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Abstract

In this paper, we consider GMM estimation of the regression and MRSAR models with SAR

disturbances. We derive the best GMM estimator within the class of GMM estimators based on

linear and quadratic moment conditions. The best GMM estimator has the merit of computa-

tional simplicity and asymptotic e¢ ciency. It is asymptotically as e¢ cient as the ML estimator

under normality and asymptotically more e¢ cient than the Gaussian QML estimator otherwise.

Monte Carlo studies show that, with moderate-sized samples, the best GMM estimator has its

biggest advantage when the disturbances are asymmetrically distributed. When the diagonal

elements of the squared spatial weights matrix have enough variation, incorporating kurtosis of

the disturbances in the moment functions will also be helpful.
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1 Introduction

Spatial econometrics models have broad applications in various �elds of economics such as regional,

urban and public economics. These models address relationships across geographic observations in

cross-sectional or panel data. Spatial models have a long history in both statistics and econometrics.

Excellent surveys and early developments can be found in Cli¤ and Ord (1973), Anselin (1988),

Cressie (1993), and Anselin and Bera (1998).

Among spatial econometric models, spatial autoregressive (SAR) models by Cli¤ and Ord (1973)

have received the most attention in economics. The �rst order SAR model can be estimated by

the maximum likelihood (ML) method (see Ord, 1975; Smirnov and Anselin, 2001). Lee (2004)

investigates asymptotic properties of the ML estimator (MLE) taking into account various features

of the spatial weights matrix. When the sample size is large, the ML method can be computationally

demanding for some spatial weights matrices. Alternative estimation methods have subsequently

been proposed.

In the presence of exogenous variables in addition to spatial lag variables, the model is known

as a mixed regressive, spatial autoregressive model (MRSAR).1 With the presence of exogenous

variables, instrumental variables (IV) can be constructed as functions of the exogenous variables

and the spatial weights matrix. The two-stage least squares (2SLS) method has been noted for the

estimation of the MRSAR model in Anselin (1988; 1990), Kelejian and Robinson (1993), Kelejian

and Prucha (1997; 1998), and Lee (2003), among others. The 2SLS estimator (2SLSE) has been

shown to be consistent and asymptotically normal (Kelejian and Prucha, 1998). For the estimation of

the linear simultaneous equation model, the 2SLSE is known to be asymptotically as e¢ cient as the

limited information MLE (see, e.g., Amemiya, 1985). This is not so for the estimation of the MRSAR

model, as it is not a usual linear simultaneous equation model. Lee (2003) discusses the best 2SLSE

(B2SLSE) within the class of IV estimators. By comparing the limiting variance matrices, the 2SLSE

and B2SLSE are less e¢ cient relative to the MLE when the disturbances are normally distributed.

For a regression model with SAR disturbances, a method of moments (MOM) approach has been

introduced in Kelejian and Prucha (2001). The MOM is computationally simpler than the ML.

Their MOM estimator is consistent but can be less e¢ cient relative to the MLE. In order to improve

upon the 2SLS, B2SLS and MOM, Lee (2007) has proposed a general GMM estimation framework.

1For simplicity, some authors prefer the terminology, the SAR model, in place of the MRSAR model.
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For the estimation of the MRSAR model, the proposed GMM method explores both IV (linear) as

well as quadratic moment functions. The GMM estimation for those models can be computationally

simpler than the MLE. The proposed GMM estimator (GMME) can be asymptotically more e¢ cient

than the 2SLSE. With carefully selected linear and quadratic moments, the resulting GMME can be

asymptotically as e¢ cient as the MLE when the disturbances are normally distributed. Similarly,

for the estimation of a SAR process with normally distributed disturbances, best quadratic moments

exist and the resulting GMM estimator can be asymptotically as e¢ cient as the Gaussian MLE.

The best GMM (BGMM) based on the linear and quadratic moments in Lee (2007) assumes that

the disturbances of the model are normally distributed. When the disturbances are not normally

distributed, such estimators are still consistent and asymptotically normal but may not be e¢ cient.

This paper demonstrates that a distribution-free BGMM estimator (BGMME) exists within the

class of GMMEs based on the linear and quadratic moments.

Speci�cally, in this paper, we derive the BGMME for the regression model with SAR disturbances

and the MRSAR model with and without SAR disturbances, within the class of GMMEs based on

linear and quadratic moment conditions. The BGMME proposed here has the merit of computa-

tional simplicity and asymptotic e¢ ciency. It is asymptotically as e¢ cient as the MLE when the

disturbances are normally distributed, and asymptotically more e¢ cient than the Gaussian QMLE

otherwise.

Recently, Robinson (2010) has proposed an adaptive estimator for the MRSAR models with i.i.d.

disturbances �ni�s that follow an unknown distribution. The adaptive estimator is as e¢ cient as ML

estimators based on a correct form of distribution. However, in order for the adaptive estimation

to be feasible, there are orthogonality conditions which need to be satis�ed. In adaptive estimation,

one estimates the unknown distribution of the innovations and uses the estimated distribution to

construct the score (likelihood) for the estimation of the unknown coe¢ cients of the model. The or-

thogonality condition requires the estimation error of the distribution to be asymptotically irrelevant

for the estimation of the coe¢ cients. For the estimation of the SAR model (even with the normally

distributed errors), the ML estimator of the variance of the disturbance is in general asymptotically

correlated with that of the spatial lag coe¢ cient. This hints that the adaptive estimation of the

model would not be feasible. However, there are special circumstances where the orthogonality con-

dition would hold. One case is the spatial scenario where each spatial unit is in�uenced by many

neighbors whose in�uences are uniformly small. This case has been studied in Lee (2002) for the
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OLS approach. In Robinson (2010), he also focuses on such a �many neighbors�case by assuming

that the spatial weights matrix Wn has nonnegative elements that are uniformly of order O(1=hn),

where hn increases with the sample size n such that (1) hn=n1=2 !1 as n!1, or (2) hn !1 as

n!1 and eitherWn is symmetric or the disturbance �ni is symmetrically distributed. However, the

�many neighbors�assumption may not be reasonable in some practical circumstances. The GMM

estimation approach proposed in this paper, on the other hand, does not need this assumption. As

we have focused on the spatial scenario with a �nite number of neighbors, our paper and Robinson

(2009) are complementary to each other. Also, the adaptive estimator in Robinson (2010) would not

be applicable when all exogenous variables in the model are really irrelevant. The GMM approach

in this paper may be used to estimate a pure spatial autoregressive model (without explanatory

variables).

This paper is organized as follows. In Section 2, we consider the GMM estimation of the MRSAR

model with SAR disturbances. It is interesting and informative to then consider two special cases:

the �rst is estimation of a regression model with SAR disturbances and then an MRSAR model

without SAR disturbances. The selection of the best moment functions is discussed and e¢ ciency

is considered. All the proofs of the results are collected in the appendices. Section 3 provides some

Monte Carlo results for the comparison of �nite sample properties of estimators. Section 4 brie�y

concludes. A list of notations has been collected in Appendix A for convenient reference.

2 GMM Estimation and the BGMME

2.1 GMM Estimation of the MRSAR Model with SAR Disturbances

The general MRSAR model with SAR disturbances is given by

Yn = Xn� + �WnYn + un; un = �Mnun + �n; (1)

where n is the total number of spatial units, Xn is an n � k dimensional matrix of nonstochastic

exogenous variables, Wn and Mn are zero diagonal spatial weights matrix of known constants that

may or may not be equal. The disturbances �n1; ::; �nn of the n-dimensional vector �n are i.i.d.

(0; �2). The WnYn term is a spacial lag in the dependent variable and its coe¢ cient represents the

spatial in�uence due to neighbors� realized dependent variable. The Mnun term is a spacial lag
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in the disturbances and its coe¢ cient represents the spacial e¤ect of unobservables on neighboring

units. In order to distinguish the true parameters from other possible values in the parameter

space, we denote �0; �0; �0; and �
2
0 as the true parameters that generate the observed sample. Let

Rn(�) = In � �Mn and Sn(�) = In � �Wn. At the true parameter values, let Rn = Rn(�0) and

Sn = Sn(�0) for simplicity. The model represents an equilibrium, and so Rn and Sn are assumed

to be invertible. The equilibrium vector Yn is given by Yn = S�1n Xn�0 + S
�1
n R�1n �n. It follows

that WnYn = GnXn�0 + GnR
�1
n �n where Gn = WnS

�1
n . WnYn is correlated with �n because

E((GnR
�1
n �n)

0�n) = �
2
0tr(GnR

�1
n ) 6= 0.

For the estimation of the model (1), we consider the transformed equation, RnYn = RnXn�0 +

�0RnWnYn + �n. Let Qn be an n � q matrix of IVs constructed as functions of the regressors

and spatial weights matrices. Denote �n(�) = Rn(�)[Sn(�)Yn �Xn�], where � = (�; �; �0)0. Thus,

�n = �n(�0). The moment functions corresponding to the orthogonality conditions of Xn and �n

are Q0n�n(�). In addition to Q
0
n�n(�), Lee (2001b; 2007) suggests the use of the quadratic moment

�0n(�)Pjn�n(�) where Pjn�s are n� n constant matrices such that tr(Pjn) = 0 for j = 1; :::;m. With

the selected Pjn�s and Qn, the GMM uses the empirical moments

gn(�) = (Qn; P1n�n(�); � � � ; Pmn�n(�))0�n(�): (2)

At �0, gn(�0) = (Qn; P1n�n; � � � ; Pmn�n)0�n has a zero mean because E(Q0n�n) = Q0nE(�n) = 0 and

E(�0nP
0
jn�n) = �

2
0tr(Pjn) = 0 for j = 1; � � � ;m. Lee (2007) has shown the consistency and asymptotic

normality of the GMME for the MRSAR model with i.i.d. disturbances. Similar properties for the

MRSAR model with SAR disturbances can be found in Lee (2001b). In addition, Lee (2001b)

provides identi�cation conditions for (1). In Lee (2001b; 2007), the best moments have been pointed

out when �ni�s are normally distributed. In this paper, our interest is on the best selection of Pjn�s

and Qn without distributional assumptions on �n.

We follow the regularity assumptions speci�ed in Lee (2001a; 2007). Henceforth, uniformly

bounded in row (column) sums in absolute value of a sequence of square matrices fAng will be

abbreviated as UBR (UBC), and uniformly bounded in both row and column sums in absolute value

as UB.2

2A sequence of square matrices fAng, where An = [An;ij ], is said to be UBR (UBC) if the sequence of row sum
matrix norm jjAnjj1 = maxi=1;��� ;n

Pn
j=1 jAn;ij j (column sum matrix norm jjAnjj1 = maxj=1;��� ;n

Pn
i=1 jAn;ij j)

are bounded. (Horn and Johnson, 1985)
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Assumption 1 The �ni�s are i.i.d. with zero mean, variance �20 and a moment of order higher

than the fourth exists.

Assumption 2 The elements of Xn are uniformly bounded constants, Xn has full rank k, and

limn!1
1
nX

0
nXn exists and is nonsingular.

Assumption 3 The sequences of matrices fWng, fMng, fS�1n g and fR�1n g are UB. fS�1n (�)g

and fR�1n (�)g are either UBR or UBC, uniformly in � and � in a compact parameter space.

Assumption 4 The sequences of matrices fPjng with tr(Pjn) = 0 are UB for j = 1; � � � ;m.

The elements of Qn are uniformly bounded.

The assumption that �ni have existing moments higher than the fourth is needed in order to

apply a central limit theorem due to Kelejian and Prucha (2001). In general, �3 and �4 denote,

respectively, the third and fourth moments of �ni�s. The uniform boundedness of fWng, fMng,

fS�1n g and fR�1n g in Assumption 3 limits spatial dependence among the units to a tractable degree

and is originated by Kelejian and Prucha (1999). It rules out the unit root case (in time series as a

special case). The additional uniform boundedness of fS�1n (�)g and fR�1n (�)g in � and � is required

only to justify the QML but not the GMM.3 Uniform boundedness conditions for Xn, Pjn�s and Qn

in Assumptions 2 and 4 are for analytic tractability.

The following assumption summarizes some su¢ cient identi�cation conditions of �0 from the

moment equations E(gn(�0)) = 0. Let Hn = MnR
�1
n , and A(s) = A + A0 for any square matrix

A. Let ��;j = tr(P
(s)
jn Hn), ��;j = tr(P

(s)
jn
�Gn), ��2;j = tr(H 0

nPjnHn), ��2;j = tr( �G
0
nPjn �Gn), ���;j =

tr(P
(s)
jn Hn

�Gn + H
0
nP

(s)
jn
�Gn), ��2�;j = tr(H 0

nP
(s)
jn Hn

�Gn), ���2;j = tr( �G0nP
(s)
jn Hn

�Gn) and ��2�2;j =

tr( �G0nH
0
nPjnHn

�Gn), where �Gn = RnGnR�1n .

Assumption 5 Either (i) limn!1
1
nQ

0
nRn(�)(Xn; GnXn�0) has full rank (k+1) for each possible

� in its parameter space, and limn!1
1
n tr(PjnHn) 6= 0 for some j, limn!1

1
n (tr(P

(s)
1n Hn); � � � ; tr(P

(s)
mnHn))

0

is linearly independent of limn!1
1
n (tr(H

0
nP1nHn); � � � ; tr(H 0

nPmnHn))
0; or (ii) limn!1

1
nQ

0
nRn(�)Xn

has full rank k for each possible � in its parameter space, Wn 6= Mn, and the vectors ��s do not

have a linear combination with nonlinear coe¢ cients in the form that ���1+���2+��2�
2
1+��2�

2
2+

����1�2 + ��2��
2
1�2 + ���2�1�

2
2 + ��2�2�

2
1�
2
2 = 0, for some constants �1 and �2 with (�1; �2) 6= 0.

Assumption 5 (i) corresponds to the possible estimation of �0 and �0 by the use of IVs, i.e., linear

moments, and �0 from the SAR process of the disturbances. When GnXn�0 and Xn are linearly

3For the GMM approach, it is su¢ cient to assume the parameter space to be a bounded set. This is so because
the moment functions are linear and quadratic, and they do not involve complicated nonlinearity.
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dependent, which includes the case that all exogenous variables Xn are irrelevant, (ii) assures the

identi�cation of �0 and �0 from the quadratic moments as the unique solution of E[�
0
n(�)Pjn�n(�)] = 0

for j = 1; � � � ;m. The identi�cation corresponds to the identi�cation of (�0; �0) from the spatial

process vn = S�1n R�1n �n.4 The details can be found in Lee (2001b).

Assumption 6 Let 
n = var(gn(�0)). The limit of 1
n
n exists and is a nonsingular matrix.

5

Assumption 7 The �0 is in the interior of the parameter space � � Rk+2.6

The GMME �̂P = argmin�2� g0n(�)a
0
nangn(�) is

p
n-consistent and asymptotically normal. Let

vecD(A) be the column vector formed by the diagonal elements of a square matrix A. The optimal

weighting matrix a0nan is 

�1
n by the generalized Schwarz inequality, where


n = var(gn(�0)) =

264 �20Q
0

nQn �3Q
0
n!mn

�3!
0
mnQn (�4 � 3�40)!0mn!mn + �40�m

375 ;
with !mn = [vecD(P1n); � � � ; vecD(Pmn)] and�m = [vec(P (s)1n ); � � � ; vec(P

(s)
mn)]0[vec(P1n); � � � ; vec(Pmn)].

