∥∥∥
∞

≤ max
k=1,··· ,m

m∑
l=1

|λ∗lk| max
i=1,··· ,n

m∑
j=1

|wij |max
k

sup
u
fk(u) = ||Λ∗||1||W||∞max

k
sup
u
fk(u),

and

∥∥∥∥∥∂~h(p)

∂p′

∥∥∥∥∥
1

≤ max
l=1,··· ,m

m∑
k=1

|λ∗lk| max
j=1,··· ,n

m∑
i=1

|wij |max
k

sup
u
fk(u) = ||Λ∗||∞||W||1 max

k
sup
u
fk(u).

Hence, the desired result follows if Assumption 1 (ii) holds.
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Table 1: Monte Carlo Simulation Results (Circular Network) 
  𝜃𝜃21 = 0.5 𝜆𝜆11 = 0.9 𝜆𝜆21 = 0.6 𝛽𝛽11 = 1.0 𝛽𝛽21 = 1.0 

𝑛𝑛 = 500       
𝜎𝜎12∗ = 0.1 AGLS-1 0.497(0.107)  0.928(0.307)  0.597(0.383)  1.026(0.137)  1.024(0.193)  

 AGLS-2 0.501(0.105)  0.921(0.294) 0.604(0.368)  1.030(0.126)  1.026(0.154)  
𝜎𝜎12∗ = 0.5 AGLS-1 0.497(0.114)  0.925(0.319)  0.597(0.401)  1.028(0.140)  1.025(0.203)  

 AGLS-2 0.502(0.111)  0.916(0.305)  0.607(0.382)  1.032(0.130)  1.027(0.153)  
𝜎𝜎12∗ = 0.9 AGLS-1 0.495(0.115)  0.927(0.331)  0.592(0.415)  1.029(0.143)  1.025(0.205)  

 AGLS-2 0.499(0.113)  0.916(0.319)  0.603(0.401)  1.033(0.132)  1.027(0.155)  
𝑛𝑛 = 1000       
𝜎𝜎12∗ = 0.1 AGLS-1 0.501(0.074)  0.906(0.215)  0.607(0.273)  1.015(0.090)  1.018(0.134)  

 AGLS-2 0.502(0.071)  0.907(0.202) 0.606(0.258) 1.018(0.086)  1.015(0.103)  
𝜎𝜎12∗ = 0.5 AGLS-1 0.503(0.078)  0.906(0.231)  0.608(0.291)  1.014(0.094)  1.017(0.138)  

 AGLS-2 0.504(0.075)  0.905(0.213)  0.608(0.273)  1.017(0.087)  1.014(0.103)  
𝜎𝜎12∗ = 0.9 AGLS-1 0.501(0.080)  0.906(0.244)  0.607(0.307)  1.014(0.096)  1.015(0.147)  

 AGLS-2 0.503(0.076)  0.903(0.223)  0.609(0.283)  1.016(0.089)  1.014(0.102)  
𝑛𝑛 = 2000       
𝜎𝜎12∗ = 0.1 AGLS-1 0.498(0.053)  0.903(0.154)  0.597(0.194)  1.006(0.064)  1.007(0.096)  

 AGLS-2 0.499(0.051)  0.901(0.145)  0.600(0.182)  1.007(0.060)  1.008(0.074)  
𝜎𝜎12∗ = 0.5 AGLS-1 0.497(0.054)  0.904(0.161)  0.595(0.203)  1.006(0.065)  1.006(0.101)  

 AGLS-2 0.498(0.052)  0.901(0.151)  0.599(0.190)  1.007(0.062)  1.008(0.073)  
𝜎𝜎12∗ = 0.9 AGLS-1 0.496(0.054)  0.905(0.165)  0.594(0.209)  1.006(0.068)  1.008(0.104)  

 AGLS-2 0.497(0.052)  0.903(0.153)  0.595(0.195)  1.008(0.063)  1.007(0.075)  
Mean(SD) 

 
  



Table 2: Monte Carlo Simulation Results (Random Network) 
  𝜃𝜃21 = 0.5 𝜆𝜆11 = 0.9 𝜆𝜆21 = 0.6 𝛽𝛽11 = 1.0 𝛽𝛽21 = 1.0 

