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1 Introduction

Spatial econometrics models have broad applications in various fields of economics such as regional,
urban and public economics. These models address relationships across geographic observations in
cross-sectional or panel data. Spatial models have a long history in both statistics and econometrics.
Excellent surveys and early developments can be found in Cliff and Ord (1973), Anselin (1988),
Cressie (1993), and Anselin and Bera (1998).

Among spatial econometric models, spatial autoregressive (SAR) models by Cliff and Ord (1973)
have received the most attention in economics. The first order SAR model can be estimated by
the maximum likelihood (ML) method (see Ord, 1975; Smirnov and Anselin, 2001). Lee (2004)
investigates asymptotic properties of the ML estimator (MLE) taking into account various features
of the spatial weights matrix. When the sample size is large, the ML method can be computationally
demanding for some spatial weights matrices. Alternative estimation methods have subsequently
been proposed.

In the presence of exogenous variables in addition to spatial lag variables, the model is known
as a mixed regressive, spatial autoregressive model (MRSAR).! With the presence of exogenous
variables, instrumental variables (IV) can be constructed as functions of the exogenous variables
and the spatial weights matrix. The two-stage least squares (2SLS) method has been noted for the
estimation of the MRSAR model in Anselin (1988; 1990), Kelejian and Robinson (1993), Kelejian
and Prucha (1997; 1998), and Lee (2003), among others. The 2SLS estimator (2SLSE) has been
shown to be consistent and asymptotically normal (Kelejian and Prucha, 1998). For the estimation of
the linear simultaneous equation model, the 2SLSE is known to be asymptotically as efficient as the
limited information MLE (see, e.g., Amemiya, 1985). This is not so for the estimation of the MRSAR
model, as it is not a usual linear simultaneous equation model. Lee (2003) discusses the best 2SLSE
(B2SLSE) within the class of IV estimators. By comparing the limiting variance matrices, the 2SLSE
and B2SLSE are less efficient relative to the MLE when the disturbances are normally distributed.
For a regression model with SAR disturbances, a method of moments (MOM) approach has been
introduced in Kelejian and Prucha (2001). The MOM is computationally simpler than the ML.
Their MOM estimator is consistent but can be less efficient relative to the MLE. In order to improve

upon the 2SLS; B2SLS and MOM, Lee (2007) has proposed a general GMM estimation framework.

1For simplicity, some authors prefer the terminology, the SAR model, in place of the MRSAR model.



For the estimation of the MRSAR model, the proposed GMM method explores both IV (linear) as
well as quadratic moment functions. The GMM estimation for those models can be computationally
simpler than the MLE. The proposed GMM estimator (GMME) can be asymptotically more efficient
than the 2SLSE. With carefully selected linear and quadratic moments, the resulting GMME can be
asymptotically as efficient as the MLE when the disturbances are normally distributed. Similarly,
for the estimation of a SAR process with normally distributed disturbances, best quadratic moments
exist and the resulting GMM estimator can be asymptotically as efficient as the Gaussian MLE.

The best GMM (BGMM) based on the linear and quadratic moments in Lee (2007) assumes that
the disturbances of the model are normally distributed. When the disturbances are not normally
distributed, such estimators are still consistent and asymptotically normal but may not be efficient.
This paper demonstrates that a distribution-free BGMM estimator (BGMME) exists within the
class of GMMEs based on the linear and quadratic moments.

Specifically, in this paper, we derive the BGMME for the regression model with SAR disturbances
and the MRSAR model with and without SAR disturbances, within the class of GMMESs based on
linear and quadratic moment conditions. The BGMME proposed here has the merit of computa-
tional simplicity and asymptotic efficiency. It is asymptotically as efficient as the MLE when the
disturbances are normally distributed, and asymptotically more efficient than the Gaussian QMLE
otherwise.

Recently, Robinson (2010) has proposed an adaptive estimator for the MRSAR models with i.i.d.
disturbances €,;’s that follow an unknown distribution. The adaptive estimator is as efficient as ML
estimators based on a correct form of distribution. However, in order for the adaptive estimation
to be feasible, there are orthogonality conditions which need to be satisfied. In adaptive estimation,
one estimates the unknown distribution of the innovations and uses the estimated distribution to
construct the score (likelihood) for the estimation of the unknown coefficients of the model. The or-
thogonality condition requires the estimation error of the distribution to be asymptotically irrelevant
for the estimation of the coefficients. For the estimation of the SAR model (even with the normally
distributed errors), the ML estimator of the variance of the disturbance is in general asymptotically
correlated with that of the spatial lag coefficient. This hints that the adaptive estimation of the
model would not be feasible. However, there are special circumstances where the orthogonality con-
dition would hold. One case is the spatial scenario where each spatial unit is influenced by many

neighbors whose influences are uniformly small. This case has been studied in Lee (2002) for the



OLS approach. In Robinson (2010), he also focuses on such a “many neighbors” case by assuming
that the spatial weights matrix W,, has nonnegative elements that are uniformly of order O(1/h,,),
where h,, increases with the sample size n such that (1) h,/n'/? — oo as n — oo, or (2) h,, — oo as
n — oo and either W, is symmetric or the disturbance ¢,,; is symmetrically distributed. However, the
“many neighbors” assumption may not be reasonable in some practical circumstances. The GMM
estimation approach proposed in this paper, on the other hand, does not need this assumption. As
we have focused on the spatial scenario with a finite number of neighbors, our paper and Robinson
(2009) are complementary to each other. Also, the adaptive estimator in Robinson (2010) would not
be applicable when all exogenous variables in the model are really irrelevant. The GMM approach
in this paper may be used to estimate a pure spatial autoregressive model (without explanatory
variables).

This paper is organized as follows. In Section 2, we consider the GMM estimation of the MRSAR
model with SAR disturbances. It is interesting and informative to then consider two special cases:
the first is estimation of a regression model with SAR disturbances and then an MRSAR model
without SAR disturbances. The selection of the best moment functions is discussed and efficiency
is considered. All the proofs of the results are collected in the appendices. Section 3 provides some
Monte Carlo results for the comparison of finite sample properties of estimators. Section 4 briefly

concludes. A list of notations has been collected in Appendix A for convenient reference.

2 GMM Estimation and the BGMME

2.1 GMM Estimation of the MRSAR Model with SAR Disturbances

The general MRSAR model with SAR disturbances is given by

Y, = X8 + AW, Y, + tn, Up = pMpty, + €n, (1)

where n is the total number of spatial units, X,, is an n x k& dimensional matrix of nonstochastic
exogenous variables, W,, and M,, are zero diagonal spatial weights matrix of known constants that
may or may not be equal. The disturbances €1, .., €,, of the n-dimensional vector €, are i.i.d.
(0,02). The W,,Y,, term is a spacial lag in the dependent variable and its coefficient represents the

spatial influence due to neighbors’ realized dependent variable. The M,u, term is a spacial lag



in the disturbances and its coefficient represents the spacial effect of unobservables on neighboring
units. In order to distinguish the true parameters from other possible values in the parameter
space, we denote 3, Ao, py, and o3 as the true parameters that generate the observed sample. Let
R,.(p) = I, — pM,, and S,,(\) = I,, — A\W,,. At the true parameter values, let R,, = R,(p,) and
Sn = Sp(Aog) for simplicity. The model represents an equilibrium, and so R, and S,, are assumed
to be invertible. The equilibrium vector Y,, is given by Y, = S; ' X, 8, + S; 'R, 'e,. It follows
that W,.Y,, = G, X,8, + G,R, '€, where G,, = W,,S;1. W,Y, is correlated with €, because
E(GnR;Yen) €n) = abtr (G, R, 1) # 0.

For the estimation of the model (1), we consider the transformed equation, R,Y, = R, X, 3, +
MR W, Y, + ¢,. Let @, be an n x ¢ matrix of IVs constructed as functions of the regressors
and spatial weights matrices. Denote €, (0) = R, (p)[Sn(\)Y, — X, 8], where § = (p, A, 3')’. Thus,
€n = €n(0p). The moment functions corresponding to the orthogonality conditions of X,, and e,
are @ €,(0). In addition to Q),€,(0), Lee (2001b; 2007) suggests the use of the quadratic moment
€,(0)Pjne,(0) where Pj,,’s are n X n constant matrices such that tr(P;,) =0 for j =1,...,m. With

the selected Pj,’s and @, the GMM uses the empirical moments

n(0) = (Qn, Pinen(0),- - aPmnen(e))len(9)~ (2)

At 0o, gn(00) = (Qn, Pinén, -+ , Pmn€n) €, has a zero mean because E(Q'e,) = Q) E(e,) = 0 and
E(€, P}, en) = ogtr(Pjn) = 0 for j = 1,--- ,m. Lee (2007) has shown the consistency and asymptotic
normality of the GMME for the MRSAR model with i.i.d. disturbances. Similar properties for the
MRSAR model with SAR disturbances can be found in Lee (2001b). In addition, Lee (2001b)
provides identification conditions for (1). In Lee (2001b; 2007), the best moments have been pointed
out when €,;’s are normally distributed. In this paper, our interest is on the best selection of Pj,’s
and Q,, without distributional assumptions on €.