LetMn be the class of optimal GMMEs derived from min�2� g
0
n(�)


�1
n gn(�), where gn(�) is given

by (2). To show the existence of the BGMME withinMn, we follow Breusch et al. (1999) in demon-

strating that additional moment conditions are redundant to the set of the selected ones.7 If an

intercept appears in �Xn = RnXn, de�ne �X�
n as the submatrix of �Xn with the intercept column

deleted. Thus, �Xn = [ �X�
n; c(�0)ln], where c(�0) is a scalar function of �0 and ln is an n-dimensional

vector of ones.8 Otherwise �X�
n � �Xn. Suppose there are k� columns in �X�

n. Let �Xnj be the jth

column of �Xn, and �X�
nj be the jth column of �X

�
n. For an n� n matrix A, let A(t) = A� 1

n tr(A)In.

4The conditions in (ii) rule out the case Wn = Mn. In that case, �0 and �0 can be exchanged in the process
vn = S

�1
n R�1n �n, and they can only be locally identi�able (Anselin, 1988).

5Assumptions 5 and 6 exclude the case of large (group) interactions in Lee (2004). These can simplify the presen-
tation of our results. The cases under our assumptions here are relevant to spatial scenario, where interactions are
usually among a few neighbors.

6 In our analysis, the mean value theorem is used occasionally for functions at �0, the interior assumption implicitly
implies the existence of a convex neighborhood around �0 for the validity of the mean value theorem.

7 In Appendix B, we investigate the e¢ cient MOM estimation of a simple SAR process. Due to the simple structure
of that model, we have a constructive approach based on the Schwartz inequality to derive the best moments. The
feature of the best moment conditions for the simple SAR process sheds light on the search for the best moment
conditions for the more general MRSAR model. From the simple model, we realize that some diagonal matrices, with
the diagonal elements being (1) the diagonal elements of the best quadratic moment matrices Pn�s under normality
and (2) the best instruments under normality, can be used to construct additional quadratic moment conditions to
improve e¢ ciency when errors follow a non-normal distribution. Also, some vectors with elements being the diagonal
elements of the best Pn�s under normality can be used as additional instruments to improve e¢ ciency. We thus �nd
candidate moment conditions of these forms for the general model and use the results in Breusch et al. (1999) to
verify the best ones and show any additional linear and quadratic moment conditions are redundant.

8When Mn is row-normalized, Mnln = ln and (In � �0Mn)�1ln = (1 � �0)
�1ln. Hence, Rnln = Mn(In �

�0Mn)�1ln = (In � �0Mn)�1Mnln = (1� �0)�1ln. In this case, cn(�0) = (1� �0)�1. If Mn is not row-normalized,
�Xn will, in general, not have a column proportional to ln.
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Let D(A) be a diagonal matrix with diagonal elements being A if A is a vector, or diagonal elements

of A if A is a square matrix. Let �3 = �3=�
3
0 and �4 = �4=�

4
0 be the skewness and kurtosis of the

disturbance.

Proposition 1 Suppose Assumptions 1-7 are satis�ed. Let P �1n = �G
(t)
n , P �2n = D( �G

(t)
n ), P �3n =

D( �Gn �Xn�0)
(t), P �4n = H

(t)
n , P �5n = D(H

(t)
n ) and P �l+5;n = D( �X�

nl)
(t), for l = 1; � � � ; k�, be the

weighting matrices of the quadratic moments. Furthermore, let Q�1n = �X�
n, Q

�
2n =

�Gn �Xn�0, Q
�
3n =

ln, Q�4n = vecD( �G
(t)
n ) and Q�5n = vecD(H

(t)
n ) be the IV matrices.

Denote g�n(�) = (Q�n; P
�
1n�n(�); � � � ; P �k�+5;n�n(�))0�n(�) and 
�n = var(g�n(�0)), where Q

�
n =

(Q�1n; Q
�
2n; Q

�
3n; Q

�
4n; Q

�
5n). Then, �̂B = argmin�2� g

�0
n (�)


��1
n g�n(�) is the BGMME withinMn, and

it has the asymptotic distribution that
p
n(�̂B��0)

D! N(0;��1B ), where �B = limn!1
1
nD

�0
n 


��1
n D�

n

and

D�
n = E(

@

@�0
g�n(�0)) = �

266666664

0 Q�0n �Gn �Xn�0 Q�0n �Xn

�20tr(P
�(s)
1n Hn) �20tr(P

�(s)
1n

�Gn) 0

...
...

...

�20tr(P
�(s)
k�+5;nHn) �20tr(P

�(s)
k�+5;n

�Gn) 0

377777775
:

As shown in the proof of Proposition 1, �B has an explicit form

�B = lim
n!1

1

n

266664
tr(P

�(s)
�n Hn) tr(P

�(s)
�n Hn) � 2�3

�0(�4�1��23)
vec0D(H

(t)
n ) �Xn

� ��20 ( �Gn �Xn�0)
0Q��n + tr(P

�(s)
�n

�Gn) ��20 Q�0�n
�Xn

� � ��20
�X 0
nQ

�
�n

377775 ;
(3)

where P ��n = P
�
1n�

(�4�3)��23
(�4�1)��23

P �2n�
��10 �3

(�4�1)��23
P �3n, P

�
�n = P

�
4n�

(�4�3)��23
(�4�1)��23

P �5n, Q
�
�n =

�4�1
(�4�1)��23

�Xn�
�23

(�4�1)��23
Q�3n(

1
n l
0
n
�Xn), and Q��n = �4�1

(�4�1)��23
Q�2n �

�23
(�4�1)��23

Q�3n(
1
n l
0
n
�Gn �Xn�0) �

2�0�3
(�4�1)��23

Q�4n.

From our proof, the best moments in Proposition 1 is equivalent to their linear combinations given

by

g#n (�) = (Q
#
n ; P

�
�n�n(�); P

�
�n�n(�); P

�
6n�n(�); � � � ; P �k�+5;n�n(�))0�n(�) (4)

with Q#n = (Q��n; Q
�
�n; Q

�
5n).

9 When �n is normally distributed so that �3 = 0 and �4 = 3, we

have P ��n = �G
(t)
n , P ��n = H

(t)
n , Q��n = �Xn and Q��n = �Gn �Xn�0. Following Breusch et al. (1999),

Q�05n�n(�) and (P
�
6n�n(�); � � � ; P �k�+5;n�n(�))0�n(�) can be shown redundant given the best moment

9We realize that these are not the unique linear combinations. They help to realize how the best moments of
the normal distributed case shall be modi�ed to accommodate the non-normal case. They are also helpful for the
implementation of the estimation procedure in practice (see the Monte Carlo section).

7



functions [ �Xn; �Gn �Xn�0; �G
(t)
n �n(�);H

(t)
n �n(�)]

0�n(�) under normality in Lee (2001b).10 When �n is

not normally distributed, the additional moments in Proposition 1 improve e¢ ciency as they capture

the skewness and kurtosis of the error distribution.

The asymptotic e¢ ciency of the MLE depends on the distribution of the disturbances being

correctly speci�ed. The likelihood function based on the normal speci�cation is a quasi-likelihood

when the disturbances are not truly normal. The resulted estimator is a QMLE. We claim that the

BGMME in Proposition 1 is asymptotically more e¢ cient relative to this QMLE. This can be seen

as follows. The log-likelihood function for MRSAR model with SAR disturbances is

lnLn = �
n

2
ln(2��2) + ln jSn(�)j+ ln jRn(�)j �

1

2�2
[Sn(�)Yn �Xn�]0R0n(�)Rn(�)[Sn(�)Yn �Xn�];

and the derivatives are @
@� lnLn = �tr(Hn(�)) +

1
�2 �

0
n(�)Hn(�)�n(�),

@

@�
lnLn = �tr( �Gn(�; �)) +

1

�2
[ �Gn(�; �) �Xn(�)�]

0�n(�) +
1

�2
�0n(�) �Gn(�; �)�

0
n(�);

@
@� lnLn =

1
�2
�X 0
n(�)�n(�), and

@
@�2 lnLn = � n

2�2 +
1
2�4 �

0
n(�)�n(�), where �Xn(�) = Rn(�)Xn and

�Gn(�; �) = Rn(�)Gn(�)R
�1
n (�). The QMLE of �20 is given by �̂

2
ml(�) =

1
n�
0
n(�)�n(�) for a given value

�. Substituting �̂2ml(�) into the remaining �rst order conditions shows that the QMLE is character-

ized by the moment equations �0n(�)H
(t)
n (�)�n(�) = 0, [ �Gn(�; �) �Xn(�)�]0�n(�)+�0n(�) �G

(t)
n (�; �)�n(�) =

0, and �X 0
n(�)�n(�) = 0. Denote the QMLE of � by �̂ml. Obviously �̂ml is the solution of anĝml;n(�),

where an =

266664
Ik 0 0 0

0 1 1 0

0 0 0 1

377775 and

ĝml;n(�) = [ �Xn(�̂ml); �Gn(�̂ml; �̂ml) �Xn(�̂ml)�̂ml; �G
(t)
n (�̂ml; �̂ml)�n(�);H

(t)
n (�̂ml)�n(�)]

0�n(�):

It follows from analogous arguments in the proof of Proposition 3 in Lee (2007) that anĝml;n(�) = 0

is asymptotically equivalent to the moment equations angml;n(�) = 0, where

gml;n(�) = [ �Xn; �Gn �Xn�0; �G
(t)
n �n(�);H

(t)
n �n(�)]

0�n(�);

10 In the simulation studies, we compare the �nite sample performance of the BGMME based on the enlarged set
of moment conditions with the Gaussian MLE when �ni�s are normally distributed. For a moderate-sized sample, the
performance of the BGMME is as good as that of the MLE.
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in the sense that their consistent roots have the same limiting distribution. As gml;n(�) con-

sists of linear and quadratic functions of �n(�), the corresponding optimal GMME derived from

min g0ml;n(�)

�1
n gml;n(�) is in Mn. As the BGMME is the most e¢ cient estimator in Mn, hence,

the BGMME is e¢ cient relative to the QMLE.

In practice, with initial consistent estimates �̂n, �̂
2
n, �̂3 and �̂4, P

�
jn and Q

�
n can be estimated as

P̂ �jn = P
�
jn(�̂n) and Q̂

�
n = Q

�
n(�̂n) for j = 1; � � � ; k�+5. The variance matrix 
�n of the best moment

functions can be estimated as 
̂�n = 
�n(�̂n; �̂
2
n; �̂3; �̂4). The following proposition shows that the

feasible BGMME has the same limiting distribution as the BGMME in Proposition 1.

Proposition 2 Under Assumptions 1-7, suppose �̂n, �̂2n, �̂3 and �̂4 are, respectively,
p
n-consistent

estimates of �0, �20, �3 and �4. Then, �̂FB = argmin�2� ĝ
�0
n (�)
̂

��1
n ĝ�n(�), with 
̂

�
n = 


�
n(�̂n; �̂

2
n; �̂3; �̂4)

and ĝ�n(�) = (Q̂�n; P̂
�
1n�n(�); � � � ; P �k�+5;n�n(�))0�n(�), has the same limiting distribution as �̂B =

argmin�2� g
�0
n (�)


��1
n g�n(�).

2.2 GMM Estimation of the Regression Model with SAR Disturbances

An important special case of the general MRSAR-SAR model is the regression model with SAR

disturbances, that is the case where �0 = 0. Two approaches are interesting to contrast. The �rst

approach estimates � and then estimates � using the feasible generalized least squares (FGLS). The

second approach uses the full model GMM estimation above to estimate the parameters simulta-

neously. In this section, we focus on the second approach, and the FGLS approach is discussed in

Appendix B.11

LetM�n be the class of optimal GMMEs of (�0; �
0
0) derived from min�;� g

0
�n(�; �)


�1
�n g�n(�; �),

where 
�n = var(g�n(�0; �0)) and g�n(�; �) = (Qn; P1n��n(�; �); � � � ; Pmn��n(�; �))0��n(�; �) with

��n(�; �) = Rn(�)(Yn �Xn�). As a special case of the GMM estimation in Section 2.1 by imposing

the restriction that �0 = 0, we �nd the following result.

Corollary 3 (to Proposition 1) Consider the GMM estimation of the restricted model (1) with

�0 = 0 under assumptions 1-7. Let P y1n = H
(t)
n , P

y
2n = D(H

(t)
n ) and P

y
j+2;n = D( �X�

nj)
(t) (for

j = 1; � � � ; k�) be the weighting matrices of the quadratic moments, and Qy1n = �X�
n, Q

y
2n = ln and

Qy3n = vecD(H
(t)
n ) be the IV matrices.

11Throughout the paper we maintain assumptions 1-7 (suitably modi�ed for di¤erent models).
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Let gy�n(�; �) = (Qyn; P
y
1n��n(�; �); � � � ; P

y
k�+2;n��n(�; �))

0��n(�; �) and 
y�n = var(gy�n(�0; �0)),

where Qyn = (Q
y
1n; Q

y
2n; Q

y
3n). Then, �̂B� and �̂B� derived from min�;� g

y
�n(�; �)

0(
y�n)
�1gy�n(�; �) is

the BGMME withinM�n with the asymptotic variance matrix 1
n�

�1
B�, where

�B� = lim
n!1

1

n

264 tr[(P y�n)
(s)Hn] � 2�3

�0(�4�1��23)
vec0D(H

(t)
n ) �Xn

� ��20
�X 0
nQ

y
�n

375 ; (5)

with P y�n = P
y
1n �

(�4�3)��23
(�4�1)��23

P y2n and Q
y
�n =

�4�1
(�4�1)��23

�Xn � �23
(�4�1)��23

Qy2n(
1
n l
0
n
�Xn).

By comparing the result in Corollary 3 with the FGLS in Appendix B, we see that when �3 = 0,

which implies that the linear and quadratic moments are uncorrelated, the best MOM (BMOM)

estimator of �0 and the FGLS estimator of �0 in Appendix B have the same limiting distribution

as the BGMME given in Corollary 3. Indeed, when �3 = 0, the best P �n of the MOM approach

given in Proposition 5 is the same as P y�n in Corollary 3, and the best linear moment Q
y
�n =

�Xn

corresponds to the GLS type moment for the estimation of �0. However, when �3 6= 0, the BGMME

in Corollary 3 can be e¢ cient relative to the FGLS estimator of �0 as well as the proposed BMOM

estimator of �0 in Appendix B. The GMME of �0 is no longer a linear function of Yn when �3 6= 0,

but the FGLS estimator is. While the FGLS estimator of �0 remains the best linear unbiased one,

it can be ine¢ cient relative to some nonlinear estimators like the one given in Corollary 3. The

MLE estimator, under departures from normality, will not always fall in the class of linear unbiased

estimators. Hence it is not surprising that improvements on the linear unbiased estimator can be

found in general.

2.3 GMM Estimation of the MRSAR Model with IID Disturbances

Another special case of the model (1) is the MRSAR model with i.i.d. disturbances, i.e., �0 = 0.

The following corollary gives the BGMME of the MRSAR model with i.i.d. disturbances. LetM�n

be the class of optimal GMMEs of (�0; �
0
0) derived from min�;� g

0
�n(�; �)


�1
�ng�n(�; �), where 
�n =

var(g�n(�0; �0)) and g�n(�; �) = (Qn; P1n��n(�; �); � � � ; Pmn��n(�; �))0��n(�; �) with ��n(�; �) =

Sn(�)Yn �Xn�.