𝑛𝑛 = 500       
𝜎𝜎12∗ = 0.1 AGLS-1 0.495(0.081)  0.932(0.400)  0.588(0.424)  1.023(0.120)  1.017(0.271)  

 AGLS-2 0.498(0.081)  0.926(0.360)  0.594(0.384)  1.024(0.116)  1.021(0.200)  
𝜎𝜎12∗ = 0.5 AGLS-1 0.495(0.082)  0.930(0.417)  0.589(0.442)  1.025(0.126)  1.017(0.281)  

 AGLS-2 0.498(0.081)  0.926(0.371)  0.594(0.398)  1.026(0.121)  1.019(0.198)  
𝜎𝜎12∗ = 0.9 AGLS-1 0.496(0.083)  0.933(0.438)  0.586(0.463)  1.027(0.129)  1.019(0.292)  

 AGLS-2 0.498(0.083)  0.932(0.376)  0.585(0.399)  1.029(0.124)  1.016(0.188)  
𝑛𝑛 = 1000       
𝜎𝜎12∗ = 0.1 AGLS-1 0.502(0.057)  0.898(0.277)  0.614(0.294)  1.005(0.085)  1.016(0.186)  

 AGLS-2 0.503(0.057)  0.903(0.248)  0.609(0.263)  1.006(0.080)  1.010(0.139)  
𝜎𝜎12∗ = 0.5 AGLS-1 0.501(0.059)  0.896(0.291)  0.615(0.309)  1.005(0.088)  1.015(0.197)  

 AGLS-2 0.502(0.059)  0.902(0.258)  0.608(0.272)  1.007(0.083)  1.008(0.137)  
𝜎𝜎12∗ = 0.9 AGLS-1 0.500(0.060)  0.901(0.304)  0.608(0.325)  1.005(0.089)  1.013(0.208)  

 AGLS-2 0.501(0.059)  0.907(0.265)  0.601(0.281)  1.008(0.084)  1.005(0.133)  
𝑛𝑛 = 2000       
𝜎𝜎12∗ = 0.1 AGLS-1 0.500(0.040)  0.885(0.203)  0.618(0.215)  1.003(0.058)  1.012(0.130)  

 AGLS-2 0.500(0.040)  0.886(0.185)  0.617(0.198)  1.004(0.056)  1.010(0.094)  
𝜎𝜎12∗ = 0.5 AGLS-1 0.500(0.041)  0.884(0.215)  0.619(0.227)  1.004(0.061)  1.013(0.135)  

 AGLS-2 0.500(0.041)  0.889(0.190)  0.615(0.203)  1.005(0.058)  1.008(0.093)  
𝜎𝜎12∗ = 0.9 AGLS-1 0.499(0.041)  0.883(0.229)  0.619(0.244)  1.004(0.064)  1.011(0.143)  

 AGLS-2 0.500(0.041)  0.885(0.199)  0.617(0.215)  1.005(0.061)  1.008(0.091)  
Mean(SD) 

 

  



Table 3: Data Summary 
 Definition Mean SD 

Dependent variables    
Smoking 1 if smokes once a week or more in the last 12 months    0.17    0.37 
Sports 1 if participates in cheerleading/dance, baseball/softball, 

basketball, field hockey, football, ice hockey, soccer, 
swimming, tennis, track, volleyball, wrestling, and/or other 
sport team this year 

   0.56    0.50 

Control variables    
Age Age 15.09    1.67 
Years in school Years in current school    2.53    1.43 
Female 1 if female    0.52    0.50 
(White) 1 if White American    0.59    0.49 
African American 1 if African American    0.15    0.36 
Other races 1 if race is not White or African American    0.26    0.44 
Health 1 if health is excellent    0.31    0.46 
Live with both parents 1 if live with both parents    0.74    0.44 
Parental care 1 if parents care about the student very much    0.83    0.37 
(Parent education: less than HS) 1 if parent's education is less than high school    0.11    0.31 
Parent education: HS grad 1 if parent's education is high school or higher but no college 