We follow the regularity assumptions specified in Lee (2001a; 2007). Henceforth, uniformly

bounded in row (column) sums in absolute value of a sequence of square matrices {4, } will be

abbreviated as UBR (UBC), and uniformly bounded in both row and column sums in absolute value

as UB.?
2A sequence of square matrices {A4,}, where A, = [A,, ;;], is said to be UBR (UBC) if the sequence of row sum
matrix norm ||Ap|lec = max;—1,... n Z?:1 [Ap,ij| (column sum matrix norm |[An||l1 = maxj—1,... n > 1y |An,ijl)

are bounded. (Horn and Johnson, 1985)



Assumption 1 The ¢,;’s are i.i.d. with zero mean, variance o& and a moment of order higher
than the fourth exists.

Assumption 2 The elements of X, are uniformly bounded constants, X,, has full rank k, and
lim,, oo %X;Xn exists and is nonsingular.

Assumption 3 The sequences of matrices {Wy}, {M,}, {S;*} and {R;'} are UB. {S;;*(\)}
and {R,;1(p)} are either UBR or UBC, uniformly in A and p in a compact parameter space.

Assumption 4 The sequences of matrices {Pj,} with tr(Pj,) = 0 are UB for j =1,--- ,m.
The elements of Q. are uniformly bounded.

The assumption that ¢,; have existing moments higher than the fourth is needed in order to
apply a central limit theorem due to Kelejian and Prucha (2001). In general, us; and p, denote,
respectively, the third and fourth moments of €,;’s. The uniform boundedness of {W,}, {M,},
{S1} and {R,;'} in Assumption 3 limits spatial dependence among the units to a tractable degree
and is originated by Kelejian and Prucha (1999). It rules out the unit root case (in time series as a
special case). The additional uniform boundedness of {S;;*(\)} and {R;;*(p)} in X and p is required
only to justify the QML but not the GMM.? Uniform boundedness conditions for X,,, Pj,’s and Q,,
in Assumptions 2 and 4 are for analytic tractability.

The following assumption summarizes some sufficient identification conditions of 6y from the
moment equations E(g,(fo)) = 0. Let H, = M,R,', and A®) = A + A’ for any square matrix

n

A. Let o) ; = tr(Pj(Z)Hn), ay; = tr(Pj(Z)C_?n), ape ;= tr(H) Py, Hy,), ay2 ;= tr(@;PjnGn), Qpr,j =

tr(Pj(Z)HnC_?n + H,’ZPJ-(Z)Gn), Qp2y; = tr(HT’LPj(Z)HnC_?n), a2 = tr(G;LPj(Z)HnGn) and a2y ; =
tr(G! H}, P;,H,G.,), where G,, = R,,G, R, 1.

Assumption 5 Either (i) lim;, o ~Q}, Ry (0)(Xy, Gn Xy Bg) has full rank (k+1) for each possible
p in its parameter space, and lim,,_, o, %tr(Pjan) # 0 for some j, lim,, %(tr(Pl(Z)Hn), e ,tr(P,(nS)lHn))’
is linearly independent of limy, oo L (tr(H} PipnHy), -+, tr(H} PpnHy))'; or (it) limy, oo Q1 R (p) Xn
has full rank k for each possible p in its parameter space, W,, # My, and the vectors a’s do not
have a linear combination with nonlinear coefficients in the form that a,01 +axdz + o2 6? + a2 63 +
apr0102 + apzA(S%ég + ap,\zélég + ap2/\25%5§ =0, for some constants §1 and 05 with (d1,02) # 0.

Assumption 5 (i) corresponds to the possible estimation of Ay and 3, by the use of IVs, i.e., linear

moments, and p, from the SAR process of the disturbances. When G, X, 5, and X,, are linearly

3For the GMM approach, it is sufficient to assume the parameter space to be a bounded set. This is so because
the moment functions are linear and quadratic, and they do not involve complicated nonlinearity.



dependent, which includes the case that all exogenous variables X,, are irrelevant, (ii) assures the
identification of p, and Ao from the quadratic moments as the unique solution of E[e, () Pj,€,(6)] = 0
for j = 1,--- ,m. The identification corresponds to the identification of (py, Ag) from the spatial
process v, = S, 'R, te,.* The details can be found in Lee (2001b).

Assumption 6 Let Q,, = var(g,(6o)). The limit of 1€, exists and is a nonsingular matriz.”

Assumption 7 The 0 is in the interior of the parameter space © C RF+2.6

The GMME 0p = argmingee ¢/, (0)al,a,gn(0) is /n-consistent and asymptotically normal. Let
vecp (A) be the column vector formed by the diagonal elements of a square matrix A. The optimal

weighting matrix a/,a,, is ;! by the generalized Schwarz inequality, where

U2Q;Qn /~’43Q;zwmn
0, = var(ga(60)) = | ° :

/isw;ann (/‘L4 - 303)w;71nwmn + UgAm

with wp, = [veep(Pry), -+ ,vecp (Pmn)] and A, = [vec(Pl( )), - 7vec(PT(,fi,)L)}’[vec(Pln)7 -+ vee(Poyp)]-

Let M,, be the class of optimal GMMEs derived from mingee g, (0)2;, 19, (0), where g, (0) is given
by (2). To show the existence of the BGMME within M,,, we follow Breusch et al. (1999) in demon-
strating that additional moment conditions are redundant to the set of the selected ones.” If an
intercept appears in X,, = R, X, define X as the submatrix of X,, with the intercept column
deleted. Thus, X,, = [X}, c(pg)ln], where c(p,) is a scalar function of p, and I,, is an n-dimensional
vector of ones.® Otherwise X = X,,. Suppose there are k* columns in X;. Let X,,; be the jth

column of X,,, and X;’;j be the jth column of X*. For an n x n matrix A, let A® = A — Lir(A)I,.

4The conditions in (ii) rule out the case W, = M,. In that case, p, and Ao can be exchanged in the process
vn = Sp 1Ry ten, and they can only be locally identifiable (Anselin, 1988).

5 Assumptions 5 and 6 exclude the case of large (group) interactions in Lee (2004). These can simplify the presen-
tation of our results. The cases under our assumptions here are relevant to spatial scenario, where interactions are
usually among a few neighbors.

6In our analysis, the mean value theorem is used occasionally for functions at Po, the interior assumption implicitly
implies the existence of a convex neighborhood around pg for the validity of the mean value theorem.

"In Appendix B, we investigate the efficient MOM estimation of a simple SAR process. Due to the simple structure
of that model, we have a constructive approach based on the Schwartz inequality to derive the best moments. The
feature of the best moment conditions for the simple SAR process sheds light on the search for the best moment
conditions for the more general MRSAR model. From the simple model, we realize that some diagonal matrices, with
the diagonal elements being (1) the diagonal elements of the best quadratic moment matrices Pp’s under normality
and (2) the best instruments under normality, can be used to construct additional quadratic moment conditions to
improve efficiency when errors follow a non-normal distribution. Also, some vectors with elements being the diagonal
elements of the best P,’s under normality can be used as additional instruments to improve efficiency. We thus find
candidate moment conditions of these forms for the general model and use the results in Breusch et al. (1999) to
verify the best ones and show any additional linear and quadratic moment conditions are redundant.

8When M, is row-normalized, Mypl, = ln and (In — pgMn) 1y = (1 — pg) " tln. Hence, Rply, = Mp(In —
pOMn)_lln =(In — pOMn)_anln =(1- po)_lln. In this case, cn(pg) = (1 — po)_l. If M, is not row-normalized,
X, will, in general, not have a column proportional to l,.



Let D(A) be a diagonal matrix with diagonal elements being A if A4 is a vector, or diagonal elements
of A if A is a square matrix. Let 13 = u3/0g and 1, = uy/0y be the skewness and kurtosis of the

disturbance.

Proposition 1 Suppose Assumptions 1-7 are satisfied. Let Py, = G*S’, Py = D(G'sf)), Py =
D(G,X,80)0, P, = HY, P;, = D(HY) and P}y, = D(X;;l)@), for 1l = 1,--- ,k*, be the
weighting matrices of the quadratic moments. Furthermore, let Q%, = X, Q% = G, X80, Q3. =
ln, Q4 = UecD(@g)) and Q3, = vecD(Hr(f)) be the IV matrices.