Corollary 4 (to Proposition 1) Consider the GMM estimation of the restricted model (1) with

�0 = 0 under Assumptions 1-7. Let P ?1n = G
(t)
n , P ?2n = D(G

(t)
n ), P ?3n = D(GnXn�0)

(t), and

10



P ?j+3;n = D(X�
nj)

(t) (for j = 1; � � � ; k�) be the weighting matrices of the quadratic moments, and

Q?1n = X
�
n, Q

?
2n = GnXn�0, Q

?
3n = ln and Q

?
4n = vecD(G

(t)
n ) be the IV matrices.

Let g?�n(�; �) = (Q?n; P
?
1n��n(�; �); � � � ; P ?k�+3;n��n(�; �))0��n(�; �) and 
?�n = var(g?�n(�0; �0)),

where Q?n = (Q
?
1n; Q

?
2n; Q

?
3n; Q

?
4n). Then, �̂B� and �̂B� derived from min�;� g

?
�n(�; �)

0(
?�n)
�1g?�n(�; �)

is the BGMME withinM�n with the asymptotic variance matrix 1
n�

�1
B�, where

�B� = lim
n!1

1

n

264 ��20 (GnXn�0)
0Q?

�n
+ tr[(P ?�n)

(s)Gn] ��20 (Q?�n)
0Xn

� ��20 X 0
nQ

?
�n

375 ; (6)

with P ?�n = P ?1n �
(�4�3)��23
(�4�1)��23

P ?2n �
�3

�0((�4�1)��23)
P ?3n, Q

?
�n
= �4�1

(�4�1)��23
Xn � �23

(�4�1)��23
Q?3n(

1
n l
0
nXn)

and Q?�n =
�4�1

(�4�1)��23
Q?2n �

�23
(�4�1)��23

Q?3n(
1
n l
0
nGnXn�0)�

2�0�3
(�4�1)��23

Q?4n.

When �n is normally distributed, �3 = 0 and �4 = 3, and hence, Q
?
�n
= Xn, Q?�n = GnXn�0 and

P ?�n = G
(t)
n . Based on the characterization of best moments in Breusch et al. (1999), it can be shown

that any moment function in the form of (2) is redundant given (Xn; GnXn�0; G
(t)
n ��n(�; �))

0��n(�; �)

under normality, with similar arguments used in the proof of Proposition 1.

On the other hand, the likelihood function of the MRSAR model with i.i.d. disturbances is

lnLn = �
n

2
ln(2�)� n

2
ln�2 + ln jSn(�)j �

1

2�2
[Sn(�)Yn �Xn�]0[Sn(�)Yn �Xn�]:

with its derivatives being @ lnLn
@� = 1

�2X
0
n��n(�; �),

@ lnLn
@�2 = � n

2�2 +
1
2�4 �

0
�n(�; �)��n(�; �), and

@ lnLn
@�

= �tr(Gn(�)) +
1

�2
(Gn(�)Xn�)

0��n(�; �) +
1

�2
�0�n(�; �)Gn(�)��n(�; �):

The score vector of QMLE consists of linear and quadratic moments of ��n(�; �). Hence, the optimal

GMME based on that score vector is inM�n, and hence is less e¢ cient relative to the BGMME in

Corollary 4.

3 Monte Carlo Study

In the Monte Carlo experiments, the model is speci�ed as

Yn = Xn1�10 +Xn2�20 + �0WnYn + un, un = �0Wnun + �n: (7)
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The regressors Xn1 and Xn2 are mutually independent vectors of independent standard normal

random variables. The error terms, �ni�s, are independently generated from the following 2 distri-

butions: (a) normal, �ni � N(0; 2) and (b) gamma, �ni = 
i � 2 where 
i � gamma(2; 1). The

�ni�s have mean zero and variance 2. The skewness (�3) and kurtosis (�4) of these distributions

are correspondingly: (a) �3 = 0, �4 = 3 and (b) �3 =
p
2, �4 = 6. When the disturbances are

normally distributed, both the MLE and the BGMME are asymptotically e¢ cient. The gamma

distribution is introduced to study the e¤ects of skewness and excess kurtosis on the small sample

performance of various estimators. The BGMME is asymptotically more e¢ cient than the Gaussian

QMLE when �ni�s follow the gamma distribution, as its moment functions incorporate skewness and

excess kurtosis of the error distribution.

The number of repetitions is 1; 000 for each case in the Monte Carlo experiments. The regres-

sors are randomly redrawn for each repetition.12 In each case, we report the mean and standard

deviation (SD) of the empirical distributions of the estimates. To facilitate the comparison of var-

ious estimators, their root mean square errors (RMSE) are also reported. We set �10 = 1:0 and

�20 = �1:0 in the data generating process. The variance ratio of Xn1�10 + Xn2�20 with the sum

of variances of Xn1�10 +Xn2�20 and �n is 0:5. If one ignores the interaction term, this ratio would

represent R2 = 0:5 in a regression equation. �0 and �0 are varied in the experiments. The sample

sizes considered are n = 98 and n = 490.

We take the weights matrix WA from the study of crimes across 49 districts in Columbus, Ohio

in Anselin (1988). For n = 98 and 490, the corresponding spatial weights matrices in the Monte

Carlo study are given by I2
WA and I10
WA respectively, where 
 denotes the Kronecker product

operator.

The �rst case we consider is �0 = 0 and �0 = 0:3, so that (7) reduces to the regression model

with SAR disturbances. The estimators considered are (i) the GLS1 estimator where �0 is estimated

by the MOM in Kelejian and Prucha (1998) and the GLS2 estimator where �0 is estimated by the

BMOM in Proposition 5, (ii) the BGMME in Corollary 3, (iii) the Gaussian QMLE13 , and (iv) the

gamma MLE when the innovations follow the gamma distribution14 . We use preliminary estimates

12We have also experimented with the speci�cation where the regressors are �xed across the replications. The
simulation results are similar to those reported here.
13The QMLEs for the regression model with SAR disturbances, the MRSAR model with i.i.d. disturbances, and the

MRSAR model with SAR disturbances are calculated, respectively, using sem.m, sar.m, sac.m in Econometrics Toolbox
(version 7) by James P. LeSage. Function option info:lflag = 0 for full computation (instead of approximation), and
other options are set to the default values.
14We assume the scale parameter of the gamma density is known and estimate the shape parameter with other

unknown parameters in the model using the likelihood method.
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from the GLS1 to implement the GLS2 and the feasible BGMM.

[Table 1 approximately here]

The estimation results for the regression model with SAR errors are reported in Table 1. The

GLS estimators and the Gaussian QMLE of �0 are biased downward and the BGMME of �0 is biased

upward for a small sample size n = 98. The bias reduces as the sample size increases. When the

disturbances are normally distributed, the Gaussian MLE is e¢ cient. When n = 98, the BGMME of

�0 has a slightly bigger SD than the MLE. For a moderate sample size n = 490, the performance of

the BGMME is as good as that of the MLE. When the innovations follow the gamma distribution,

the gamma MLE performs better than the other estimators for both n = 98 and n = 490. The

GLS2 estimator of �0 has a slightly smaller SD than the GLS1 for both sample sizes considered.

The BGMME of �0 has a smaller SD and RMSE than the GLS estimators and the Gaussian QMLE

for both n = 98 and n = 490. For both sample sizes, the percentage reduction in the SD of the

BGMME of �0 relative to the Gaussian QMLE is about 20%. The average CPU time for one

repetition is also reported for each estimation method.15 The GMME signi�cantly reduces the CPU

time cost relative to the QMLE.

The second case we consider is �0 = 0:3 and �0 = 0, so that the true data generating process

in (7) corresponds to the MRSAR model with i.i.d. disturbances. The estimators considered are

(i) the 2SLS estimator with IV set Qn = (Xn;WnXn;W
2
nXn) and the B2SLS estimator with IV

set Qn = (Xn; ĜnXn�̂n), (ii) the BGMME in Proposition 2, (iii) the Gaussian QMLE, and (iv) the

gamma MLE. We use initial estimates from the 2SLS to implement the B2SLS and feasible GMM

estimations.

[Table 2 approximately here]

Table 2 reports the estimation results for the MRSAR model with i.i.d. disturbances. The 2SLS

and B2SLS estimators of �0 have much larger SDs than the other estimators for both sample sizes

considered. When the disturbances are normally distributed, the BGMME of �0 has a bigger SD

than the Gaussian MLE for a small sample size n = 98. The performance of the BGMME is as good

as the MLE for n = 490. When the innovations follow the gamma distribution, the gamma MLE

performs the best. The BGMME improves upon the Gaussian QMLE in terms of SD and RMSE

15All the computation is performed using Dell Optiplex 755 with Intel (R) Core (TM) 2 Duo CPU E6850 @ 3.00GHz
and 3.25 GB of RAM.
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for both sample sizes considered. When n = 98, the SD of the BGMME of �0 is about 20% smaller

than that of the Gaussian QMLE. When n = 490, the percentage reductions in SDs of the BGMMEs

of �0, �10 and �20 relative to the Gaussian QMLEs are, respectively, 8:9%, 21:9% and 19:4%.16

Lastly, we consider the case that �0 = 0:3 and �0 = 0:3. The estimators considered are: (i)

the G2SLS estimator in Kelejian and Prucha (1998) and the best G2SLS (B2SLS) estimator in Lee

(2003),17 (ii) the BGMME18 in Proposition 2, (iii) the Gaussian QMLE, and (iv) the gamma MLE.

We use preliminary estimates from the G2SLS to implement the B2SLS and the feasible BGMM.

[Table 3 approximately here]

The estimation results of the MRSAR model with SAR disturbances is given in Table 3. When

the disturbances are normally distributed, the Gaussian MLE performs better than the BGMME if

the sample size is small, and the BGMME is as good as the MLE if the sample size is moderate.

When the innovations follow the gamma distribution, the BGMMEs of �0 and �0 have bigger SDs

than the Gaussian QMLEs but the BGMME of �0 has a smaller SD than the QMLE if n = 98, and

the BGMMEs of �0, �0, and �0 have smaller SDs than the Gaussian QMLEs if n = 490. Table 3

also reports some results with misspeci�cations in that the e¤ect captured by either �0 or �0 were

ignored, and the restricted models are estimated. When the model is estimated under the restriction

that �0 = 0, the various estimators of �0 are biased upwards by about 80%. The estimates of �0

are only trivially a¤ected. On the other hand, when the model is estimated under the restriction

that �0 = 0, the QMLE and BGMME of �0 are upwards biased, while the G2SLS and B2SLS

estimators are quite robust to this misspeci�cation. For both misspeci�ed models, the �nite sample

performance of the BGMME is as good as the MLE when �ni�s are normally distributed, and the

BGMME of �0 has a smaller SD than the Gaussian QMLE when the innovations follow the gamma

distribution.

In summary, in the absence of speci�c and correct knowledge of the underlying distribution, the

BGMME improves on the Gaussian QMLE as the former incorporates correlation between linear and

16Given the data generating process of Xn, we evaluate the asymptotic variance of the BGMMEs and QMLEs in
addition to the empirical SDs. With the gamma distribution and n = 490, the percentage of reductions in asymptotic
SDs of the BGMMEs of �0, �10 and �20 relative to the QMLEs are, on average over all the repetitions, respectively,
9:8%, 22:5% and 22:5%.
17We use Qn = (Xn;WnXn;W 2

nXn) as the IV matrix for the G2SLS.
18 In the Monte Carlo experiments, as Wn = Mn, �Gn = RnGnR

�1
n = (In � �0Mn)Mn(In � �0Mn)�1(In �

�0Mn)�1 = Mn(In � �0Mn)(In � �0Mn)�1(In � �0Mn)�1 = Hn if �0 = �0. Though the estimated �Gn and Hn
wouldn�t be exactly the same, they can be very close to each other and the �nite sample perfemance of the BGMME
might be a¤ected. So we use linear combinations of the moment functions in Proposition 1 in this Monte Carlo study.
The linear combinations are given in (4), and can be shown asymptotically equivalent to those in Proposition 1.
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quadratic moment conditions when the disturbances are skewed. The BGMMEs of both the spatial

e¤ects �0 and �0 and regression coe¢ cient �0 have smaller SDs and RMSEs than the Gaussian

QMLE for a moderate-sized sample. The BGMME is also computationally more e¢ cient than the

Gaussian QMLE.

4 Conclusion

In this paper, we consider improved GMM estimation of regression and MRSAR models with SAR

disturbances. When the disturbances are normally distributed, the MLE approach for such models

is e¢ cient. Lee (2007) has shown the existence of the GMME based on linear and quadratic moment

conditions that can attain the same limiting distribution as the MLE. When the disturbances are

not normally distributed, the MLE based on the normal likelihood speci�cation is a QMLE. This

paper improves upon the QMLE approach by incorporating potential skewness and kurtosis of the

disturbances into the linear and quadratic moment conditions used in the GMM framework. The

proposed BGMME is asymptotically as e¢ cient as MLE under normality, and more e¢ cient than

the QMLE when the innovations are not normal. Monte Carlo studies show that the potential

ine¢ ciency of the QMLE in �nite sample for the MRSAR model mainly comes from the possible

correlation between linear and quadratic moment conditions in the likelihood function. Hence, the

proposed BGMME has its biggest advantage when the skewness of the disturbances is nonzero.

In the event that the diagonal elements of Hn have enough variation,19 then, taking into account

kurtosis may also be valuable.

In the Monte Carlo studies, the (infeasible) exact MLE performs better than the Gaussian QMLE

and the BGMME for the case of non-normal errors, which suggests the possibility to further improve

the e¢ ciency of the Gaussian QMLE by considering higher order moment conditions in the GMM

framework. However, some complications would occur as more high order moment conditions are

used for the GMM estimation. First, additional high order moments of the unknown innovation

distribution might involve more unknown parameters for estimation. Second, the �nite sample

properties of the GMM estimator can be sensitive to the number of moment conditions. And as the

number of moment conditions increases with the sample size, the GMM estimator could even be

asymptotically biased (Han and Phillips, 2006). A more di¢ cult problem in the literature of GMM

19Hn can be expanded as Hn = Mn(In � �0Mn)�1 = Mn + �0M2
n + � � � . As D(Mn) = 0, the empirical variance

of the diagonal elements of Hn is largely determined by that of M2
n.
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estimators with many moments occurs when the (optimal) weighting matrix involves preliminary

estimates of parameters nonlinearly (see Han and Phillips, 2006, for a discussion). It would be quite

di¢ cult if not impossible to derive the asymptotic properties of such an estimator. As the optimal

weighting matrix of the moment conditions of the BGMME in this paper involve initial estimates,

we expect this technical di¢ culty would occur if many higher moments are considered.

The models considered so far in this paper have concentrated on the regression and MRSAR

models with SAR disturbances, where the spatial lags are all of the �rst order, i.e., there is a single

spatial weights matrix in the main equation or the disturbance process. It is of interest to consider

models with high order spatial lags. Those models would be more complicated in structure, which

will result in more complex identi�cation and estimation issues. The details will be reported in a

separate paper.

APPENDICES

A Summary of Notation

� D(A) = Diag(A) is a diagonal matrix with diagonal elements being A if A is a vector, or

diagonal elements of A if A is a square matrix.

� vecD(A) is a column vector formed by the diagonal elements of a square matrix A.

� A(s) = A+A0 where A is a square matrix.

� A(t) = A� 1
n tr(A)In where A is an n� n matrix.

� A(l) is a linearly transformed matrix of A that preserves the uniform boundedness property.