degree 
   0.43    0.49 

Parent education: college grad 1 if parent's education is college or higher    0.31    0.46 
Parent education: missing 1 if parent's education level is unknown    0.16    0.37 
(Parent does not work for pay) 1 if parent does not work for pay    0.05    0.22 
Parent works for pay 1 if parent works for pay    0.87    0.34 
Parent works for pay: missing 1 if parent's work status is unknown    0.08    0.27 
(Parents do not smoke) 1 if neither parents smoke    0.06    0.24 
Parent smokes 1 if either parent smokes    0.11    0.32 
Parent smokes: missing 1 if "parent smokes" is missing    0.82    0.38 
(No cigarettes in the home) 1 if cigarettes are not easily available at home    0.13    0.33 
Cigarettes in the home 1 if cigarettes are easily available at home    0.05    0.23 
Cigarettes in the home: missing 1 if "cigarettes in the home" is missing    0.82    0.38 
Coordination 1 if well coordinated    0.35    0.48 
The variable in the parentheses is the reference category. 
If both parents are in the household, the education and work status of the father is considered. 
The data includes 141 schools with 71,918 observations.  
  



Table 4: Estimation of the Binary Choice Network Model 
 Single Equation Simultaneous Equations 
 Smoking Sports Smoking Sports 

Within-activity peer effect (𝜆𝜆𝑘𝑘𝑘𝑘)   1.7353***   1.0214***   1.2639***   0.8359*** 
  (0.0850)  (0.0703)  (0.1206)  (0.0784) 
Cross-activity peer effect (𝜆𝜆𝑙𝑙𝑙𝑙)    -0.2390***  -1.0845*** 
    (0.1014)  (0.1435) 
Simultaneity effect (−𝜃𝜃𝑙𝑙𝑙𝑙)    -0.1543***  -0.0737 
    (0.0513)  (0.0659) 
Age   0.1141***  -0.0592***   0.0957***  -0.0533*** 
  (0.0057)  (0.0053)  (0.0068)  (0.0085) 
Years in school  -0.0241***  -0.0016  -0.0259***  -0.0058 
  (0.0061)  (0.0051)  (0.0061)  (0.0054) 
Female  -0.0472***  -0.2217***  -0.0889***  -0.2256*** 
  (0.0137)  (0.0113)  (0.0186)  (0.0119) 
African American  -0.6711***   0.3159***  -0.6190***   0.2588*** 
  (0.0289)  (0.0210)  (0.0329)  (0.0490) 
Other races  -0.0974***   0.0490***  -0.0939***   0.0397*** 
  (0.0167)  (0.0139)  (0.0167)  (0.0154) 
Health  -0.5224***   0.2790***  -0.4697***   0.2304*** 
  (0.0151)  (0.0114)  (0.0226)  (0.0354) 
Live with both parents  -0.1585***   0.0374***  -0.1557***   0.0168 
  (0.0148)  (0.0123)  (0.0148)  (0.0162) 
Parental care  -0.2646***   0.0503***  -0.2551***   0.0243 
  (0.0164)  (0.0146)  (0.0166)  (0.0226) 
Parent education: HS grad  -0.0507***   0.0788***  -0.0378*   0.0708*** 
  (0.0206)  (0.0174)  (0.0209)  (0.0177) 
Parent education: college grad  -0.1491***   0.2153***  -0.1148***   0.1923*** 
  (0.0227)  (0.0189)  (0.0251)  (0.0215) 
Parent education: missing  -0.1277***  -0.0105  -0.1322***  -0.0249 
  (0.0248)  (0.0203)  (0.0247)  (0.0222) 
Parent works for pay  -0.0015   0.1633***   0.0245   0.1653*** 
  (0.0268)  (0.0223)  (0.0281)  (0.0222) 
Parent works for pay: missing  -0.0847***   0.2123***  -0.0487   0.2077*** 
  (0.0358)  (0.0294)  (0.0375)  (0.0299) 
Parent smokes   0.1635***    0.1607***  
  (0.0339)   (0.0334)  
Parent smokes: missing   0.0483    0.0448  
  (0.0965)   (0.0948)  
Cigarettes in the home   0.2386***    0.2382***  
  (0.0316)   (0.0312)  
Cigarettes in the home: missing   0.1071    0.1098  
  (0.0939)   (0.0921)  
Coordination    0.2442***    0.2418*** 
   (0.0110)   (0.0114) 
𝜎𝜎12∗                  -0.0923*** 
                 (0.0077) 
Contextual effects Yes Yes Yes Yes 
School fixed effects Yes Yes Yes Yes 
To save space, estimates of contextual effects and school fixed effects are not reported. 
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 

 
 