Denote g (0) = (Qr, Prren(0),- -+ Pic 5 ,6n(0)) €,(0) and Q;, = var(g;,(00)), where Q;, =
Q% Qs Qi Qs QE). Then, O = argmingee g (0)Q2% g% (0) is the BGMME within M,,, and
it has the asymptotic distribution that /n(0z —0) R N(0,%5"), where B = lim,,_ o, DY Dr

and ) )
0 QyGnXuBy Q' Xn
*(s) 2 *(s) A
« 3 U%tr(Pln Hn) UOtr(Pln G’ﬂ) 0
Dn = E(ae/gn(go))

Jgtr(P,:*(j_)E)’an) Jgtr(P,:,k(j_)SmGn) 0

As shown in the proof of Proposition 1, ¥ has an explicit form

1 tr(P;’(lS)H") o tr(P;fLS)Hn) ) *ﬁvec’f,(ﬂg)))zn
¥p =l £ 0y (GaXaBo) Qi+ tr(PL G) o207 X, 7
' * 00 X0 Qhn
(3)
where Fn = Fin = %I% ~ G P P = =i (B P Q= G -
(ns— 1 ZQ?’"( nXn), and Q3 = (nj ;1 2Q2n T (na— 1) n2Q3n( 1,GnXn ) — nfm{;'snz%n

From our proof, the best moments in Proposition 1 is equivalent to their linear combinations given
by

9 (0) = (QF . Proen(9), Prnen(0), Ponen(0), -+ Pieys nen(0)) en(0) (4)
with Q7 = (an,an,an).g When ¢, is normally distributed so that n; = 0 and n, = 3, we

have Py, = G, P, = HY, Q5, = X, and Q},, = G, X,5,. Following Breusch et al. (1999),

snen(0) and (Pg,en(0), -, Py 5 ,€n(0)) €n(0) can be shown redundant given the best moment

9We realize that these are not the unique linear combinations. They help to realize how the best moments of
the normal distributed case shall be modified to accommodate the non-normal case. They are also helpful for the
implementation of the estimation procedure in practice (see the Monte Carlo section).



functions [)_(n,Gn)_(nﬁo,Gg)en(ﬂ),H,gt)en(H)]'en(O) under normality in Lee (2001b).!* When e, is
not normally distributed, the additional moments in Proposition 1 improve efficiency as they capture
the skewness and kurtosis of the error distribution.

The asymptotic efficiency of the MLE depends on the distribution of the disturbances being
correctly specified. The likelihood function based on the normal specification is a quasi-likelihood
when the disturbances are not truly normal. The resulted estimator is a QMLE. We claim that the
BGMME in Proposition 1 is asymptotically more efficient relative to this QMLE. This can be seen
as follows. The log-likelihood function for MRSAR model with SAR disturbances is

1
InL,= *g In(270%) + I [S,(A)| + In |R,(p)| — @[SHO‘)YTL = X0 B] By, (p) R (p)[Sn (M) Y — X0 f3],
and the derivatives are a% InL, = —tr(H,(p)) + L€, (0)H,(p)en(6),

a% In Ly, = —tx(Gn(p, ) + %[@n(p, N X ()] en(0) + %eﬂé)énm Ne, (0),

a%lnLn = L X! (p)en(0), and 325 InL, = —5% + 3irel, (0)e,(0), where X, (p) = Rn(p)X, and
Gn(p,\) = Ru(p)Gn(N R, (p). The QMLE of o2 is given by 2,,(0) = Le! (6)e,(0) for a given value
0. Substituting 2,(0) into the remaining first order conditions shows that the QMLE is character-
ized by the moment equations €, (G)Hff)(p)en(e) =0, [Gn(p, )\)Xn(p)ﬂ]’en(G)—i-e;L(H)Gg)(p, Nen(0) =

0, and X/ (p)e,(8) = 0. Denote the QMLE of 6 by Omi- Obviously 0,1 is the solution of A Gmin(0),

I 0 0 O
where a,, = 0 1 1 0 | and
0 0 0 1

Imin (0) = [Xn (Prm1)s Gn (Pani> 5‘ml )Xn (Prmi )Bm,l ) G'Elt) (Pimt> ;\ml)€7t (9), Hv(Lt) (Pmi)en(0)] "en, (0).

It follows from analogous arguments in the proof of Proposition 3 in Lee (2007) that ay,§mi,(0) =0

is asymptotically equivalent to the moment equations @, gmi»(0) = 0, where

Gmin(0) = [Xn, G X0 8o, GPen (0), HY €,(0)) €0 (0),

10In the simulation studies, we compare the finite sample performance of the BGMME based on the enlarged set
of moment conditions with the Gaussian MLE when ¢,;’s are normally distributed. For a moderate-sized sample, the
performance of the BGMME is as good as that of the MLE.



in the sense that their consistent roots have the same limiting distribution. As ¢,,,(0) con-
sists of linear and quadratic functions of €,(6), the corresponding optimal GMME derived from
min g,ﬁnl’TL(G)Q;lgml’n(H) is in M,,. As the BGMME is the most efficient estimator in M,,, hence,
the BGMME is efficient relative to the QMLE.

In practice, with initial consistent estimates én, 627 ft3 and fig, P}, and @}, can be estimated as
an = Pj*n(én) and Q% = Q7 (0,) for j = 1,--- ,k* +5. The variance matrix 2 of the best moment

functions can be estimated as Qf = QF (@n,(}i,ﬂg,ﬂ4). The following proposition shows that the

feasible BGMME has the same limiting distribution as the BGMME in Proposition 1.

Proposition 2 Under Assumptions 1-7, suppose 9n, &i, 13 and fi, are, respectively, \/n-consistent
estimates of B, 02, iy and jiy. Then, Opp = arg mingeo 7 (0)1G5(0), with 0 = Q% (0, 62, fis, f1y)
and §5(0) = (QF, Pr en(0),- - s Py s n€n(0)) €n(0), has the same limiting distribution as 0p =

arg mingee g5 (0)Q " g5 (0).

2.2 GMM Estimation of the Regression Model with SAR Disturbances

An important special case of the general MRSAR-SAR model is the regression model with SAR
disturbances, that is the case where A\g = 0. Two approaches are interesting to contrast. The first
approach estimates p and then estimates 5 using the feasible generalized least squares (FGLS). The
second approach uses the full model GMM estimation above to estimate the parameters simulta-
neously. In this section, we focus on the second approach, and the FGLS approach is discussed in
Appendix B.!!

Let M, be the class of optimal GMMEs of (py, 8;) derived from min, g g/,,.(0, )2} gpn (p; ),
where Q,, = var(g,n(pg, o)) and gpn(p; 8) = (Qn, Pin€pm(p,B), - s Pmn€pn(p, B)) €pn(p, B) with
eon(p, B) = Rn(p)(Yn — X5 3). As a special case of the GMM estimation in Section 2.1 by imposing

the restriction that Ay = 0, we find the following result.

Corollary 3 (to Proposition 1) Consider the GMM estimation of the restricted model (1) with

Xo = 0 under assumptions 1-7. Let P} = a, P} = D(Hff)) and PJT+2’n

= D(X;;)® (for
j=1,---,k*) be the weighting matrices of the quadratic moments, and QLL = X7, Q;n =1, and

Q:T»,n = UGCD(HS)) be the IV matrices.

' Throughout the paper we maintain assumptions 1-7 (suitably modified for different models).



Let g;n(pv 6) = (QL,anﬁpn(py B),- - 7P]I*+2,n6pn(pv 6))/€pn(fo7 ﬁ) and an = Var(gzm(:oo»ﬁo))y
where QIL = (QInV anv an) Then, i)Bp and BBp derived fT‘O?TL minp’ﬁ g;n(pv ﬁ)/(QLn)_lg;n(pv B) is

the BGMME within M, with the asymptotic variance matriz %Eg;, where

() T A= (O -
Ypp = lim 1 tr{(F5n)" Hal 00(1741775)1}60?(]{” )X ; (5)
n—oo N oo
* o X;LQﬂn
g1 pt _ pl _ (1=3)-n3 pt P el e foip
’(,Ulth Ppn - Pln (’flj_l)_ng P2’I’L and Qﬂn - (774_41)_,,]:% Xn (,,]4_13)_,’7§ QQn(nlan)

By comparing the result in Corollary 3 with the FGLS in Appendix B, we see that when 75 = 0,
which implies that the linear and quadratic moments are uncorrelated, the best MOM (BMOM)
estimator of p, and the FGLS estimator of 5, in Appendix B have the same limiting distribution
as the BGMME given in Corollary 3. Indeed, when n; = 0, the best P of the MOM approach
given in Proposition 5 is the same as P,In in Corollary 3, and the best linear moment Q;n =X,
corresponds to the GLS type moment for the estimation of 3,. However, when n; # 0, the BGMME
in Corollary 3 can be efficient relative to the FGLS estimator of 3, as well as the proposed BMOM
estimator of p, in Appendix B. The GMME of (5, is no longer a linear function of Y;, when n; # 0,
but the FGLS estimator is. While the FGLS estimator of 3, remains the best linear unbiased one,
it can be inefficient relative to some nonlinear estimators like the one given in Corollary 3. The
MLE estimator, under departures from normality, will not always fall in the class of linear unbiased
estimators. Hence it is not surprising that improvements on the linear unbiased estimator can be

found in general.

2.3 GMM Estimation of the MRSAR Model with ITD Disturbances

Another special case of the model (1) is the MRSAR model with i.i.d. disturbances, i.e., p, = 0.
The following corollary gives the BGMME of the MRSAR model with i.i.d. disturbances. Let M,
be the class of optimal GMMEs of (A, 3;) derived from miny g g}, (A, )25 gxn (A, B), where Q,, =
var(gan (Ao, Bo)) and gxn (A, 8) = (@n, Prnean(AB), -+, Punéxn(X, ) exn(X, B) with exn(A, 5) =
Sp(ANY, — X,5.