� �0 = (�; �; �0); �00 = (�0; �0; �00). �0 = (�0; �2); �00 = (�00; �20).

� Rn(�) = In � �Mn; Rn = Rn(�0). Sn(�) = In � �Wn; Sn = Sn(�0).

� Hn(�) =MnR
�1
n (�); Hn = Hn(�0). Gn(�) =WnS

�1
n (�); Gn = Gn(�0).

� �Xn(�) = Rn(�)Xn; �Xn = RnXn. �Gn(�; �) = Rn(�)Gn(�)R
�1
n (�); �Gn = RnGnR�1n .

� If an intercept appears in �Xn, we have �Xn = [ �X�
n; c(�0)ln]. Otherwise �X

�
n � �Xn.
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� ln is an n� 1 vector of ones. Jn = In � 1
n lnl

0
n. ekj is the jth unit vector in R

k.

� For the MRSAR model with SAR disturbances, �n(�) = Rn(�)[Sn(�)Yn � Xn�], gn(�) =

(Qn; P1n�n(�); � � � ; Pmn�n(�))0�n(�), and 
n = var(gn(�0)). The class of GMMEs of �0 that

minimize g0n(�)

�1
n gn(�) is denoted byMn.

� For the regression model with SAR disturbances, ��n(�; �) = Rn(�)(Yn � Xn�), g�n(�; �) =

(Qn; P1n��n(�; �); � � � ; Pmn��n(�; �))0��n(�; �), and 
�n = var(g�n(�0; �0)). The class of GMMEs

of (�0; �
0
0) that minimize g

0
�n(�; �)


�1
�n g�n(�; �) is denoted byM�n.

� For the MRSAR model with i.i.d. disturbances, ��n(�; �) = Sn(�)Yn � Xn�, g�n(�; �) =

(Qn; P1n��n(�; �); � � � ; Pmn��n(�; �))0��n(�; �), and 
�n = var(g�n(�0; �0)). The class of

GMMEs of (�0; �
0
0) that minimize g

0
�n(�; �)


�1
�ng�n(�; �) is denoted byM�n.

B FGLS andMOMEstimation of the Regression Model with

SAR Disturbances

The regression model with SAR disturbances is a generalized linear model with variance �20R
�1
n R0�1n

for un and the parameter of interest in this discussion is �0. A consistent estimator of �0 can be

used as an initial estimator for the FGLS estimation of the regression coe¢ cient �0. Kelejian and

Prucha (1999) have considered the MOM estimation of �0 and the FGLS estimation of �0. If the

purpose is solely for the estimation of �0 via the GLS, e¢ cient estimation of �0 is not an issue as

the asymptotic distribution of the FGLS estimator does not depend on the asymptotic distribution

of the initial consistent estimator of �0. However, e¢ ciency in estimation of �0 improves the power

of tests for the presence of SAR disturbances (the test for �0 = 0) as well as other inference on �0.

B.1 FGLS Estimation

Let �̂L = (X 0
nXn)

�1X 0
nYn be the OLS estimator. un can be estimated by the estimated residual

ûn = Yn �Xn�̂L. Following Lee (2001a), �0 can then be estimated by the GMM:

�̂P = argmin
�
ĝ0n(�)a

0
nanĝn(�); (8)
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based on the quadratic moment conditions of �n

ĝn(�) = [P1nRn(�)ûn; � � � ; PmnRn(�)ûn]0Rn(�)ûn; (9)

where Pjn�s are n� n constant matrices such that tr(Pjn) = 0 for j = 1; � � � ;m.

Under assumptions 1-7, Lee (2001a) has shown the GMME �̂P is
p
n-consistent and has a limiting

distribution equivalent to the GMME when un is observed. Furthermore, with a consistent estimator

of �0, the FGLS estimator �̂FG = (X 0
nR̂

0
nR̂nXn)

�1X 0
nR̂

0
nR̂nYn is asymptotically equivalent to the

exact GLS estimator �̂G = (X
0
nR

0
nRnXn)

�1X 0
nR

0
nRnYn.

B.2 BMOM Estimation

Within the class of GMMEs given by (8), e¢ ciency hinges on the selection of Pjn�s. Lee (2001a)

gives the best one when �n is normally distributed. Here, we derive the BGMM (or BMOM)

estimator within this class without the normality assumption. The optimal choice of the weight-

ing matrix a0nan in (8) is, as usual, a matrix proportional to 

�1
n . The approach used in the

general model above hinges on the characterization of best moments in terms of any additional

moments being redundant in Breusch et al. (1999). In this section, we derive the analytically

best P �n directly. Let Mn be the class of optimal GMMEs from min�2� g
0
n(�)


�1
n gn(�), where

gn(�) = [P1nRn(�)un; � � � ; PmnRn(�)un]0Rn(�)un is a vector of moment functions with Pjn�s sat-

isfying Assumption 4. We are interested in the BGMME within Mn without any distributional

assumption. Following Lee (2001a), the asymptotic variance of the consistent GMME
p
n�̂P based

on the quadratic moment u0nR
0
n(�)PnRn(�)un with tr(Pn) = 0 is (limn!1

1
n�P;n)

�1, where �P;n =

tr2(P (s)
n Hn)

(�4�3)
Pn

i=1 P
2
n;ii+tr(PnP

(s)
n )
. The best Pn with tr(Pn) = 0 will minimize the asymptotic variance

or, equivalently, maximize the corresponding precision measure �P;n. As tr(P
(s)
n Pn) = tr[(Pn �

D(Pn))
(s)Pn] + 2

Pn
i=1 P

2
n;ii, the denominator of �P;n is (�4 � 3)

Pn
i=1 P

2
n;ii + tr(P

(s)
n Pn) = (�4 �

1)
Pn

i=1 P
2
n;ii + tr[(Pn �D(Pn))(s)Pn], where �4 > 1 by Jensen�s inequality for a concave function.

Let P+n = Pn + (
q

1
2 (�4 � 1) � 1)D(Pn). As tr(Pn) = 0, tr(P

+
n ) = 0. The square of the Euclidean

norm of (P+n )
(s) is tr[(P+n )

(s)(P+n )
(s)] = 2f(�4 � 1)

Pn
i=1 P

2
n;ii + tr[(Pn � D(Pn))(s)Pn]g. Pn and

P+n have a one-to-one relation. Given P+n , Pn can be recovered as Pn = P
+
n + (

q
2

�4�1
� 1)D(P+n ).

Because tr(P (s)n Hn) = tr(P
(s)
n H

(t)
n ) =

1
2 tr(P

(s)
n (H

(t)
n )(s)), the maximization problem is thus equiva-

lent to maxP+
n

tr2f[P+
n +(

p
2=(�4�1)�1)D(P+

n )]
(s)(H(t)

n )(s)g
tr[(P+

n )(s)(P
+
n )(s)]

. To solve this, we shall look for a matrix An
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such that trf[P+n + (
q

2
�4�1

� 1)D(P+n )](s)(H
(t)
n )(s)g = tr[(P+n )

(s)(H
(t)
n + An)

(s)]. This identity is

equivalent to (
q

2
�4�1

� 1)tr[D(P+n )(s)(H
(t)
n )(s)] = tr[(P+n )

(s)A
(s)
n ]. If An is taken to be a diagonal

matrix, then tr[(P+n )
(s)A

(s)
n ] = tr[D(P+n )

(s)A
(s)
n ]. One possible An is An = (

q
2

�4�1
� 1)D(H(t)

n ),

which is determined by Hn alone. Thus the optimization becomes maxP+
n

tr2[(P+
n )

(s)(H(t)
n +An)

(s)]

tr[(P+
n )(s)(P

+
n )(s)]

.

For any square conformable matrices B and C, tr2(BC) � tr(B2)tr(C2) is a version of the Cauchy

inequality. Hence the optimum P+n is P+�n = H
(t)
n + An = H

(t)
n + (

q
2

�4�1
� 1)D(H(t)

n ). In terms

of the original P �n , one has P
�
n = P+�n + (

q
2

�4�1
� 1)D(P+�n ) = H

(t)
n � �4�3

�4�1
D(H

(t)
n ), because

D(P+�n ) =
q

2
�4�1

D(H
(t)
n ).

The form of the best P �n here motivates the selection of best moments for the regression model.

The following proposition gives the BMOM estimator of �0 for the SAR process.

Proposition 5 Under Assumptions 1-7, �̂B = argmin�2� [u
0
nR

0
n(�)P

�
nRn(�)un]

2 is the BMOM es-

timator withinMn, with
p
n(�̂B � �0)

D! N(0;��1B ) and �B = limn!1
1
n tr(P

�(s)
n Hn).

B.3 Variance Reduction

Let P1n be the class of constant n � n matrices Pjn�s satisfying Assumption 4. When �n is nor-

mally distributed, Lee (2001a) has shown that H(t)
n is the best selection in P1n. This is the special

case of P �n in Proposition 5 with �4 = 3. Furthermore, Lee (2001a) has shown that the GMME �̂H1

based on the quadratic moment u0nR
0
n(�)H

(t)
n Rn(�)un has the same limiting distribution as the QML

derived from max lnLn(�; �
2) where Ln(�; �2) = (2��2)�

n
2 jRn(�)j exp(� 1

2�2u
0
nR

0
n(�)Rn(�)un), re-

gardless of �n�s distribution. Thus it is of interest to compare the e¢ ciency gain of the BGMME

�̂B with �̂H1. The limiting variance of
p
n�̂H1 is �

�1
H1 = (limn!1

1
n�H1;n)

�1, where �H1;n =

tr2[(H(t)
n )(s)Hn]

(�4�3)
Pn

i=1(H
(t)
n;ii)

2+tr[(H
(t)
n )(s)Hn]

. The limiting variance of
p
n�̂B is (limn!1

1
n�B;n)

�1 where �B;n =

tr(P
�(s)
n Hn) = tr[(H

(t)
n )(s)Hn]� 2(�4�3�4�1

)tr[D(H
(t)
n )Hn]. To simplify notation, denote

v2H = v
2(H) =

1

n

nX
i=1

(H
(t)
n;ii)

2 =
1

n

nX
i=1

(Hn;ii �
1

n

nX
j=1

Hn;jj)
2 (10)

the empirical variance formed by the diagonal elements ofHn. Furthermore, denote l2H;1 =
1
n tr[(H

(t)
n )(s)Hn] =

1
2n tr[(H

(t)
n )(s)(H

(t)
n )(s)] and l2H;2 =

1
n tr[(Hn�D(Hn))

(s)Hn] =
1
2n tr[(Hn�D(Hn))

(s)(Hn�D(Hn))(s)],

which are, respectively, 1
2n of the square of the Euclidean norm of (H(t)

n )(s) and (Hn �D(Hn))(s).

Instead of comparing the variances of these two estimators we compare the precision measures
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1
n�H1;n and

1
n�B;n. As

1
n�H1;n = l

4
H;1=[(�4�3)v2H + l2H;1] and 1

n�B;n = l
2
H;1�2(

�4�3
�4�1

)v2H , it follows

that
1

n
�B;n �

1

n
�H1;n =

(�4 � 3)2v2H(l2H;1 � 2v2H)
(�4 � 1)[(�4 � 3)v2H + l2H;1]

=
(�4 � 3)2v2H l2H;2

(�4 � 1)[(�4 � 1)v2H + l2H;2]
;

because l2H;1� l2H;2 = 1
n tr[(H

(t)
n )(s)Hn]� 1

n tr[(Hn�D(Hn))
(s)Hn] =

1
n tr[(D(Hn)�

tr(Hn)
n In)

(s)Hn] =

2v2H . As �4 > 1 and l
2
H;2 > 0, it follows that

1
n�B;n �

1
n�H1;n. Hence �̂B is e¢ cient relative to �̂H1.

When �4 6= 3, the percentage loss of asymptotic e¢ ciency of �̂H1 can be evaluated as

1� �H1;n
�B;n

=
(�4 � 3)2v2H l2H;2

[(�4 � 1)v2H + l2H;2] � [4v2H + (�4 � 1)l2H;2]
: (11)

Note that the variance is the inverse of the precision measure. So, 1 � �H1;n

�B;n
=

��1H1;n��
�1
B;n

��1H1;n

is also

the percentage of reduction in asymptotic variance of �̂B relative to �̂H1.

A subclass P2n of P1n consisting of Pjn�s with a zero diagonal is also interesting, as the cor-

responding GMME is robust against unknown heteroskedasticity (Lin and Lee, 2010) and distri-

butional assumptions. Lee (2001a) has shown the best selection of Pn from P2n is Hn � D(Hn).

Similarly, we can compare the e¢ ciency gain of �̂B relative to the GMME �̂H2 derived based on the

quadratic moment u0nR
0
n(�)(Hn �D(Hn))Rn(�)un. Following Lee (2001a), the limiting variance of

�̂H2 is �
�1
H2 = (limn!1

1
n�H2;n)

�1, where 1
n�H2;n =

1
n tr[(Hn � D(Hn))

(s)Hn] = l2H;2. It follows

that 1
n�B;n �

1
n�H2;n = l

2
H;1 � 2(

�4�3
�4�1

)v2H � l2H;2 = 4
�4�1

v2H , because l
2
H;1 � l2H;2 = 2v2H . As �4 > 1,

we have 1
n�B;n �

1
n�H2;n. The percentage loss of asymptotic e¢ ciency of �̂H2 can be evaluated as

1� �H2;n
�B;n

=
4v2H

4v2H + (�4 � 1)l2H;2
; (12)

which is also the percentage of reduction in asymptotic variance of �̂B relative to �̂H2. From this,

�̂B is more precise as it takes into account the variation of the diagonal elements of Hn.

C Joint GMM Estimation Approach

Here we consider the joint estimation of �20 and �0 in the GMM framework. Let � = (�0; �2)0. The

optimal GMMEs are derived from min� _g
0
n(�) _


�1
n _gn(�), where _
n = var( _gn(�0)) and

_gn(�) = (�
0
n(�) _Qn; �

0
n(�) _P1n�n(�)� �2tr( _P1n); � � � ; �0n(�) _Pmn�n(�)� �2tr( _Pmn))0;
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with _Qn being an arbitrary n � q matrix of IVs, and _Pjn�s being arbitrary n � n matrices, not

necessarily with zero traces. At �0, _gn(�0) = [�0n _Qn; �
0
n
_Pjn�n � �20tr( _Pjn)]0, which has a zero mean

because E( _Q0n�n) = _Q0nE(�n) = 0 and E(�
0
n
_P 0jn�n) = �

2
0tr(

_Pjn) for j = 1; � � � ;m. By comparing the

asymptotic variance matrix of the BGMME derived from the joint GMM estimation approach with

that of the BGMME in Proposition 1, we conclude that there is no e¢ ciency loss in the estimation

of �0 by concentrating �20 out.

For simplicity, we focus on the case that �Xn does not have a column proportional to ln so

that �X�
n = �Xn. When �Xn has a column proportional to ln, the result follows by similar argu-

ments. Let _P �1n =
�Gn � (�4�3)��23

(�4�1)��23
D( �Gn) � ��10 �3

(�4�1)��23
D( �Gn �Xn�0), _P

�
2n = Hn � (�4�3)��23

(�4�1)��23
D(Hn),

_P �3n = In, _P �j+3;n = D( �X�
nj) for j = 1; � � � ; k�, and _Q�n = ( _Q�1n;

_Q�2n;
_Q�3n;

_Q�4n), with _Q�1n =
�X�
n,

_Q�2n = ln, _Q�3n =
�4�1

(�4�1)��23
�Gn �Xn�0 �

2�0�3
(�4�1)��23

vecD( �Gn) and _Q�4n = vecD(Hn). Let _g�n(�) =

[�0n(�) _Q
�
n; �

0
n(�) _P

�
1n�n(�)� �2tr( _P �1n); � � � ; �0n(�) _P �k�+3;n�n(�)� �2tr( _P �k�+3;n)]0 and _
�n = var( _g�n(�0)).

�̂BJ = argmin� _g
�0
n (�)

_
��1n _g�n(�) is the BGMME within the class of optimal joint GMMEs as shown

below.

Analogous to the proof of Proposition 1, the BGMME can be con�rmed by showing that there

exists a matrix _An invariant with _Pjn�s and _Qn such that _D2 = _
21 _An, where

_D2 = E(
@

@�0
_gn(�0)) = �

266666664

0 Q0n �Gn �Xn�0 Q0n �Xn 0

�20tr(P
(s)
1n Hn) �20tr(P

(s)
1n
�Gn) 0 tr( _P1n)

...
...

...
...

�20tr(P
(s)
mnHn) �20tr(P

(s)
mn
�Gn) 0 tr( _Pmn)

377777775
;
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and

_
21 = E [ _gn(�0) _g
�0
n (�0)]

=

266666664

�20
_Q0n _Q

�
n �3 _Q

0
nvecD( _P

�
1n) � � � �3 _Q

0
nvecD( _P

�
k�+3;n)

�3vec
0
D(
_P1n) _Q

�
n �40tr(

_P
(s)
1n

_P �1n) � � � �40tr(
_P
(s)
1n

_P �k�+3;n)

...
...

. . .
...

�3vec
0
D(
_Pmn) _Q

�
n �40tr(

_P
(s)
mn

_P �1n) � � � �40tr(
_P
(s)
mn

_P �k�+3;n)

377777775

+(�4 � 3�40)

266666664

0 0 � � � 0

0 vec0D(
_P1n)vecD( _P

�
1n) � � � vec0D(

_P1n)vecD( _P
�
k�+3;n)

...
...

. . .
...

0 vec0D(
_Pmn)vecD( _P

�
1n) � � � vec0D(

_Pmn)vecD( _P
�
k�+3;n)

377777775
:

Let

_An = �

266666664

0 0 0 � 2��10 �3
(�4�1)��23

0 ��20 0 0

0 0 ��20 0 ��20 0 0 0

��20 (�4�1)
(�4�1)��23

Ik� 0 0 0 0 0 0 b0

0 � ��30 �3
(�4�1)��23

0 0 0 0
��40

(�4�1)��23
0

377777775

0

;

where b = (b01; � � � ; b0k�)0 with bl = � ��30 �3
(�4�1)��23

e0kl for l = 1; � � � ; k�. Straightforward but tedious

algebra leads to _D2 = _
21 _An. Furthermore, as _An is invariant with _Pjn�s and _Qn, _

�1
11
_D1 =

_
�121
_D2 = _An, where _
11 = var( _g�n(�0)) and _D1 = E(

@
@�0 _g

�
n(�0)). The asymptotic precision matrix

of �̂BJ is �BJ = limn!1
1
n
_D0
1
_An, where

_D0
1
_An =

266666664

tr( _P
�(s)
2n Hn) tr( _P

�(s)
1n Hn) � 2��10 �3

(�4�1)��23
vec0D(Hn)

�Xn
2��20

(�4�1)��23
tr(Hn)

� ��20 ( �Gn �Xn�0)
0 _Q�3n + tr(P

�(s)
1n

�Gn) ��20
_Q�03n

�Xn ��20 tr( _P �1n)

� � ��20 (�4�1)
(�4�1)��23

�X 0
n
�Xn � ��30 �3

(�4�1)��23
�X 0
nln

� � � n��40
(�4�1)��23

377777775
:

From the inverse of a partitioned matrix, we have Avar(�̂BJ) = (n�B)
�1, with �B given in (3).

Hence the e¢ ciency property of the BGMME of �0 is not a¤ected by concentrating �2 out in the

GMM estimation.
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D Some Useful Lemmas

In this appendix, we list some useful lemmas for the proofs of the results in the text. The central

limit theorem D.5 is in Kelejian and Prucha (2001). The other properties in Lemmas D.1-D.9 are

either trivial or can be found in Lee (2001a; 2004; 2007).

Lemma D.1 Suppose that z1n and z2n are n-dimensional column vectors of constants which are

uniformly bounded. If fAng is either UBR or UBC, then jz01nAnz2nj = O(n).

Lemma D.2 Suppose that �n1; � � � ; �nn are i.i.d. random variables with zero mean and �nite vari-

ance �2 and �nite fourth moment �4. Then, for any two n� n matrices An and Bn,

E(�0nAn�n � �0nBn�n) = (�4 � 3�4)vec0D(An)vecD(Bn) + �4
h
tr(An)tr(Bn) + tr(AnB

(s)
n )
i
;

where B(s)n = Bn +B
0
n.

Lemma D.3 Suppose that fAng is a sequence of n�n UB matrices, and �n1; � � � ; �nn are i.i.d. with

zero mean and �nite fourth moment. Then, E(�0nAn�n) = O(n), var(�0nAn�n) = O(n), �0nAn�n =

Op(n), and 1
n�
0
nAn�n � 1

nE(�
0
nAn�n) = op(1).

Lemma D.4 Suppose that fAng is a sequence of n�n UBC matrices, elements of the n�k matrix

Cn are uniformly bounded, and �n1; � � � ; �nn are i.i.d. with zero mean and �nite variance �2. Then,
1p
n
C 0nAn�n = Op(1) and

1
nC

0
nAn�n = op(1). Furthermore, if the limit of

1
nC

0
nAnA

0
nCn exists and is

positive de�nite, then 1p
n
C 0nAn�n

D! N(0; �2 limn!1
1
nC

0
nAnA

0
nCn).

Lemma D.5 Suppose that fAng is a sequence of symmetric n�n UB matrices and bn = (bn1; � � � ; bnn)0

is an n-dimensional vector such that supn
1
n

Pn
i=1 jbnij

2+�1 < 1 for some �1 > 0. �n1; � � � ; �nn are

i.i.d. with zero mean and �nite variance �2, and its moment E(j�nij4+2�) for some � > 0 exists. Let

�2Qn
be the variance of Qn where Qn = �0nAn�n + b

0
n�n � �2tr(An). Assume that the variance �2Qn

is bounded away from zero at the rate n. Then, Qn

�Qn

D! N(0; 1).

Lemma D.6 Suppose that 1
n (gn(�) � �gn(�)) ! 0 in probability uniformly in � 2 �, which is a

compact set, and limn!1
1
n �gn(�) = 0 has a unique root at �0 in �. The �̂n and �̂

�
n are, respectively,

the roots of gn(�) = 0 and g�n(�) = 0. If
1
n (g

�
n(�)� gn(�)) = op(1) uniformly in � 2 �, then both �̂n

and �̂
�
n converge in probability to �0.
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In addition, suppose that 1n
@gn(�)
@� converges in probability to a well de�ned nonzero limit function

uniformly in � 2 �, and 1p
n
gn(�0) = Op(1). If 1

n (
@g�n(�)
@� � @gn(�)

@� ) = op(1) uniformly in � 2 �,

and 1p
n
(g�n(�0)� gn(�0)) = op(1), then both

p
n(�̂n � �0) and

p
n(�̂

�
n � �0) have the same limiting

distribution.

Lemma D.7 Let �̂n and �̂
�
n be, respectively, the minimizers of zn(�) and z�n(�) in the compact set

�. Suppose that 1
n (zn(�) � �zn(�)) ! 0 in probability uniformly in � 2 �, and

�
1
n
�zn(�)

	
satis�es

the uniqueness identi�cation condition at �0. If 1n (z
�
n(�)�zn(�)) = op(1) uniformly in � 2 �, then

both �̂n and �̂
�
n converge in probability to �0.

In addition, suppose that 1
n
@2zn(�)
@�@�0 converges in probability to a well de�ned limiting matrix,

uniformly in � 2 �, which is nonsingular at �0, and 1p
n
@zn(�0)

@� = Op(1). If 1n (
@2z�

n(�)
@�@�0 � @2zn(�)

@�@�0 ) =

op(1) uniformly in � 2 � and 1p
n
(
@z�

n(�0)
@� � @zn(�0)

@� ) = op(1), then
p
n(�̂

�
n � �0) and

p
n(�̂n � �0)

have the same limiting distribution.

Lemma D.8 Under Assumption 2, the sequences of projectors fZng and fIn � Zng with Zn =

Xn(X
0
nXn)

�1X 0
n are UB.

Lemma D.9 Suppose that fjjWnjjg, fjjMnjjg, fjjS�1n jjg, and fjjR�1n jjg, where jj�jj is a matrix norm,

are bounded. Then fjjSn(�)�1jjg and fjjRn(�)�1jjg are uniformly bounded in a neighborhood of �0

and �0 respectively.

The following properties are speci�c to the model in this paper.

Lemma D.10 Suppose that z1n and z2n are n-dimensional column vectors of constants which are

uniformly bounded, the sequence of n � n constant matrices fAng is UBC, and fB1ng and fB2ng

are UB, and �n1; � � � ; �nn are i.i.d. with zero mean and �nite second moment.
p
n(�̂n��0) = Op(1)

where �0 is a p-dimensional vector in the interior of its convex parameter space. For notational

simplicity, denote (�̂n��0)<i> =
Pp

j1=1
� � �
Pp

ji=1
(�̂nj1��j10) � � � (�̂nji��ji0). The matrix Cn(�̂n)

has the expansion that

Cn(�̂n)� Cn(�0) =
Pm�1

i=1 (�̂n � �0)
<i>Kin(�0) + (�̂n � �0)<m>Kmn(�̂n); (13)

for some m � 2, where fCn(�0)g and fKin(�0)g are UB for i = 1; � � � ;m�1, and fKmn(�)g is UB

uniformly in a small neighborhood of �0. Then, for �1n = Cn(�̂n) � Cn(�0), (a) 1
nz

0
1n�1nz2n =
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op(1); (b) 1p
n
z01n�1nAn�n = op(1); (c)

1
n�
0
nB

0
1n�1nB2n�n = op(1), if (13) holds for m > 2; and (d)

1p
n
�0n�1n�n = op(1), if (13) holds for m > 3 with tr(Kin(�0)) = 0 for i = 1; � � � ;m� 1.

Furthermore, suppose another matrix Dn(
̂n) has the expansion that

Dn(
̂n)�Dn(
0) =
Pm�1

i=1 (
̂n � 
0)
<i>Lin(
0) + (
̂n � 
0)<m>Lmn(
̂n); (14)

for some m � 2, where all the components on the right hand side have the same properties of corre-

sponding ones in (13). Then, for �2n = (Cn(�̂n)�Cn(�0))(Dn(
̂n)�Dn(
0)), (a�) 1
nz

0
1n�2nz2n =

op(1); (b�) 1p
n
z01n�2nAn�n = op(1); (c�)

1
n�
0
nB

0
1n�2nB2n�n = op(1), if (13) and (14) hold for m > 2;

and (d�) 1p
n
�0n�2n�n = op(1), if (13) and (14) hold for m > 3 with tr(Kin(�0)Ljn(
0)) = 0 for

i; j = 1; � � � ;m� 1.

Proof. Let Tn = 1
nz

0
1n(Cn(�̂n)�Cn(�0))z2n. With (13), Tn = Tn1+Tn2, where Tn1 =

Pm�1
i=1 (�̂n�

�0)
<i> 1

nz
0
1nKin(�0)z2n and Tn2 = (�̂n��0)<m> 1

nz
0
1nKmn(�̂n)z2n. Tn1 = op(1) because 1nz

0
1nKin(�0)z2n =

O(1) by Lemma D.1, and �̂n � �0 = op(1). Similarly, as fKmn(�)g is UB uniformly in a small

neighborhood of �0, and �̂n � �0 = op(1), it follows that fKmn(�̂n)g is UB in probability. Hence
1
nz

0
1nKmn(�̂n)z2n = Op(1) by Lemma D.1, which implies Tn2 = op(1). This proves (a).

Similarly, let Un = 1p
n
z01n(Cn(�̂n) � Cn(�0))An�n. Then, with (13), Un = Un1 + Un2 where

Un1 =
Pm�1

i=1 (�̂n � �0)<i> 1p
n
z01nKin(�0)An�n = op(1), because 1p

n
z01nKin(�0)An�n = Op(1) by

Lemma D.4, and Un2 = (�̂n��0)<m> 1p
n
z01nKmn(�̂n)An�n. Let k�k1 be the maximum column sum

norm. Because the product of UBC matrices is UBC, jjKmn(�̂n)Anjj1 � c1 for some constant c1 for

all n. As elements of z1n are uniformly bounded, kz01nk1 � c2 for some constant c2. It follows that

jjUn2jj1 � n(1�m)=2jj
p
n(�̂n � �0)jjm1 � jjz01njj1 � jjKmn(�̂n)Anjj1 �

1

n
jj�njj1

� c1c2n
(1�m)=2jj

p
n(�̂n � �0)jjm1 � (

1

n

Pn
i=1 j�nij):

Hence Un2 = op(1) for m � 2 because
p
n(�̂n��0) = Op(1) and 1

n

Pn
i=1 j�nij = Op(1) by the strong

law of large numbers. These prove (b).

For (c), let Rn = 1
n�
0
nB

0
1n(Cn(�̂n) � Cn(�0))B2n�n. With (13), Rn = Rn1 + Rn2, where

Rn1 =
Pm�1

i=1 (�̂n��0)<i> 1
n�
0
nB

0
1nKin(�0)B2n�n = op(1) because 1

n�
0
nB

0
1nKin(�0)B2n�n = Op(1) by

25



Lemma D.3, and Rn2 = (�̂n � �0)<m> 1
n�
0
nB

0
1nKmn(�̂n)B2n�n. On the other hand,

jjRn2jj1 � n�m=2jj
p
n(�̂n � �0)jjm1 �

1

n
jj�njj1 � jj�njj1 � jjB01nKmn(�̂n)B2njj1

� cn1�m=2jj
p
n(�̂n � �0)jjm1 � (

1

n

Pn
i=1 j�nij)

2;

for some constant c. Hence Rn2 = op(1) for m > 2 because 1
n

Pn
i=1 j�nij converges in probability to

the absolute �rst moment of �ni and
p
n(�̂n � �0) = Op(1). These prove (c).

For (d), let Vn = 1p
n
�0n(Cn(�̂n) � Cn(�0))�n. Then, Vn = Vn1 + Vn2 where Vn1 =

Pm�1
i=1 (�̂n �

�0)
<i> 1p

n
�0nKin(�0)�n = op(1) because 1p

n
�0nKin(�0)�n = Op(1) by Lemma D.5, and Vn2 =

1p
n
(�̂n��0)<m>�0nKmn(�̂n)�n. The term Vn2 = op(1) form > 3 because jjVn2jj1 � cn(3�m)=2jj

p
n(�̂n�

�0)jjm1 �( 1n
Pn

i=1 j�nij)2. The desired results follow.