Corollary 4 (to Proposition 1) Consider the GMM estimation of the restricted model (1) with

po = 0 under Assumptions 1-7. Let Py, = G\, Py, = D(GS)), Pj, = D(G,X,B,)", and
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Pris, = D(X,*Lj)(t) (for j = 1,--- k*) be the weighting matrices of the quadratic moments, and
=X, Q% =G, X8y, Q3, =1, and QF,, = vecD(Ggf)) be the IV matrices.
Let g3,(A B) = (@5, Plaexn(N B), -+, Bl g ,€an (X, B)) exn(X, B) and Q5,, = var(g3,, (Mo, Bo)),
where QF, = (QF,, Qs Q41 @hn). Then, Mg and B, derived from min, BTN B (%) gk, (A B)

is the BGMME within My, with the asymptotic variance matrix %EEA, where

. ]. 062(GHXHBO)/ :n + tr[(P;n)(S)Gn] 062( in)an
EB)\ = lim — y (6)
n—oo N, 2X, /jn

with P;n = Pl*n - 524::37:7]% PQ*n -

and Q3%,, = o 71 2Q

M3 _ ny—1
((774 1)— )P?’"’ 13” T (g 41)7n§X" (ny— 1) n2Q3’ﬂ(n n )
72 Q5 (5 1,Gu X Bo) = 228 Qi

(774 1

When ¢, is normally distributed, 3 = 0 and 1, = 3, and hence, Q;n = X,, @3, = GnX,0, and
P, = Gg ). Based on the characterization of best moments in Breusch et al. (1999), it can be shown
that any moment function in the form of (2) is redundant given (X,,, G, X, 84, G g 6,\n()\ B)) exn(, B)
under normality, with similar arguments used in the proof of Proposition 1.

On the other hand, the likelihood function of the MRSAR model with i.i.d. disturbances is

InL, = _g In(27) — gm o2 +10[Sn(N)| = == [Sn(N)Y — X B [Sn(N)Y; — X, 0]

with its derivatives being dlnBL” = U%X,’Le,\n()\,ﬂ), % = —50 + ﬁe&n()\,ﬁ)e,\n()\,ﬁ), and
OlnL, 1 1

The score vector of QMLE consists of linear and quadratic moments of €y, (A, 5). Hence, the optimal
GMME based on that score vector is in M, and hence is less efficient relative to the BGMME in

Corollary 4.

3 Monte Carlo Study

In the Monte Carlo experiments, the model is specified as

Yn = anﬁlo + Xn2ﬂ20 + )\OWnYn + U, Up = pOWnun + €p. (7)
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The regressors X,; and X,s are mutually independent vectors of independent standard normal
random variables. The error terms, €,;’s, are independently generated from the following 2 distri-
butions: (a) normal, €,; ~ N(0,2) and (b) gamma, €,; = 7v; — 2 where v, ~ gamma(2,1). The
€ni’s have mean zero and variance 2. The skewness (13) and kurtosis (1,) of these distributions
are correspondingly: (a) 73 = 0, 7, = 3 and (b) 73 = /2, n, = 6. When the disturbances are
normally distributed, both the MLE and the BGMME are asymptotically efficient. The gamma
distribution is introduced to study the effects of skewness and excess kurtosis on the small sample
performance of various estimators. The BGMME is asymptotically more efficient than the Gaussian
QMLE when €,;’s follow the gamma distribution, as its moment functions incorporate skewness and
excess kurtosis of the error distribution.

The number of repetitions is 1,000 for each case in the Monte Carlo experiments. The regres-
sors are randomly redrawn for each repetition.!? In each case, we report the mean and standard
deviation (SD) of the empirical distributions of the estimates. To facilitate the comparison of var-
ious estimators, their root mean square errors (RMSE) are also reported. We set 5;, = 1.0 and
B39 = —1.0 in the data generating process. The variance ratio of X,1019 + Xn2859 With the sum
of variances of X108,y + Xn28s0 and €, is 0.5. If one ignores the interaction term, this ratio would
represent R? = 0.5 in a regression equation. Ao and p, are varied in the experiments. The sample
sizes considered are n = 98 and n = 490.

We take the weights matrix W4 from the study of crimes across 49 districts in Columbus, Ohio
in Anselin (1988). For n = 98 and 490, the corresponding spatial weights matrices in the Monte
Carlo study are given by I, @ W4 and 119 @ W4 respectively, where ® denotes the Kronecker product
operator.

The first case we consider is Ay = 0 and p, = 0.3, so that (7) reduces to the regression model
with SAR disturbances. The estimators considered are (i) the GLS1 estimator where p, is estimated
by the MOM in Kelejian and Prucha (1998) and the GLS2 estimator where p, is estimated by the
BMOM in Proposition 5, (ii) the BGMME in Corollary 3, (iii) the Gaussian QMLE!?, and (iv) the

gamma MLE when the innovations follow the gamma distribution'*. We use preliminary estimates

12We have also experimented with the specification where the regressors are fixed across the replications. The
simulation results are similar to those reported here.

13The QMLEs for the regression model with SAR disturbances, the MRSAR model with i.i.d. disturbances, and the
MRSAR model with SAR disturbances are calculated, respectively, using sem.m, sar.m, sac.m in Econometrics Toolbox
(version 7) by James P. LeSage. Function option info.lflag = 0 for full computation (instead of approximation), and
other options are set to the default values.

14We assume the scale parameter of the gamma density is known and estimate the shape parameter with other
unknown parameters in the model using the likelihood method.
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from the GLS1 to implement the GLS2 and the feasible BGMM.
[Table 1 approximately here]

The estimation results for the regression model with SAR errors are reported in Table 1. The
GLS estimators and the Gaussian QMLE of p, are biased downward and the BGMME of p, is biased
upward for a small sample size n = 98. The bias reduces as the sample size increases. When the
disturbances are normally distributed, the Gaussian MLE is efficient. When n = 98, the BGMME of
Po has a slightly bigger SD than the MLE. For a moderate sample size n = 490, the performance of
the BGMME is as good as that of the MLE. When the innovations follow the gamma distribution,
the gamma MLE performs better than the other estimators for both n = 98 and n = 490. The
GLS2 estimator of p, has a slightly smaller SD than the GLS1 for both sample sizes considered.
The BGMME of 3, has a smaller SD and RMSE than the GLS estimators and the Gaussian QMLE
for both n = 98 and n = 490. For both sample sizes, the percentage reduction in the SD of the
BGMME of 3, relative to the Gaussian QMLE is about 20%. The average CPU time for one
repetition is also reported for each estimation method.!> The GMME significantly reduces the CPU
time cost relative to the QMLE.

The second case we consider is \g = 0.3 and p, = 0, so that the true data generating process
in (7) corresponds to the MRSAR model with i.i.d. disturbances. The estimators considered are
(i) the 2SLS estimator with IV set Q,, = (X, W,,X,,, W2X,,) and the B2SLS estimator with IV
set Q, = (X, GnX,f,), (i) the BGMME in Proposition 2, (iii) the Gaussian QMLE, and (iv) the
gamma MLE. We use initial estimates from the 2SLS to implement the B2SLS and feasible GMM

estimations.
[Table 2 approximately here]

Table 2 reports the estimation results for the MRSAR model with i.i.d. disturbances. The 2SLS
and B2SLS estimators of A\g have much larger SDs than the other estimators for both sample sizes
considered. When the disturbances are normally distributed, the BGMME of \g has a bigger SD
than the Gaussian MLE for a small sample size n = 98. The performance of the BGMME is as good
as the MLE for n = 490. When the innovations follow the gamma distribution, the gamma MLE

performs the best. The BGMME improves upon the Gaussian QMLE in terms of SD and RMSE

15 All the computation is performed using Dell Optiplex 755 with Intel (R) Core (TM) 2 Duo CPU E6850 @ 3.00GHz
and 3.25 GB of RAM.
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for both sample sizes considered. When n = 98, the SD of the BGMME of 3, is about 20% smaller
than that of the Gaussian QMLE. When n = 490, the percentage reductions in SDs of the BGMMEs
of \o, B19 and By relative to the Gaussian QMLEs are, respectively, 8.9%, 21.9% and 19.4%.16
Lastly, we consider the case that \g = 0.3 and p, = 0.3. The estimators considered are: (i)
the G2SLS estimator in Kelejian and Prucha (1998) and the best G2SLS (B2SLS) estimator in Lee
(2003),'7 (ii) the BGMME'® in Proposition 2, (iii) the Gaussian QMLE, and (iv) the gamma MLE.