On the other hand, as

[
Pm�1

i=1 (�̂n � �0)
<i>Kin(�0) + (�̂n � �0)<m>Kmn(�̂n)][

Pm�1
j=1 (
̂n � 
0)

<j>Ljn(
0) + (
̂n � 
0)<m>Lmn(
̂n)]

=
Pm�1

i=1

Pm�1
j=1 (�̂n � �0)

<i>(
̂n � 
0)<j>Kin(�0)Ljn(
0) +
Pm�1

j=1 (
̂n � 
0)
<j>(�̂n � �0)<m>Kmn(�̂n)Ljn(
0)

+
Pm�1

i=1 (�̂n � �0)
<i>(
̂n � 
0)<m>Kin(�0)Lmn(
̂n) + (�̂n � �0)<m>(
̂n � 
0)<m>Kmn(�̂n)Lmn(
̂n);

(a�)-(d�) hold by the same argument as above applied toKin(�0)Ljn(
0), (�̂n��0)<m>Kmn(�̂n)Ljn(
0),

(
̂n � 
0)<m>Kin(�0)Lmn(
̂n), and (
̂n � 
0)<m>Kmn(�̂n)Lmn(
̂n).

Lemma D.11 Suppose that z1n and z2n are n-dimensional column vectors of constants which are

uniformly bounded, the sequence of n � n constant matrices fAng is UBC, fB1ng and fB2ng are

UB, and �n1; � � � ; �nn are i.i.d. with zero mean and �nite fourth moment.
p
n(�̂n � �0) = Op(1).

Let Cn be either Hn, �Gn, D( �Gn �Xn�0), or D( �X
�
nj) for j = 1; � � � ; k�, and let Ĉn be its empirical

counterpart. Then, under Assumption 3, for �n = Ĉn � Cn, we have (a) 1
nz

0
1n�

(l)
n z2n = op(1),

1p
n
z01n�

(l)
n An�n = op(1), 1

n�
0
nB

0
1n�

(l)
n B2n�n = op(1), 1p

n
�0n�

(t)
n �n = op(1); (b) 1

nvec
0
D(�

(l)
n )z2n =

op(1), 1p
n
vec0D(�

(l)
n )An�n = op(1), 1n tr(A

0
n�

(l)
n ) = op(1). In addition, if fDn(
)g is UB uniformly in

a small neighborhood of 
0 that is in the interior of its parameter space, then (c)
1
n tr[D

0
n(
̂n)�

(l)
n ] =

op(1), where 
̂n � 
0 = op(1).

Proof. As Sn�Sn(�̂n) = (�̂n��0)Wn, it follows that S�1n (�̂n)�S�1n = S�1n (�̂n)[Sn�Sn(�̂n)]S�1n =

S�1n (�̂n)(�̂n��0)Gn. By induction, S�1n (�̂n)�S�1n =
Pm�1

i=1 (�̂n��0)iS�1n Gin+(�̂n��0)mS�1n (�̂n)G
m
n
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for any m � 2. Hence, for Ĝn = Gn(�̂n), it follows that

(Ĝn �Gn)(l) =
Pm�1

i=1 (�̂n � �0)
i(Gi+1n )(l) + (�̂n � �0)m(ĜnGmn )(l); (15)

which conforms to the expansion (13) with Kin(�0) = (G
i+1
n )(l) and Kmn(�̂n) = (ĜnG

m
n )

(l). Anal-

ogously, for R̂n = Rn(�̂n), we have,

R̂�1n �R�1n =
Pm�1

i=1 (�̂n � �0)
iR�1n Hi

n + (�̂n � �0)mR̂�1n Hm
n ; (16)

for any m � 2, which implies that

(Ĥn �Hn)(l) =
Pm�1

i=1 (�̂n � �0)
i(Hi+1

n )(l) + (�̂n � �0)m(ĤnHm
n )

(l); (17)

where Ĥn = Hn(�̂n). (17) conforms to the expansion (13) with Kin(�0) = (H
i+1
n )(l) and Kmn(�̂n) =

(ĤnH
m
n )

(l). Note that when the transformation �(t) is taken, the deterministic parts of the expansion

Kin(�0) = (Hi+1
n )(t) have a zero trace by construction. Hence, when Cn = Hn, (a) follows from

Lemma D.10, where the uniform boundedness in a neighborhood of the true parameters of the

relevant matrices in the remainder terms follow from D.9.

As �Gn = RnGnR�1n , we have R̂nĜnR̂�1n �RnGnR�1n = (R̂n�Rn)ĜnR̂�1n +Rn(Ĝn�Gn)(R̂�1n �

R�1n ) + RnGn(R̂
�1
n � R�1n ) + Rn(Ĝn � Gn)R�1n , where (R̂n � Rn)ĜnR̂�1n = (�0 � �̂n)MnĜnR̂

�1
n .

Ĝn � Gn and R̂�1n � R�1n can be expanded to the form of (13) by (15) and (16). Hence, it follows

by the same argument as above that (a) holds when Cn = �Gn.

As �Gn �Xn�0 = RnGnXn�0, we have D(R̂nĜnXn�̂n) � D(RnGnXn�0) = D[R̂nĜnXn(�̂n �

�0)] � (�̂n � �0)D(MnĜnXn�0) + D[Rn(Ĝn � Gn)Xn�0]. Let ekj be the jth unit vector in Rk,

then 1
nz

0
1nD

0[R̂nĜnXn(�̂n � �0)]z2n = 1
n

Pn
i=1 z1n;iz2n;ie

0
niR̂nĜnXn(�̂n � �0) = op(1), because

1
n

Pn
i=1 z1n;iz2n;ie

0
niR̂nĜnXn = Op(1) and �̂n � �0 = op(1). On the other hand, 1nz

0
1nD[Rn(Ĝn �

Gn)Xn�0]z2n = op(1) by Lemma D.10. Hence,
1
nz

0
1n[D(R̂nĜnXn�̂n)�D(RnGnXn�0)]z2n = op(1).

With similar arguments and corresponding results in Lemma D.10, the other results in (a) follow

when Cn = D( �Gn �Xn�0).

As �X�
nj = RnX

�
nj , D(R̂nX

�
nj) � D(RnX�

nj) = �(�̂n � �0)D(MnX
�
nj). Because

p
n(�̂n � �0) =

Op(1), the 4 claims in (a) hold for Cn = D( �X�
nj) by Lemmas D.1, D.4, D.3, and D.5 respectively.
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For (b), as vec0D(�
(l)
n ) = l0nD(�

(l)
n ), 1

nvec
0
D(�

(l)
n )z2n = op(1) and 1p

n
vec0D(�

(l)
n )An�n = op(1)

follow by similar arguments in the proof of (a) via Lemma D.10. To prove 1
n tr(A

0
n�

(l)
n ) = op(1), �rst

consider the case when Cn = Hn. As in the proof of (a), for m = 2, Ĉn�Cn = (�̂n��0)K1n(�0)+

(�̂n��0)2K2n(�̂n). Hence, 1n tr(A
0
n�

(l)
n ) = (�̂n��0) 1n tr[A

0
nK

(l)
1n(�0)]+(�̂n��0)2 1n tr[A

0
nK

(l)
2n(�̂n)] =

op(1), because 1
n tr[A

0
nK

(l)
1n(�0)] = O(1), 1

n tr[A
0
nK

(l)
2n(�̂n)] = Op(1), and �̂n � �0 = op(1). When

Cn = �Gn, 1
n tr(A

0
n�

(l)
n ) = op(1) follows similar arguments. When Cn = D( �Gn �Xn�0), we have

1
n tr(A

0
n�

(l)
n ) =

1
nvec

0
D(An)[R̂nĜnXn(�̂n��0)�(�̂n��0)MnĜnXn�0+Rn(Ĝn�Gn)Xn�0] = op(1).

When Cn = D( �X�
nj), we have

1
n tr(A

0
n�

(l)
n ) = �(�̂n � �0) 1n tr[A

0
nD(MnX

�
nj)] = op(1).

For (c), As fDn(
)g is UB uniformly in a small neighborhood of 
0, and 
̂n � 
0 = op(1), it

follows that fDn(
̂n)g is UB in probability. The remaining arguments will be similar to those of the

part 2 of (b).

Lemma D.12 Suppose that zn is an n-dimensional column vector of constants which are uniformly

bounded, and fAng is UBC.
p
n(�̂n � �0) = Op(1). Let Tn be either �Xn, �Gn �Xn�0, vecD(H

(t)
n ) or

vecD( �G
(t)
n ), with T̂n being its estimated counterparts. Then, under Assumptions 1-3, we have (a)

1
n (T̂n � Tn)

0zn = op(1), 1p
n
(T̂n � Tn)0An�n = op(1). Furthermore, let Dn(
̂n) be a stochastic matrix

that can be expanded to the form of (14) for some m > 2. Then, (b) 1
n (T̂n � Tn)

0Dn(
̂n) = op(1).

Proof. (a) holds by Lemma D.11 (b).

For (b), we shall illustrate the proof for the case that Tn = �Gn �Xn�0 as the others are similar.

Let D̂n = Dn(
̂n). We have
1
n (T̂n � Tn)

0D̂n =
1
n [Rn(Ĝn �Gn)Xn�0]

0D̂n +
1
n [R̂nĜnXn(�̂n � �0)�

(�̂n � �0)MnĜnXn�0]
0D̂n. First, 1n [Rn(Ĝn �Gn)Xn�0]

0D̂n =
1
n [Rn(Ĝn �Gn)Xn�0]

0(D̂n �Dn) +
1
n [Rn(Ĝn � Gn)Xn�0]

0Dn = op(1) by Lemma D.10. The remaining term is also op(1) because

�̂n � �0 = op(1), �̂n � �0 = op(1), and 1
n (MnĜnXn�0)

0D̂n = Op(1), 1
n (R̂nĜnXn)

0D̂n = Op(1).

Hence, the desired result follows.

To show the proposed moment conditions are optimal, we show adding additional moment con-

ditions to the optimal moment conditions does not increase the asymptotic e¢ ciency of the GMME

using the conditions for redundancy in Breusch et al. (1999). The de�nition of redundancy is given

as follows. �Let �̂ be the optimal GMME based on a set of (unconditional) moment conditions

E [g1(y; �)] = 0. Now add some extra moment conditions E [g2(y; �)] = 0 and let ~� be the opti-

mal GMME based on the whole set of moment conditions E [g(y; �)] � E [g01(y; �); g
0
2(y; �)]

0
= 0.

We say that the moment conditions E [g2(y; �)] = 0 are redundant given the moment conditions
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E [g1(y; �)] = 0, or simply that g2 is redundant given g1, if the asymptotic variances of �̂ and ~� are the

same�(Breusch et al., 1999, p. 90). For moment conditions E [g(y; �)] � E [g01(y; �); g02(y; �)]
0
= 0,

let 
 � E [g(y; �)g0(y; �)] =

264 
11 
12


21 
22

375, with 
jl = E [gj(y; �)g0l(y; �)] for j; l = 1; 2. And de�ne
Dj = E

�
@gj(y; �)=@�

0� for j = 1; 2. Let the dimensions of g1(y; �), g2(y; �) and � be k1, k2 and p.
Lemma D.13 The following statements are equivalent. (a) g2 is redundant given g1; (b) D2 =


21

�1
11 D1; and (c) there exists a k1 � k� matrix A such that D1 = 
11A and D2 = 
21A.

Lemma D.14 Let the set of moment conditions to be considered be E [g(�)] � E [g01(�); g02(�); g03(�)]
0
=

0, or simply g = (g01; g
0
2; g

0
3)
0. Then (g02; g

0
3)
0 is redundant given g1 if and only if g2 is redundant given

g1 and g3 is redundant given g1.

E Proofs

Proof of Proposition 1. Consider the moment conditions E[g�0n (�0); g
0
n(�0)]

0 = 0, where gn(�)

is a vector of arbitrary moment functions taken the form of (2). To show the desired results, it is

su¢ cient to show that gn is redundant given g�n, or equivalently that there exists an An invariant

with Pjn (j = 1; � � � ;m) and Qn st. D2 = 
21An according to Lemma D.13 (c), where

D2 = E(
@

@�0
gn(�0)) = �

266666664

0q�1 Q0n �Gn �Xn�0 Q0n �Xn

�20tr(P
(s)
1n Hn) �20tr(P

(s)
1n
�Gn) 01�k

...
...

...

�20tr(P
(s)
mnHn) �20tr(P

(s)
mn
�Gn) 01�k

377777775
;

29



and


21 = E(gn(�0)g
�0
n (�0)) (18)

=

266666664

�20Q
0
nQ

�
n �3Q

0
nvecD(P

�
1n) � � � �3Q

0
nvecD(P

�
k�+5;n)

�3vec
0
D(P1n)Q

�
n �40tr(P

(s)
1n P

�
1n) � � � �40tr(P

(s)
1n P

�
k�+5;n)

...
...

. . .
...

�3vec
0
D(Pmn)Q

�
n �40tr(P

(s)
mnP �1n) � � � �40tr(P

(s)
mnP �k�+5;n)

377777775

+(�4 � 3�40)

266666664

0q�(k�+4) 0q�(k�+5)

01�(k�+4) vec0D(P1n)(vecD(P
�
1n); � � � ; vecD(P �k�+5;n))

...
...

01�(k�+4) vec0D(Pmn)(vecD(P
�
1n); � � � ; vecD(P �k�+5;n))

377777775
:

In the case that �Xn does not have a column proportional to ln so that �X�
n = �Xn, let P ��n =

P �1n �
(�4�3)��23
(�4�1)��23

P �2n �
��10 �3

(�4�1)��23
P �3n, P

�
�n = P �4n �

(�4�3)��23
(�4�1)��23

P �5n, P
�
�nl = P �l+5;n for l = 1; � � � ; k�,

Q��n =
�4�1

(�4�1)��23
Q�1n�

�23
(�4�1)��23

Q�3n(
1
n l
0
n
�X�
n), Q

�
�n =

�4�1
(�4�1)��23

Q�2n�
�23

(�4�1)��23
Q�3n(

1
n l
0
n
�Gn �Xn�0)�

2�0�3
(�4�1)��23

Q�4n and Q
�
�n = Q�5n. Note that (P ��n; P

�
�n; P

�
�n1; � � � ; P ��nk�) = (P �1n; � � � ; P �k�+5;n)�P

where

�0P =

266664
In � (�4�3)��23

(�4�1)��23
In � ��10 �3

(�4�1)��23
In 0 0 0

0 0 0 In � (�4�3)��23
(�4�1)��23

In 0

0 0 0 0 0 Ink�

377775 ;
and (Q��n; Q

�
�n; Q

�
�n) = (Q

�
1n; � � � ; Q�5n)�Q1 where

�0Q1 =

266664
�4�1

(�4�1)��23
Ik� 0 � �23

(�4�1)��23
( 1n l

0
n
�X�
n)
0 0 0

0 �4�1
(�4�1)��23

� �23
(�4�1)��23

( 1n l
0
n
�Gn �Xn�0) � 2�0�3

(�4�1)��23
0

0 0 0 0 1

377775 :

On the other hand, in the case that �Xn�s last column is given by c(�0)ln, letQ
�
�n =

�4�1
(�4�1)��23

Q�1n(Ik� ; 0k��1)+

�4�1
(�4�1)��23

c(�0)Q
�
3ne

0
kk �

�23
(�4�1)��23

Q�3n(
1
n l
0
n
�Xn), where ekj is the jth unit vector in Rk, so that
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(Q��n; Q
�
�n; Q

�
�n) = (Q

�
1n; � � � ; Q�5n)�Q1 where

�0Q2 =

266664
�4�1

(�4�1)��23
(Ik� ; 0k��1) 0 �4�1

(�4�1)��23
c(�0)ekk �

�23
(�4�1)��23

( 1n l
0
n
�Xn)

0 0 0

0 �4�1
(�4�1)��23

� �23
(�4�1)��23

( 1n l
0
n
�Gn �Xn�0) � 2�0�3

(�4�1)��23
0

0 0 0 0 1

377775 :

Let

B0n = �

266664
0 0 � 2��10 �3

(�4�1)��23
0 ��20 0

0 ��20 0 ��20 0 0

��20 Ik 0 0 0 0 b0

377775 :

where b = (b01; � � � ; b0k�)0 with bl = � ��30 �3
(�4�1)��23

e0kl for l = 1; � � � ; k�. Let An =

264 �Q1 0

0 �p

375Bn
when �Xn does not have a column proportional to ln, and An =

264 �Q2 0

0 �p

375Bn when �Xn�s

last column is c(�0)ln. Let Jn = In � 1
n lnl

0
n. To check D2 = 
21An, the following identities

are helpful. For l = 1; � � � ; k�, (a) vecD(P ��n) = 2
(�4�1)��23

vecD( �G
(t)
n )� ��10 �3

(�4�1)��23
Jn �Gn �Xn�0; (b)

vecD(P
�
�n) =

2
(�4�1)��23

vecD(H
(t)
n ); (c) vecD(P ��nl) = Jn �X

�
nl; and (d)

Pk�

l=1 vecD(P
�
�nl)e

0
kl = Jn

�Xn.

It follows from (a), (b) and (d), respectively, to have that (e) �20Q
�
�n+�3vecD(P

�
�n) = �

2
0
�Gn �Xn�0;

(f) 2
(�4�1)��23

Q��n = vecD(P
�
�n), and (g) Q

�
�n �

�23
(�4�1)��23

Pk�

l=1 vecD(P
�
�nl)e

0
kl =

�Xn.

For an arbitrary n�nmatrix Pn with tr(Pn) = 0, we have: (h) vec0D(Pn)Q��n =
�4�1

(�4�1)��23
vec0D(Pn)

�Xn;

(i) �3vec
0
D(Pn)Q

�
�n+�

4
0tr(P

(s)
n P ��n)+(�4�3�40)vec0D(Pn)vecD(P ��n) = �40tr(P

(s)
n
�Gn); (j)� 2��10 �23

(�4�1)��23
vec0D(Pn)Q

�
�n+

�40tr(P
(s)
n P ��n) + (�4 � 3�40)vec0D(Pn)vecD(P ��n) = �40tr(P

(s)
n Hn); and (k) �40tr(P

(s)
n P ��nl) + (�4 �

3�40)vec
0
D(Pn)vecD(P

�
�nl) = (�4 � �40)vec0D(Pn)vecD(P ��nl).

It follows from identity (f) the (1; 1) block of 
21An is 0; from (e) that the (1; 2) block of 
21An

is �Q0n �Gn �Xn�0; and from (g) that the (1; 3) block of 
21An is �Q0n �Xn. Identity (j) implies that

the (j + 1; 1) blocks of 
21An are ��20tr(P
(s)
jn Hn) for j = 1; � � � ;m; (i) implies that the (j + 1; 2)

blocks of 
21An are ��20tr(P
(s)
jn
�Gn) for j = 1; � � � ;m; and (d), (h) and (k) imply that the remaining

blocks of 
21An are zeros. Therefore, 
21An = D2 and the desired result follows.

Furthermore, as g�n(�) is a special case of gn(�), and An is invariant with Pn�s and Qn, D1 =


11An, and hence 

�1
11 D1 = An, where 
11 = var(g�n(�0)) and D1 = E( @@�g

�
n(�0)). Hence �B =

limn!1
1
nD

0
1


�1
11 D1 = limn!1

1
nD

0
1An. Some tedious but straightforward algebra gives the explicit
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form of �B in (3).

Proof of Proposition 2. We shall show that the objective functions z�n(�) = ĝ�0n (�)
̂
��1
n ĝ�n(�)

and zn(�) = g�0n (�)
��1n g�n(�) will satisfy the conditions in Lemma D.7. If so, the GMME from the

minimization of z�n(�) will have the same limiting distribution as that of the minimization of zn(�).

The di¤erence of z�n(�) and zn(�) and its derivatives involve the di¤erence of ĝ�n(�) and g�n(�) and

their derivatives. Furthermore, one has to consider the di¤erence of 
̂�n and 

�
n.

First, consider 1
n (ĝ

�
n(�)� g�n(�)). Let m� = k� + 5. Explicitly,

1

n
(ĝ�n(�)� g�n(�))0 = [

1

n
(Q̂�n �Q�n)0;

1

n
�0n(�)(P̂

�
1n � P �1n); � � � ;

1

n
�0n(�)(P̂

�
m�n � P �m�n)]�n(�):

The �n(�) is related to �n as �n(�) = (In + (�0 � �)Hn)(In + (�0 � �) �Gn)�n + dn(�) where dn(�) =

(In + (�0 � �)Hn)[(�0 � �) �Gn �Xn�0 + �Xn(�0 � �)]. It follows that 1
n (Q̂

�
n � Q�n)0�n(�) = 1

n (Q̂
�
n �

Q�n)
0(In+(�0��)Hn)(In+(�0��) �Gn)�n+ 1

n (Q̂
�
n�Q�n)0dn(�) = op(1) uniformly in � 2 � by Lemma

D.12. Similarly, it follows by Lemma D.11 that 1
n�
0
n(�)(P̂

�
jn � P �jn)�n(�) = op(1) uniformly in � 2 �

for j = 1; � � � ;m�. Hence, 1n (ĝ
�
n(�)� g�n(�)) = op(1) uniformly in � 2 �.

Consider the derivatives of ĝ�n(�) and g
�
n(�):

@g�n(�)

@�0
=

266666664

Q�0n
@�n(�)
@�0

�0n(�)P
�(s)
1n

@�n(�)
@�0

...

�0n(�)P
�(s)
m�n

@�n(�)
@�0

377777775
; and

@2g�n(�)

@�@�0
=

266666664

Q�0n
@2�n(�)
@�@�0

@�0n(�)
@� P

�(s)
1n

@�n(�)
@�0 + �0n(�)P

�(s)
1n

@2�n(�)
@�@�0

...

@�0n(�)
@� P

�(s)
m�n

@�n(�)
@�0 + �0n(�)P

�(s)
m�n

@2�n(�)
@�@�0

377777775
:

@�n(�)
@�0 = �[Mn(In � �Wn)Yn �MnXn�;Rn(�)WnYn; Rn(�)Xn] where Yn = S�1n Xn�0 + S

�1
n R�1n �n.

@2�n(�)
@�@�0 = [0;MnWnYn;MnXn],

@2�n(�)
@�@�0 = [MnWnYn; 0; 0], and

@2�n(�)
@�@�0 = [MnXn; 0; 0]. It follows

from Lemmas D.11 and D.12 that 1
n (

@ĝ�n(�)
@� � @g�n(�)

@� ) = op(1) and 1
n (

@2ĝ�n(�)
@�@�0 � @2g�n(�)

@�@�0 ) = op(1)

uniformly in � 2 �.

Consider 1
n (
̂

�
n � 
�n), where


�n = E [g
�
n(�0)g

�0
n (�0)] =

264 �20Q
�0
nQ

�
n �3Q

�0
n !

�
m�n

�3!
�0
m�nQ

�
n �40�

�
m�n + (�4 � 3�40)!�0m�n!

�
m�n

375 ;
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with !�m�n = [vecD(P
�
1n); � � � ; vecD(P �k�+2;n)] and ��m� =

266664
tr(P

�(s)
1n P �1n) � � � tr(P

�(s)
1n P �m�n)

...
. . .

...

tr(P
�(s)
m�nP

�
1n) � � � tr(P

�(s)
m�nP

�
m�n)

377775.
First, consider the block matrix �40�

�
m�n+(�4� 3�40)!�0m�n!

�
m�n. As fP̂ �jng is UBC in probability, it

follows from Lemma D.11 that 1n tr(P̂
�(s)
in P̂ �jn)� 1

n tr(P
�(s)
in P �jn) =

1
n tr[(P̂

�(s)
in �P �(s)in )P̂ �jn+P

�(s)
in (P̂ �jn�

P �jn)] = op(1), and
1
nvec

0
D(P̂

�
in)vecD(P̂

�
jn)� 1

nvec
0
D(P

�
in)vecD(P

�
jn) =

1
nvec

0
D(P̂

�
in)vecD(P̂

�
jn � P �jn) +

1
nvec

0
D(P̂

�
in�P �in)vecD(P �jn) = op(1) for i; j = 1; � � � ;m�. Hence, 1n (�̂

2
n)
2tr(P̂

�(s)
in P̂ �jn)� 1

n�
4
0tr(P

�(s)
in P �jn) =

op(1) and 1
n (�̂4 � 3(�̂

2
n)
2)vec0D(P̂

�
in)vecD(P̂

�
jn)� 1

n (�4 � 3�
4
0)vec

0
D(P

�
in)vecD(P

�
jn) = op(1) for i; j =

1; � � � ;m�, as �̂2n � �20 = op(1) and �̂4 � �4 = op(1).

Next consider �3Q
�0
n !

�
m�n. As elements of Q̂

�
n are uniformly bounded in probability for all n, it

follows from Lemmas D.11 and D.12 that 1n Q̂
�0
n vecD(P̂

�
jn)� 1

nQ
�0
n vecD(P

�
jn) =

1
n Q̂

�0
n vecD(P̂

�
jn�P �jn)+

1
n (Q̂

�
n �Q�n)0vecD(P �jn) = op(1) for j = 1; � � � ;m�. Hence, 1n �̂3Q̂

�0
n vecD(P̂

�
jn)� 1

n�3Q
�0
n vecD(P

�
jn) =

op(1) for j = 1; � � � ;m�, as �̂3 � �3 = op(1).

Lastly, consider �20Q
�0
nQ

�
n. As elements of Q̂

�
n are uniformly bounded in probability for all n,

Lemma D.12 implies that 1
n (Q̂

�0
inQ̂

�
jn�Q�0inQ�jn) = 1

n [Q̂
�0
in(Q̂

�
jn�Q�jn)+ (Q̂�in�Q�in)0Q�jn] = op(1) for

i; j = 1; � � � ; 5. Therefore, 1n (�̂
2
nQ̂

�0
n Q̂

�
n � �20Q�0nQ�n) = �̂2n 1n (Q̂

�0
n Q̂

�
n �Q�0nQ�n) + (�̂2n � �20) 1nQ

�0
nQ

�
n =

op(1). In conclusion, 1n 
̂
�
n � 1

n

�
n = op(1). As the limit of

1
n


�
n exists and is a nonsingular matrix,

( 1n 
̂
�
n)
�1 � ( 1n


�
n)
�1 = op(1) by the continuous mapping theorem.

Furthermore, because 1
n (ĝ

�
n(�) � g�n(�)) = op(1), and 1

n [g
�
n(�) � E(g�n(�))] = op(1) uniformly in

� 2 �, and sup�2� 1
n jE(g

�
n(�))j = O(1) (Lee, 2007, p. 21), 1ng

�
n(�) and

1
n ĝ

�
n(�) are Op(1) uniformly

in � 2 �. Similarly, 1n
@g�n(�)
@� , 1n

@ĝ�n(�)
@� , 1n

@2g�n(�)
@�@� and 1

n
@2ĝ�n(�)
@�@� are Op(1) uniformly in � 2 �.

With the uniform convergence in probability and uniformly stochastic boundedness proper-

ties, the di¤erence of z�n(�) and zn(�) can be investigated. By expansion, 1
n (z

�
n(�) � zn(�)) =

1
n ĝ

�0
n (�)
̂

��1
n (ĝ�n(�)�g�n(�))+ 1

ng
�0
n (�)(
̂

��1
n �
��1n )ĝ�n(�)+

1
ng

�0
n (�)


��1
n (ĝ�n(�)�g�n(�)) = op(1), uni-

formly in � 2 �. Similarly, for each component �l of �, 1n
@2z�

n(�)
@�l@�0

� 1
n
@2zn(�)
@�l@�0

= 2
n [
@ĝ�0n (�)
@�l


̂��1n
@ĝ�n(�)
@�0 +

ĝ�0n (�)
̂
��1
n

@2ĝ�n(�)
@�l@�0

� (@g
�0
n (�)
@�l


��1n
@g�n(�)
@�0 + g�0n (�)


��1
n

@2g�n(�)
@�l@�0

)] = op(1).

Finally, because (@ĝ
�0
n (�0)
@� 
̂��1n � @g�0n (�0)

@� 
��1n ) = op(1) as above, and 1p
n
g�n(�0) = Op(1) by the
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central limit theorems in Lemmas D.4 and D.5,

1p
n
(
@z�n(�0)
@�

� @zn(�0)
@�

)

= 2f@ĝ
�0
n (�0)

@�

̂��1n

1p
n
(ĝ�n(�0)� g�n(�0)) + (

@ĝ�0n (�0)

@�

̂��1n � @g

�0
n (�0)

@�

��1n )

1p
n
g�n(�0)g

= 2
@ĝ�0n (�0)

@�

̂��1n

1p
n
(ĝ�n(�0)� g�n(�0)) + op(1):

As 1p
n
(ĝ�n(�0) � g�n(�0)) = op(1) by Lemmas D.11 and D.12, 1p

n
(
@z�

n(�0)
@� � @zn(�0)

@� ) = op(1). The

desired result follows from Lemma D.7.

Proof of Corollary 3. Let P y�n = P
y
1n �

(�4�3)��23
(�4�1)��23

P y2n, and P
y
�nj = P

y
j+2;n for j = 1; � � � ; k�. Let

Qy�n =
�4�1

(�4�1)��23
�Xn � �23

(�4�1)��23
Qy2n(

1
n l
0
n
�Xn) and Qy�n = Qy3n. Note that P

y
�n and Q

y
�n are linear

combinations of P y1n, P
y
2n and Q

y
n. Hence, it is su¢ cient to show that the optimal GMME with

�gy�n(�; �) = (Q
y
�n; Q

y
�n; P

y
�n��n(�; �); P

y
�n1��n(�; �); � � � ; P

y
�nk���n(�; �))

0��n(�; �) is the most e¢ cient

within M�n. Similar to the proof of Proposition 1, it is su¢ cient to show that there exists an An

invariant with Pjn (j = 1; � � � ;m) and Qn st. D2 = 
21An, where

D2 = [E(
@

@�
g�n); E(

@

@�0
g�n)]j�0;�0 = �

264 0 �20tr(P
(s)
1n Hn) � � � �20tr(P

(s)
mnHn)

�X 0
nQn 0 � � � 0

375
0

;

and 
21 = E(g�n�gy0�n)j�0;�0 in the form of (18). Let

An = �

264 0 ��20 � 2��10 �3
(�4�1)��23

0

��20 Ik 0 0 b0

375
0

;

where b = (b01; � � � ; b0k�)0 with bl = �
��30 �3

(�4�1)��23
e0kl for l = 1; � � � ; k�. With some simpli�ed identities

of those in the proof of Proposition 1, we have 
21An = D2.

Furthermore, as �gy�n is a special case of g�n, 

�1
11 D1 = An, where 
11 = var(�gy�n) and D1 =

[E( @@� �g
y
�n); E(

@
@�0 �g

y
�n)]j�0;�0 . Hence, the desired result follows by �B� = limn!1

1
nD

0
1An.