We use preliminary estimates from the G2SLS to implement the B2SLS and the feasible BGMM.
[Table 3 approximately here]

The estimation results of the MRSAR model with SAR disturbances is given in Table 3. When
the disturbances are normally distributed, the Gaussian MLE performs better than the BGMME if
the sample size is small, and the BGMME is as good as the MLE if the sample size is moderate.
When the innovations follow the gamma distribution, the BGMMEs of )\¢ and p, have bigger SDs
than the Gaussian QMLEs but the BGMME of 3, has a smaller SD than the QMLE if n = 98, and
the BGMMESs of Ao, py, and 3, have smaller SDs than the Gaussian QMLEs if n = 490. Table 3
also reports some results with misspecifications in that the effect captured by either Ay or p, were
ignored, and the restricted models are estimated. When the model is estimated under the restriction
that A\g = 0, the various estimators of p, are biased upwards by about 80%. The estimates of 5,
are only trivially affected. On the other hand, when the model is estimated under the restriction
that p, = 0, the QMLE and BGMME of )y are upwards biased, while the G2SLS and B2SLS
estimators are quite robust to this misspecification. For both misspecified models, the finite sample
performance of the BGMME is as good as the MLE when ¢,;’s are normally distributed, and the
BGMME of 3, has a smaller SD than the Gaussian QMLE when the innovations follow the gamma
distribution.

In summary, in the absence of specific and correct knowledge of the underlying distribution, the

BGMME improves on the Gaussian QMLE as the former incorporates correlation between linear and

16 Given the data generating process of X, we evaluate the asymptotic variance of the BGMMEs and QMLEs in
addition to the empirical SDs. With the gamma distribution and n = 490, the percentage of reductions in asymptotic
SDs of the BGMMESs of Ao, 819 and By relative to the QMLEs are, on average over all the repetitions, respectively,
9.8%, 22.5% and 22.5%.

1"We use Qn = (Xn, Wan,WT%Xn) as the IV matrix for the G2SLS.

181n the Monte Carlo experiments, as W, = My, G, = RoGnR;' = (In — poMyp)Mp (I, — MoMy) (I, —
poMp)™t = Mp(In — poMn)(In — AoMp) " (In — poMpn)~! = H, if Ao = pg. Though the estimated G,, and Hj
wouldn’t be exactly the same, they can be very close to each other and the finite sample perfemance of the BGMME
might be affected. So we use linear combinations of the moment functions in Proposition 1 in this Monte Carlo study.
The linear combinations are given in (4), and can be shown asymptotically equivalent to those in Proposition 1.
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quadratic moment conditions when the disturbances are skewed. The BGMMEs of both the spatial
effects Ao and p, and regression coefficient 3, have smaller SDs and RMSEs than the Gaussian
QMLE for a moderate-sized sample. The BGMME is also computationally more efficient than the
Gaussian QMLE.

4 Conclusion

In this paper, we consider improved GMM estimation of regression and MRSAR models with SAR
disturbances. When the disturbances are normally distributed, the MLE approach for such models
is efficient. Lee (2007) has shown the existence of the GMME based on linear and quadratic moment
conditions that can attain the same limiting distribution as the MLE. When the disturbances are
not normally distributed, the MLE based on the normal likelihood specification is a QMLE. This
paper improves upon the QMLE approach by incorporating potential skewness and kurtosis of the
disturbances into the linear and quadratic moment conditions used in the GMM framework. The
proposed BGMME is asymptotically as efficient as MLE under normality, and more efficient than
the QMLE when the innovations are not normal. Monte Carlo studies show that the potential
inefficiency of the QMLE in finite sample for the MRSAR model mainly comes from the possible
correlation between linear and quadratic moment conditions in the likelihood function. Hence, the
proposed BGMME has its biggest advantage when the skewness of the disturbances is nonzero.
In the event that the diagonal elements of H,, have enough variation,'® then, taking into account
kurtosis may also be valuable.

In the Monte Carlo studies, the (infeasible) exact MLE performs better than the Gaussian QMLE
and the BGMME for the case of non-normal errors, which suggests the possibility to further improve
the efficiency of the Gaussian QMLE by considering higher order moment conditions in the GMM
framework. However, some complications would occur as more high order moment conditions are
used for the GMM estimation. First, additional high order moments of the unknown innovation
distribution might involve more unknown parameters for estimation. Second, the finite sample
properties of the GMM estimator can be sensitive to the number of moment conditions. And as the
number of moment conditions increases with the sample size, the GMM estimator could even be

asymptotically biased (Han and Phillips, 2006). A more difficult problem in the literature of GMM

19 [, can be expanded as Hyp, = My (I, — pOMn)*l = M, + )\OM,ZL +---. As D(M,) = 0, the empirical variance
of the diagonal elements of H,, is largely determined by that of M2.
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estimators with many moments occurs when the (optimal) weighting matrix involves preliminary
estimates of parameters nonlinearly (see Han and Phillips, 2006, for a discussion). It would be quite
difficult if not impossible to derive the asymptotic properties of such an estimator. As the optimal
weighting matrix of the moment conditions of the BGMME in this paper involve initial estimates,
we expect this technical difficulty would occur if many higher moments are considered.

The models considered so far in this paper have concentrated on the regression and MRSAR
models with SAR disturbances, where the spatial lags are all of the first order, i.e., there is a single
spatial weights matrix in the main equation or the disturbance process. It is of interest to consider
models with high order spatial lags. Those models would be more complicated in structure, which
will result in more complex identification and estimation issues. The details will be reported in a

separate paper.

APPENDICES

A  Summary of Notation

e D(A) = Diag(A) is a diagonal matrix with diagonal elements being A if A is a vector, or

diagonal elements of A if A is a square matrix.
e vecp(A) is a column vector formed by the diagonal elements of a square matrix A.
o A = A+ A’ where A is a square matrix.
o A = A — %tr(A)In where A is an n X n matrix.
o AW is a linearly transformed matrix of A that preserves the uniform boundedness property.
o« 0 = (0,0 B); By = (90, hos BY). 8 = (6,0%); 8) = (8, 03).
o Rn(p) = In — pMn; Ry = Ru(pp). Sn(A) = In = AWn; Sn = Sn(Xo)-
o Hy(p) = MR, (p); Hn = Hn(pg). Gn(A) = WiS; 1 (A); G = Gu(Xo).

L4 Xn(p) = Rn(p)Xnv Xn = R, X,. Gn(pa )‘) = Rn(p)Gn()‘)R_l(p)7 Gn = RnGnR;1

n

e If an intercept appears in X,,, we have X,, = [X, c(py)l,]. Otherwise X = X,,.
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e [, isan n x 1 vector of ones. J, = I, — %lnl;. ek; is the jth unit vector in RF.

e For the MRSAR model with SAR disturbances, €,(0) = R, (p)[Sn(A\)Y, — X,5], gn(0) =
(Qny Pinen(0),- -, Pmnen(0)) e,(0), and Q,, = var(g,(6p)). The class of GMMEs of 6y that

minimize g/,(0)Q;; 19, (0) is denoted by M,,.

e For the regression model with SAR disturbances, €,,(p, 8) = Rn(p)(Yn — X00), gon(p, ) =

(Qn, Pron€on(p, B), -+ s Prn€pn(p, B)) €on(p, B), and Q,p, = var(gpn(pg, By))- The class of GMMEs
of (pg, B5) that minimize g/, (p, 3)2,, gon(p, B) is denoted by M,,.

e For the MRSAR model with i.i.d. disturbances, ex,(\,3) = Spn(N)Yn — X0, 9xn(X, 8) =

(Q'ru PlnE)\n(A; 6)7 e ;Pmne)\n()‘a B))/E/\n()‘7 6)7 and Q)\n = V&I’(g/\n()\o, ﬂo)) The class of
GMMEs of (Ao, B;) that minimize g}, (X, 3)Q5, gan (), 8) is denoted by My,

B FGLS and MOM Estimation of the Regression Model with

SAR Disturbances

The regression model with SAR disturbances is a generalized linear model with variance o3 R, ! R/—1
for u,, and the parameter of interest in this discussion is p,. A consistent estimator of p, can be
used as an initial estimator for the FGLS estimation of the regression coeflicient §,. Kelejian and
Prucha (1999) have considered the MOM estimation of p, and the FGLS estimation of 3,. If the
purpose is solely for the estimation of 5, via the GLS, efficient estimation of p, is not an issue as
the asymptotic distribution of the FGLS estimator does not depend on the asymptotic distribution
of the initial consistent estimator of p,. However, efficiency in estimation of p, improves the power

of tests for the presence of SAR disturbances (the test for p, = 0) as well as other inference on pj.

B.1 FGLS Estimation

Let B, = (X! X,) ' XY, be the OLS estimator. u, can be estimated by the estimated residual

G, = Yy, — X,,3; . Following Lee (2001a), p, can then be estimated by the GMM:

pp = arg mpin 9n(P) @, andn(p), (8)
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based on the quadratic moment conditions of €,

where Pj,,’s are n X n constant matrices such that tr(P;,) =0 for j =1,--- ,m.

Under assumptions 1-7, Lee (2001a) has shown the GMME pp is /n-consistent and has a limiting
distribution equivalent to the GMME when u,, is observed. Furthermore, with a consistent estimator
of po, the FGLS estimator 3, = (X, R/, R,X,) ' X! R\ R,Y, is asymptotically equivalent to the

exact GLS estimator 85 = (X' R, Ry X,) "X/ R/, R,Y,.