Proof of Corollary 4. Let P ?�n = P ?1n �
(�4�3)��23
(�4�1)��23

P ?2n �
��10 �3

(�4�1)��23
P ?3n, and P

?
�nj = P ?j+3;n

for j = 1; � � � ; k�. Let Q?�n =
�4�1

(�4�1)��23
Xn � �23

(�4�1)��23
Q?3n(

1
n l
0
nXn) and Q

?
�n =

�4�1
(�4�1)��23

Q?2n �
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�23
(�4�1)��23

Q?3n(
1
n l
0
nGnXn�0)�

2�0�3
(�4�1)��23

Q?4n. It is su¢ cient to show that the optimal GMME with

�g?�n(�; �) = (Q
?
�n; Q

?
�n; P

?
�n��n(�; �); P

?
�n1��n(�; �); � � � ; P ?�nk���n(�; �))0��n(�; �)

is the most e¢ cient withinM�n. For

D2 = [E(
@

@�
g�n); E(

@

@�0
g�n)]j�0;�0 = �

264 (GnXn�0)
0Qn �20tr(P

(s)
1n Gn) � � � �20tr(P

(s)
mnGn)

X 0
nQn 0 � � � 0

375
0

;

and 
21 = E(g�n�g?0�n)j�0;�0 in the form of (18), the desirable invariant matrix is

An = �

264 0 ��20 ��20 0

��20 Ik 0 0 b0

375
0

;

where b = (b01; � � � ; b0k�)0 with bl = �
��30 �3

(�4�1)��23
e0kl for l = 1; � � � ; k�. With some simpli�ed identities

of those in the proof of Proposition 1, we have 
21An = D2. Finally, �B� = limn!1
1
nD

0
1An, with

D1 = [E(
@
@� �g

?
�n); E(

@
@�0 �g

?
�n)]j�0;�0 .

Proof of Proposition 5. We shall derive the best moment function P �n analytically. With m

quadratic moments in gn(�), var(gn(�0)) = �40
n, where 
n = (�4 � 3)!0m!m + Vn, with !m =

[vecD(P1n); � � � ; vecD(Pmn)] and

Vn =
1

2
(vec(P

(s)
1n ); � � � ; vec(P (s)mn))

0(vec(P
(s)
1n ); � � � ; vec(P (s)mn))

=

266664
tr(P

(s)
1n P1n) � � � tr(P

(s)
1n Pmn)

...
. . .

...

tr(P
(s)
mnP1n) � � � tr(P

(s)
mnPmn)

377775 : (19)

The two terms in 
n can be combined into a uni�ed one as follows. First, because

tr(P
(s)
jn Pln)� vec(Pjn �D(Pjn))(s)vec(Pjn �D(Pjn))

= tr(P
(s)
jn Pln)� tr[(Pjn �D(Pjn))(s)(Pjn �D(Pjn))] = tr(P

(s)
jn Pln)� tr[(Pjn �D(Pjn))(s)Pln]

= 2tr[D(Pjn)Pln] = 2tr[D(Pjn)D(Pln)] = 2vec
0
D(Pjn)vecD(Pln);
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for any j and l, we have

266664
tr(P

(s)
1n P1n) � � � tr(P

(s)
1n Pmn)

...
. . .

...

tr(P
(s)
mnP1n) � � � tr(P

(s)
mnPmn)

377775� 2!0m!m = 1

2
$0
m$m;

where$m = [vec(P1n�D(P1n))(s); � � � ; vec(Pmn�D(Pmn))(s)]. Therefore, 
n = 1
2 [2(�4 � 1)!

0
m!m +$

0
m$m].

De�ne the modi�ed matrices P+jn = Pjn �D(Pjn) +
q

�4�1
2 D(Pjn) for j = 1; � � � ;m. As

vec0(P
+(s)
jn )vec(P

+(s)
kn ) = tr(P

+(s)
jn P

+(s)
kn )

= trf[P (s)jn �D(P
(s)
jn )][P

(s)
kn �D(P

(s)
kn )]g+ 2(�4 � 1)tr[D(Pjn)D(Pkn)]

= vec0[(Pjn �D(Pjn))(s)]vec[(Pkn �D(Pkn))(s)] + 2(�4 � 1)vec0D(Pjn)vecD(Pkn);

it follows that 
n = 1
2 (vec(P

+(s)
1n ); � � � ; vec(P+(s)kn ))0(vec(P

+(s)
1n ); � � � ; vec(P+(s)mn )).

Consider now tr(P (s)jn Hn) = tr(P
(s)
jn H

(t)
n ). We would like to �nd a matrixAn such that tr(P

(s)
jn H

(t)
n ) =

tr(P
+(s)
jn (H

(t)
n + An)) holds for all j. By taking An to be a diagonal matrix, the solution is

An = (
q

2
�4�1

� 1)D(H(t)
n ), which is invariant with any Pjn. Denote H�

n = H
(t)
n + An = H

(t)
n +

(
q

2
�4�1

� 1)D(H(t)
n ), which has zero trace. Therefore, tr(P

(s)
jn Hn) = tr(P

+(s)
jn H�

n ).

Following Lee (2001a), the limit variance of the GMME with Pjn, j = 1; � � � ;m, is ��1P =

(limn!1
1
n�P;n)

�1, where �P;n = (tr(P
(s)
1n Hn); � � � ; tr(P

(s)
mnHn))


�1
n (tr(P

(s)
1n Hn); � � � ; tr(P

(s)
mnHn))

0.

With the above manipulation, �P;n can be rewritten as �P;n = 1
2vec

0(H
�(s)
n )~!m(~!

0
m~!m)

�1~!0mvec(H
�(s)
n )

with ~!m = [vec(P
+(s)
1n ); � � � ; vec(P+(s)mn )].

By the generalized Schwarz inequality, �P;n � 1
2vec

0(H
�(s)
n )vec(H

�(s)
n ), which provides a bound

for the precision matrix �P;n for any GMME with a �nite number of quadratic moments. This

bound can be obtained with a corresponding optimum P+�n = H
(t)
n + (

q
2

�4�1
� 1)D(H(t)

n ). With

P+n transformed back to the Pn, the best P �n is P
�
n = P+�n � D(P+�n ) +

q
2

�4�1
D(P+�n ) = H

(t)
n �

�4�3
�4�1

D(H
(t)
n ):

Furthermore, as �B = limn!1
1
nD

�0
n 


��1
n D�

n (Lee, 2001a), where 

�
n = var(g

�
n(�0)) = �

4
0tr(P

�(s)
n Hn)

and D�
n = E(

@
@�g

�
n(�0)) = ��20tr(P

�(s)
n Hn), it follows that �B = limn!1

1
n tr(P

�(s)
n Hn).
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Table 1: The regression model with SAR disturbances (�0 = 0)
�0 = 0:3 �10 = 1:0 �20 = �1:0 Time

n = 98 Normal (seconds)
GLS1 :279(:134)[:136] :999(:144)[:144] �:998(:146)[:146] :0071
GLS2 :278(:131)[:132] :999(:144)[:144] �:998(:146)[:146] :0042
BGMM :329(:143)[:146] :997(:151)[:151] �:999(:153)[:153] :0188
Gaussian ML :287(:134)[:135] :999(:144)[:144] �:998(:146)[:146] :2726
n = 490
GLS1 :294(:055)[:056] 1:000(:062)[:062] �:998(:063)[:063] :0075
GLS2 :294(:055)[:056] 1:000(:062)[:062] �:998(:063)[:063] :0418
BGMM :305(:056)[:056] 1:000(:064)[:064] �:997(:064)[:064] :1613
Gaussian ML :294(:055)[:055] 1:000(:062)[:062] �:998(:063)[:063] :4870

n = 98 Gamma
GLS1 :281(:130)[:131] 1:004(:143)[:143] �1:009(:144)[:144] :0069
GLS2 :282(:125)[:127] 1:004(:143)[:143] �1:009(:144)[:144] :0042
BGMM :331(:138)[:141] 1:003(:113)[:113] �1:005(:115)[:115] :0195
Gaussian QML :290(:129)[:129] 1:004(:143)[:143] �1:009(:144)[:144] :2632
Gamma ML :299(:101)[:101] 1:005(:093)[:093] �1:004(:093)[:093] :0324
n = 490
GLS1 :297(:056)[:056] :996(:063)[:063] �1:003(:061)[:061] :0075
GLS2 :297(:055)[:055] :996(:063)[:063] �1:003(:061)[:061] :0419
BGMM :307(:055)[:056] :998(:049)[:049] �1:001(:049)[:049] :1630
Gaussian QML :297(:055)[:055] :996(:063)[:063] �1:003(:061)[:061] :4939
Gamma ML :300(:034)[:034] 1:000(:029)[:029] �0:999(:030)[:030] :0895

Mean(SD)[RMSE]
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Table 2: The MRSAR model with i.i.d. disturbances (�0 = 0)
�0 = 0:3 �10 = 1:0 �20 = �1:0 Time

n = 98 Normal (seconds)
2SLS :313(:176)[:177] :989(:146)[:147] �:990(:149)[:149] :0002
B2SLS :270(:214)[:216] :990(:147)[:148] �:990(:149)[:149] :0025
BGMM :320(:117)[:119] :987(:150)[:151] �:991(:154)[:155] :0188
Gaussian ML :287(:107)[:108] :996(:145)[:145] �:996(:147)[:147] :0426
n = 490
2SLS :296(:080)[:080] :998(:064)[:064] �:996(:064)[:064] :0022
B2SLS :290(:080)[:081] :998(:064)[:064] �:996(:064)[:064] :0399
BGMM :301(:047)[:047] :997(:065)[:065] �:994(:064)[:065] :1804
Gaussian ML :294(:046)[:046] :999(:064)[:064] �:997(:063)[:063] :2009

n = 98 Gamma
2SLS :321(:172)[:173] :995(:145)[:145] �1:002(:146)[:146] :0002
B2SLS :277(:198)[:199] :996(:144)[:144] �1:002(:147)[:147] :0025
BGMM :319(:102)[:104] :996(:114)[:114] �0:999(:115)[:115] :0194
Gaussian QML :290(:103)[:104] 1:002(:143)[:143] �1:008(:145)[:145] :0421
Gamma ML :301(:081)[:081] 1:001(:093)[:093] �1:002(:093)[:093] :0340
n = 490
2SLS :303(:076)[:076] :995(:064)[:064] �1:001(:062)[:063] :0022
B2SLS :297(:077)[:077] :995(:064)[:064] �1:002(:063)[:063] :0400
BGMM :305(:041)[:041] :997(:050)[:050] �1:000(:050)[:050] :1806
Gaussian QML :298(:045)[:045] :996(:064)[:064] �1:003(:062)[:062] :2053
Gamma ML :299(:027)[:027] 1:000(:030)[:030] �1:000(:030)[:030] :0894

Mean(SD)[RMSE]

40



Table 3: The MRSAR model with SAR disturbances
�0 = 0:3 �0 = 0:3 �10 = 1:0 �20 = �1:0 Time

n = 98 Normal (seconds)
G2SLS :345(:207)[:212] :197(:240)[:261] :992(:147)[:147] �:990(:149)[:150] :0076
B2SLS :332(2:28)[2:28] :197(:240)[:261] :997(:285)[:285] �:997(:422)[:422] :0026
BGMM :243(:309)[:315] :318(:324)[:324] :976(:161)[:163] �:974(:162)[:164] :0394
Gaussian ML :284(:206)[:206] :261(:241)[:244] :990(:146)[:147] �:988(:146)[:147] :1110
n = 490
G2SLS :301(:094)[:094] :285(:109)[:110] :998(:063)[:063] �:996(:064)[:064] :0076
B2SLS :289(:094)[:095] :285(:109)[:110] :997(:063)[:063] �:995(:064)[:064] :0382
BGMM :287(:098)[:099] :306(:109)[:110] :997(:064)[:064] �:994(:064)[:065] :3311
Gaussian ML :291(:094)[:094] :296(:107)[:107] :997(:063)[:063] �:995(:064)[:064] :5505
n = 490 Estimated model: the regression model with SAR disturbances
GLS1 � :538(:042)[:241] :950(:060)[:078] �:948(:060)[:080] :0074
GLS2 � :535(:041)[:239] :950(:060)[:078] �:948(:060)[:080] :0422
BGMM � :556(:043)[:260] :948(:061)[:080] �:946(:061)[:082] :1668
Gaussian ML � :545(:042)[:249] :949(:060)[:079] �:947(:060)[:080] :4792
n = 490 Estimated model: the MRSAR model with i.i.d. disturbances
2SLS :300(:096)[:096] � :995(:065)[:066] �:994(:065)[:065] :0033
B2SLS :286(:099)[:100] � :996(:066)[:066] �:995(:065)[:065] :0406
BGMM :481(:042)[:186] � :975(:067)[:071] �:972(:065)[:071] :1737
Gaussian ML :471(:041)[:176] � :985(:064)[:066] �:983(:064)[:066] :2013

n = 98 Gamma
G2SLS :350(:208)[0:214] :194(:229)[:252] :996(:144)[0:144] �1:003(:146)[:146] :0074
B2SLS :259(:521)[0:522] :194(:229)[:252] :993(:151)[0:151] �0:999(:165)[:165] :0024
BGMM :251(:295)[0:299] :315(:301)[:301] :984(:130)[0:131] �0:986(:130)[:131] :0413
Gaussian QML :291(:205)[0:205] :258(:241)[:244] :993(:144)[0:144] �1:001(:146)[:146] :1107
Gamma ML :302(:169)[0:169] :271(:207)[:209] :996(:099)[0:099] �0:995(:105)[:105] :1030
n = 490
G2SLS :309(:090)[:090] :280(:107)[:109] :995(:064)[:064] �1:002(:062)[:062] :0075
B2SLS :298(:090)[:090] :280(:107)[:109] :995(:064)[:064] �1:002(:062)[:062] :0381
BGMM :299(:069)[:069] :299(:087)[:087] :997(:050)[:050] �1:000(:049)[:049] :3353
Gaussian QML :299(:090)[:090] :291(:106)[:106] :995(:064)[:064] �1:001(:062)[:062] :5512
Gamma ML :299(:046)[:047] :299(:061)[:061] :999(:031)[:031] �0:999(:030)[:030] :2859
n = 490 Estimated model: the regression model with SAR disturbances
GLS1 � :539(:043)[:243] :946(:060)[:081] �:952(:058)[:075] :0096
GLS2 � :538(:042)[:241] :946(:060)[:081] �:953(:058)[:075] :0427
BGMM � :559(:043)[:262] :946(:048)[:072] �:949(:048)[:070] :1656
Gaussian QML � :548(:042)[:252] :945(:060)[:082] �:951(:058)[:076] :5083
Gamma ML � :559(:039)[:262] :946(:046)[:071] �:946(:046)[:071] :0910
n = 490 Estimated model: the MRSAR model with i.i.d. disturbances
2SLS :308(:093)[:093] � :994(:066)[:066] �1:000(:064)[:064] :0034
B2SLS :294(:096)[:097] � :994(:066)[:066] �1:001(:064)[:064] :0407
BGMM :460(:040)[:165] � :979(:052)[:056] �0:982(:051)[:054] :1752
Gaussian QML :474(:041)[:179] � :983(:064)[:066] �0:990(:063)[:064] :2000
Gamma ML :438(:040)[:144] � :988(:045)[:047] �0:988(:047)[:048] :1271

Mean(SD)[RMSE]
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