B.2 BMOM Estimation

Within the class of GMMEs given by (8), efficiency hinges on the selection of P;,’s. Lee (2001a)
gives the best one when €, is normally distributed. Here, we derive the BGMM (or BMOM)
estimator within this class without the normality assumption. The optimal choice of the weight-
ing matrix a/,a, in (8) is, as usual, a matrix proportional to ,!. The approach used in the
general model above hinges on the characterization of best moments in terms of any additional
moments being redundant in Breusch et al. (1999). In this section, we derive the analytically
best Py directly. Let M, be the class of optimal GMMEs from min,ex g}, (p);, gn(p), where
gn(p) = [PinRn(p)tn, - PmnRu(p)un] Ry (p)uy is a vector of moment functions with Pj,,’s sat-
isfying Assumption 4. We are interested in the BGMME within M, without any distributional
assumption. Following Lee (2001a), the asymptotic variance of the consistent GMME /npp based

on the quadratic moment u!, R, (p)Pp Ry (p)uy with tr(P,) = 0 is (limy,— o %Zpyn)_l, where ¥Xp,, =
tr2(PH,,)
(14=3) S0y P2 +tr(Pa P

i=1" n,ii

The best P, with tr(P,) = 0 will minimize the asymptotic variance
or, equivalently, maximize the corresponding precision measure Xp,. As tr(P,(LS)Pn) = tr[(P, —
D(P,))®)P,] + 250, P,,aii, the denominator of Xp,, is (1, — 3) >, P,%” + tr(PnS)Pn) = (n4 —
ny>r, Pg,ii + tr[(P, — D(P,))® P,], where n, > 1 by Jensen’s inequality for a concave function.

Let P = P, + (1/3(ny — 1) = 1)D(P,). As tr(P,) = 0, tr(P;") = 0. The square of the Euclidean
norm of (PF)) is tr[(PHE(PH®] = 2{(n, — 1)1, P2, + tr[(P, — D(P,))® P,]}. P, and

Pt have a one-to-one relation. Given P, P, can be recovered as P, = P, + ( % —1)D(P;).
Because tr(P,(LS)Hn) = tr(PT(LS)H,(f)) = %tr(P,(LS)(HT(f))(S)), the maximization problem is thus equiva-

tr?{ [P +(y/2/(ns—1) - 1)D(P)] @ (HD) Wy To

lent to maxp+ (P (BT

solve this, we shall look for a matrix A,
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such that tr{[P; + (/25 — DD(PH](H)O} = te[(P))(HS + A,)*)]. This identity is

equivalent to (,/ # — D[DEPHOHPD)S)] = [ (PF)® AL, I A, is taken to be a diagonal

matrix, then tr[(P,‘f)(s)Agf)] = tr[D(PTf)(S)ASf)]. One possible 4,, is A, = (4 /# — l)D(HT(f))7

o2 [(P1) ) (HD +A) )]
tr[(Pd) ) (P, (]

which is determined by H, alone. Thus the optimization becomes maxp+
For any square conformable matrices B and C, tr?(BC) < tr(B?)tr(C?) is a version of the Cauchy
inequality. Hence the optimum P} is P}* = HY + 4, = B + (/=25 — l)D(Hy(lt)). In terms

ny—1
of the original P*, one has P: = PI* + ( % — 1)D(PF*) = aY - Zi—:?D(Hy(,t)L because
*) (t)
D(P;*) = [ D).

The form of the best P} here motivates the selection of best moments for the regression model.

The following proposition gives the BMOM estimator of p,, for the SAR process.

Proposition 5 Under Assumptions 1-7, pg = arg min,ea [u! R (p) P Ry (p)un]® is the BUOM es-

timator within M, with \/i(pg — po) = N(0,%5") and Sp = lim,, . Ltr(P;* H,).

B.3 Variance Reduction

Let Pi,, be the class of constant n x n matrices P;;,’s satisfying Assumption 4. When ¢, is nor-
mally distributed, Lee (2001a) has shown that Hr(f) is the best selection in Py,. This is the special
case of P} in Proposition 5 with 1, = 3. Furthermore, Lee (2001a) has shown that the GMME p ;4
based on the quadratic moment u’nR’n(p)Hy(f)Rn (p)u, has the same limiting distribution as the QML
derived from maxIn L, (p, 0?) where L, (p,0?) = (270?%)~ % |Ry(p)| exp(— oz up R, (p) Rn(p)un), re-
gardless of ¢,’s distribution. Thus it is of interest to compare the efficiency gain of the BGMME

pp with pgyy. The limiting variance of v/nppy; is 5t = (lim, o L8 H1,0)7", where Spq, =
62 (D)) Ho]

(ma=3) 7y ()2 e[ (D) () Hy)

tr( ;(S)Hn) = tr[(H,(f))(S)Hn] - Q(Zz—j)tr[D(Hff))Hn]. To simplify notation, denote

. The limiting variance of \/npg is (lim, o %ZB,H)_l where X, =

n

1
vi =} (H) = = (H)))* =

i=1

n

S (Hoit =+ > Hos)? (10)
i=1

Jj=1

SER

the empirical variance formed by the diagonal elements of H,,. Furthermore, denote l%m = %tr[(HT(f))(S) H,)=
2 e {(H) O () and 1y 5 = Jtrl (o= D(H)) ) Hy] = 5otrl (o= D(H2))®) (o= D(H2)) ),
which are, respectively, - of the square of the Euclidean norm of (Hff))(s) and (H, — D(H,))®.

Instead of comparing the variances of these two estimators we compare the precision measures
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I 1 and £Xp 0. As 21, =1 /[(ny—3)v} +13 1] and t5p, =13, — 2(25?)1}%, it follows

that
1 (4 — 3)*vF (5, — 2v%) (4 — 3)*vF 132

1
*EB,n - *EH ,;n -
n n M (ns — D[(ng — 3)“1%[ + 11211,1} (ns — Dl(ng — 1)“%{ + l%{,z]

because I3, — 13, = Ltr[(H) ) H,] — Ltr[(H, — D(H,))® H,] = Lu[(D(H,) — ") 1) 1, ] =
203 Asny > 1and I3, > 0, it follows that X5, > £¥ 51 ,. Hence pp is efficient relative to py, .

—_n

When 7, # 3, the percentage loss of asymptotic efficiency of pg; can be evaluated as

1 YXHin _ (n4 — 3)21’12&11%{,2 (11)
S g — Do + o] v + (ny — DI ]
5 -l _y-1
Note that the variance is the inverse of the precision measure. So, 1 — zb,; Ln — ;’Ll B:r s also
T H1l,n

the percentage of reduction in asymptotic variance of pp relative to pg.

A subclass Pa,, of Py, consisting of Pj,’s with a zero diagonal is also interesting, as the cor-
responding GMME is robust against unknown heteroskedasticity (Lin and Lee, 2010) and distri-
butional assumptions. Lee (2001a) has shown the best selection of P, from P, is H,, — D(H,).
Similarly, we can compare the efficiency gain of pg relative to the GMME p 5 derived based on the
quadratic moment ul, R} (p)(H,, — D(H,))R,(p)u,. Following Lee (2001a), the limiting variance of

Pra is Sy = (limpyoe 25 p2,) 7", where X590, = Ltr[(H, — D(H,))® H,] = 13 ,. 1t follows

1 1 _ 2 _oMma=3y\,2 _ 12 _ _4 ,2 2 32 _ 9,2
that “¥pn — 3 XH2n =gy — 207V — o = 5=V because Uy — I 5 = 2v. Asmy > 1,

we have %Z B > %Z H2,n- The percentage loss of asymptotic efficiency of p, can be evaluated as

EHQ n 4’1}?{
1— o , 12
XBn 4”%{ + (4 — 1)@1,2 12)

which is also the percentage of reduction in asymptotic variance of pg relative to pgy. From this,

pp is more precise as it takes into account the variation of the diagonal elements of H,,.

C Joint GMM Estimation Approach

Here we consider the joint estimation of o3 and 6y in the GMM framework. Let § = (¢',02)". The

optimal GMMEs are derived from ming g/, (8)€2;; 1§, (6), where €, = var(g,(5o)) and
n(8) = (€,(0)Qn, €, (0) Prpen () — o*tr(Pry), -, €, (0) Prunen(0) — 02tr(Ppn))’,
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with Qn being an arbitrary n x ¢ matrix of IVs, and Pjn’s being arbitrary m x n matrices, not
necessarily with zero traces. At 8o, gn(d0) = [€,Qn, €, Pjnen — o3tr(Pj,)]’, which has a zero mean
because E(Q€,) = Q' E(e,) = 0 and E(e;P]fnen) = otr(Pj,) for j = 1,--- ,m. By comparing the
asymptotic variance matrix of the BGMME derived from the joint GMM estimation approach with
that of the BGMME in Proposition 1, we conclude that there is no efficiency loss in the estimation
of 0y by concentrating o3 out.

For simplicity, we focus on the case that X, does not have a column proportional to I, so
that X = X,,. When X,, has a column proportional to [,, the result follows by similar argu-

ments. Let Pf, = G, — W94 D(G,) — 0 D(GoXafy), Psy = Ho — =9 D(H,),

(na—1)—n3 (na—1)—n3 (na—1)—n3
Pg, = I, Piig, = D(X3;) for j = 1,--- k", and Q) = (@1, @3, @5, Qin), With Qf,, = X7,
@3n = luy Q3n = Gmr GnXabBo — Grogpveen(Gr) and Qf, = veep(Hy). Let §5(8) =

(€ ()@ €4 (0) Plen(0) — 0*6x(Pf,). - el (O)Bf g pen(0) — 0®tx(PL. 5 )] and €2 = var(g (80)).
dpy = argming g/ ()1 g (8) is the BGMME within the class of optimal joint GMMEs as shown
below.

Analogous to the proof of Proposition 1, the BGMME can be confirmed by showing that there

exists a matrix An invariant with Pjn’s and Qn such that D2 = Qm/ln, where

P o2tr(POH,) otr(PG) 0 tr(P)

D2 = E(WQH(CSO)) - - . . . . ’

| odte(PnH,) o3tr(PYAGa) 0 tr(B) |
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and

Qa1 = E [,(60)d5 (d0)]

o3Qn
pgvech (Pa)@Qr,

L p3vec (Pmn)Q:L
0

wl 0

+(ptq = 307)

13 Qlveen (Pr,)
abtr(P) Pr,)

agtr(Py(,fy)Lan)
0

vech (Pm)vecD (Pl*n)

i 0 Uech(Pmn)UecD(Pl*n)

IU‘3QITLUGCD(P/:*+3,TL)

ote(P) Pr s )

ot (PG PE 5,)
0

vec’D(Pm)vecD(P,:Ur&n)

vecy (Pmn)'vecD (P§*+37n) |

Let
— -/
205 'n 2

0 0 0 —m 0 O'O 0 O

i 0 0 o5 0 o 0 0 0

o (el y,. 0 0 0 0 0 0o v

_3 —4
o, N o
L 0 - (mgl)fni 0 0 0 (774*(1)*7@ 0 ]

where b = (b},--- ,b}.)" with b

-3
- _ 09 M3
(714—1)—TI§

ey for i =1, k*.

Straightforward but tedious

algebra leads to D2 = leAn. Furthermore, as An is invariant with Pjn’s and Qn, QﬁlDl =

Q' Dy = A, where Q1 = var(g;(Jo)) and D;

of 0py is gy = limy,_ o0 %D'lAn, where
[ () % (5)
tr(Py, " Hn) tr(Py,” Hn)
S WA 1 V% *(s) A

.. * oy (G X, o+ tr(P, 7 Gy
b 57 X Bo) @i+ (P Gr)

* *

* *

E(%g;(do)). The asymptotic precision matrix

—2
20,

_ 2(7_1773 / v
G- e (Hn) Xn - Gy tr(Hn)
002 Q5n X o5t (Pr,)

00 (=) %1 %
(ny,—1)—nz "nn

*

- (7]4_1)_7]3

-3 _
Og M3 2‘X'/ ln
n

—4
no,

(714—1)—77§

From the inverse of a partitioned matrix, we have Avar(0p;) = (nXg)~!, with Xp given in (3).

Hence the efficiency property of the BGMME of 6 is not affected by concentrating o out in the

GMM estimation.
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D Some Useful Lemmas

In this appendix, we list some useful lemmas for the proofs of the results in the text. The central
limit theorem D.5 is in Kelejian and Prucha (2001). The other properties in Lemmas D.1-D.9 are
either trivial or can be found in Lee (2001a; 2004; 2007).

Lemma D.1 Suppose that z1, and zo, are n-dimensional column vectors of constants which are

uniformly bounded. If {A,} is either UBR or UBC, then |z}, Anzon| = O(n).

Lemma D.2 Suppose that €1, , €pn are i.i.d. random variables with zero mean and finite vari-

ance o and finite fourth moment u,. Then, for any two n x n matrices A, and B,
E(e, Ane, - €, Bnen) = (g — 30" vedn (An)veep(B,) + o [tr(An)tr(Bn) + tr(A, B,

where B,(«LS) =B, + B,,.

Lemma D.3 Suppose that {A,} is a sequence of n xn UB matrices, and €p1, - , €pp are i.i.d. with
zero mean and finite fourth moment. Then, E(e, Ane,) = O(n), var(e), Ane,) = O(n), €, Ane, =

Op(n), and %eﬁLAnen — lE(eﬁLAnen) = 0,(1).

n

Lemma D.4 Suppose that {A,} is a sequence of n x n UBC matrices, elements of the n X k matriz
C,, are uniformly bounded, and €,1, - - , €nn are i.i.d. with zero mean and finite variance o%. Then,
ﬁC’;Anen = 0,(1) and 2C} A€, = 0,(1). Furthermore, if the limit of 1C}, A, A, C,, exists and is
positive definite, then ﬁC’{lAnen 5 N(0,02lim,, o0 %C;AnA;LCn),

Lemma D.5 Suppose that {A,} is a sequence of symmetric nxn UB matrices and by, = (bp1,- -+, bpn)’
is an n-dimensional vector such that sup,, % Dy |bm-|2+771 < oo for someny > 0. €1, ,€npn are
i.i.d. with zero mean and finite variance o2, and its moment E(|en;|*T2%) for some § > 0 exists. Let

aén be the variance of Q, where Q, = €, A€, + b€, — o?tr(A,). Assume that the variance aén

is bounded away from zero at the rate n. Then, U%" A N(0,1).

n

Lemma D.6 Suppose that L(g,(X\) = gn(X)) — 0 in probability uniformly in A € A, which is a
compact set, and lim,, _, %gn(k) =0 has a unique root at Ao in A. The 5\n and 5\2 are, respectively,
the roots of gn(A) =0 and gi(X) = 0. If (g5 (X) — gn(N)) = 0p(1) uniformly in X € A, then both An

and 5\: converge in probability to Ag.
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In addition, suppose that %8957)(\)‘) converges in probability to a well defined nonzero limit function

uniformly in A € A, and ﬁgn()\o) = 0,(1). If %(% - 8957)(\)‘)) = 0p(1) uniformly in A € A,
and ﬁ(g:()\o) — gn(X0)) = 0,(1), then both \/n(\, — Xo) and \/75(5\2 — Xo) have the same limiting

distribution.

Lemma D.7 Let 0,, and 9:; be, respectively, the minimizers of F ,(0) and F 7 (0) in the compact set
©. Suppose that L(F ,(0) — F ,(0)) — 0 in probability uniformly in 6 € ©, and {LF,(0)} satisfies
the uniqueness identification condition at 0. If L (F 7 (0) — F »(6)) = 0,(1) uniformly in 6 € ©, then
both 0, and 92 converge in probability to 0.

2
In addition, suppose that %aagge(/e) converges in probability to a well defined limiting matrizx,

uniformly in 6 € ©, which is nonsingular at 0y, and ﬁwgiéeo) =0,(1). If %(8281(;(%0(,0) — 82/(;59(,0)) =

op(1) uniformly in 6 € © and ﬁ(argéeo) - argéeo)) = 0,(1), then \/ﬁ(éz — 0y) and /n(0,, — )

have the same limiting distribution.

Lemma D.8 Under Assumption 2, the sequences of projectors {Z,} and {I, — Z,} with Z,, =
X, (X! X,)"1X! are UB.

Lemma D.9 Suppose that {||Wy||}, {[|Mnl}, {I|1S; 1}, and {||R; 1|}, where ||-|| is a matriz norm,
are bounded. Then {||S,(N\) 7|} and {||R.(p)~ ||} are uniformly bounded in a neighborhood of Ao

and po respectively.

The following properties are specific to the model in this paper.

Lemma D.10 Suppose that z1, and zs, are n-dimensional column vectors of constants which are
uniformly bounded, the sequence of n x n constant matrices {A,} is UBC, and {B1,} and {Bay}
are UB, and €p1,- - , €nn are i.i.d. with zero mean and finite second moment. /n(é, —ag) = O,(1)
where ag 1S a p-dimensional vector in the interior of its convexr parameter space. For notational
simplicity, denote (Gn — o)< = 30 _ -+ 30 ) (Gnjy —ajy0) -+ - (G, — ji0). The matriz Cy(dn,)

has the expansion that
Cn(dn) - Cn(QO) = Zz}l(&n - 050)<i>Kin(050) + (an - a0)<m>Kmn(dn)a (13)

for some m > 2, where {Cy(ag)} and {K;n(ao)} are UB fori=1,--- ,m—1, and {Kmnn(a)} is UB

uniformly in a small neighborhood of ag. Then, for A1, = Cp(é) — Cn(ao), (a) 221, A1z, =
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op(1); (b) ﬁzinﬁlm‘ln% =0,(1); (c) L€, B},,A1nBaneyn, = 0p(1), if (13) holds for m > 2; and (d)
ﬁe;AMen = o0,(1), if (18) holds for m > 3 with tr(K;n(ao)) =0 fori=1,---,m— 1.

Furthermore, suppose another matriz D,,(%,,) has the expansion that

Dy(3n) = Dulo) = 70 (9 = 70) = Lin(70) + (B = 70) =™ Linn (), (14)

for some m > 2, where all the components on the right hand side have the same properties of corre-
sponding ones in (13). Then, for Ag, = (Crn () — Cr(0))(Dn(5,,) — Da(70)), (a7) 21, Asnzay =
op(1); (b7) %zinAgnAnen =0,(1); (¢’) L), By, Aoy Banen = 0,(1), if (13) and (14) hold for m > 2;
and (d’) —=enDonen = 0p(1), if (13) and (14) hold for m > 3 with tr(Kin(ao)Ljn(vo)) = 0 for

i,j=1,,m—1.

m—1

Proof. Let T,, = %z’ln(Cn(dn) — Cn(ag))zan. With (13), T3, = T1 + T2, where Thyp = >0 (G —

a0)<l> ! Zanin(a())ZQn and Tn2 = (&717050)<m> : Zanmn(dn)ZQH‘ Tnl = Op(l) because %

210 Kin (o) 220 =
O(1) by Lemma D.1, and &, — ap = 0p(1). Similarly, as {K,(a)} is UB uniformly in a small
neighborhood of «, and &, — ag = 0p(1), it follows that {K,,,(&y)} is UB in probability. Hence
L K ()220 = Op(1) by Lemma D.1, which implies Ty, = 0,(1). This proves (a).

Similarly, let U, = len(Cn(dn) — Ch())An€n. Then, with (13), U,, = U,1 + U,z where
Unt = 75 (6 — 00)< L2l Kin(a0) Anen = 0p(1), because 21, Kin(ao) Anen = O,(1) by

Lemma D.4, and U,s = (&, — a0)<m>ﬁz{”Kﬂm(dn)Anen. Let [|-]|; be the maximum column sum
norm. Because the product of UBC matrices is UBC, || Ky un (éi,) Al < ¢1 for some constant ¢; for

all n. As elements of z;, are uniformly bounded, ||z}, ]|; < c2 for some constant cy. It follows that

|Unz2l1

IN

- . ) 1
=2/ — ao)lI7 - [[21al 1 [ Kmn(@n) Anl 1+ —[lenlls

—m ~ m 1 n
c1ean ™2 |y/n(én, — ao)|| (o i lenil)-

IN

Hence Uy2 = 0,(1) for m > 2 because \/n(&n—ap) = Op(1) and L 37 | |e,;| = Op(1) by the strong
law of large numbers. These prove (b).

For (c), let R, = 1€, B, (Cp(an) — Cnla))Banen. With (13), R, = Rn1 + Ry,2, where
Ry = 35 (G — a0) <> L), B, Kin(0t0) Banen = 0,(1) because 2, Bf, Kin (o) Banen = Op(1) by

1=1

25



Lemma D.3, and R, = (&n — o)< € Le! Bl Kpn(Gn)Banéen. On the other hand,

—-m A m 1 A
[Bnalli < 0™ 2[[V/n(Gn = ao)l[{" - —llenlls - [lenllr - [|Bin Kmn(Gn) Banlls

—m R m 1
en' "2/ (b, — ao)|l] '(g Sy lenil)?,

IN

for some constant ¢. Hence Ry = 0p,(1) for m > 2 because L 3" | |e,;| converges in probability to

the absolute first moment of €,; and \/n(é, — ag) = Op(1). These prove (c).

For (d), let Vi = —=€,(Cn(én) = Cu(a0))en. Then, Vi, = Viy + Viig where Viyy = S (G —
ao)<i>ﬁe;LKm(ao)en = o0p(1) because ﬁeﬁLKm(ozo)en = 0p(1) by Lemma D.5, and V,,» =

ﬁ(dn—a0)<m>e;LKmn(&n)en. The term V,,5 = 0, (1) for m > 3 because ||Vya||1 < en®=™/2||/n(é,—
ao)||7" (% 37 lenil)?. The desired results follow.

On the other hand, as

[Z:i;%dn — )< Kin () + (& — O‘O)<m>Kmn(OA‘n)][Z;‘n:_ll (Yn — 70)<j>Ljn(70) + (¥ = 70) =™ Linn ()]
= X (@ = a0) T (B = 70) ¥ Kin(@0) Lin(v0) + 32550 (B = %0) 7 (@ — @0) =™ Ko (@) Ly (70)

+ 211_11(@71 - 0‘0)<i> (Y — 70)<m>Kin(a0)Lmn('A7n) + (G — 0‘0)<m>('A7n - 70)<m>Kmn(@n)Lmn('AYn)a

(a’)-(d’) hold by the same argument as above applied to K, () Ljn(Vo), (Gn—0) <" K (én) Ljn(70),

(Yn = 70) =™ Kin(ao) Limn(95,), and (¥, = 79) =™ Kinn(Gn) Linn (¥,,)- ™

Lemma D.11 Suppose that z1, and zs, are n-dimensional column vectors of constants which are
uniformly bounded, the sequence of n x n constant matrices {A,} is UBC, {B1n} and {Ba,} are
UB, and €,1, -+ ,€nn are i.i.d. with zero mean and finite fourth moment. \/ﬁ(én —6p) = O,(1).
Let C,, be either H,,, G,,, D(G,X,8,), or D( nj) for 3 =1,--- k*, and let C,, be its empirical
counterpart. Then, under Assumption 3, for A, = C, — C,, we have (a) %zinAg)an = 0,(1),
ﬁenAgl)en = 0,(1); (b) %vec’D(Ag))zzn =
), vecD(A( ))A €n = 0p(1), 2tr(AL Al )) = o0p(1). In addition, if {D, ()} is UB uniformly in

% A(l)Anen = 0,(1), *6 BlnASLl)anen = 0,(1),
op(1

a small neighborhood of 7y, that is in the interior of its parameter space, then (c) %tr[D;(ﬁn)Agp} =
0p(1), where 4, — vo = 0p(1).

Proof. As S, —S,(An) = (A —Ao)Wh, it follows that S, (An) =St = S (A)[Sn— S (An)]S;t =
S (M) (An—X0)Gy- By induction, S; ' (M) =St = S (A —X0)'S; GE A (A=) ™Sy (An) G2
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for any m > 2. Hence, for én = Gn(j\n), it follows that
(G = G)® = 270 (= 20) (G + (A = 20)™ (GG, (15)

which conforms to the expansion (13) with K;,(Ao) = (GEF)® and K, (An) = (G G™)D. Anal-

ogously, for R, = R,(p,), we have,
Rt = Ryt = 005 (b — po) Ry Hi o (b — o)™ B L (16)
for any m > 2, which implies that
(Hn = Hp) Y = 370 (b = p0) (HY + (b, = po) ™ (HL HH)WY, (17)

where H,, = H,(p,,). (17) conforms to the expansion (13) with Ky, (Ao) = (Hi1)® and K,y (M) =
(lﬁlnH,T)(l). Note that when the transformation -() is taken, the deterministic parts of the expansion
Kin(Xo) = (H)® have a zero trace by construction. Hence, when C,, = H,, (a) follows from
Lemma D.10, where the uniform boundedness in a neighborhood of the true parameters of the
relevant matrices in the remainder terms follow from D.9.

As G, = R,G, R;', we have Rnénf%;l -~ R,G, Rt = (Rn — Rn)énf%;l + RH(G,L — Gn)(égl —
Ry + RoGr(RyY — RyY) + Ro(Gy — Gu)R;Y, where (R, — Ry)GoRyY = (pg — o) MnGo R

én—Gn and R;l - R

—1 can be expanded to the form of (13) by (15) and (16). Hence, it follows
by the same argument as above that (a) holds when C,, = G,,.

As GnXnBy = RyGnXnB,, we have D(R,GnX,B,) — D(R.GnXnBy) = DIR.Gr X, (B, —
Bo) = (b, — po) DM, G X, 30) + D[Rn (G — G) X, 30]. Let ex; be the jth unit vector in RF,
then %zinD’[RnGan(Bn = Bo)lzan = 130 Z1n.i%om,i€i BnGuXn (B, — By) = 0p(1), because
D Z1n.iZon.i€hi RnGn X, = 0,(1) and 3,, — B, = 0,(1). On the other hand, %zinD[Rn(én -
Gn)X.B¢l72n = 0p(1) by Lemma D.10. Hence, %Zin[D(RnGanBn) — D(R,GnX0nB0)]72n = 0p(1).
With similar arguments and corresponding results in Lemma D.10, the other results in (a) follow
when C,, = D(G,, X,,3)-

As X3y = RuX3,, D(RaX:,) = D(RaX3,) = — (P — po) DM, X5,). Because yia(p, — po) =

Op(1), the 4 claims in (a) hold for C,, = D(X;;j) by Lemmas D.1, D.4, D.3, and D.5 respectively.
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For (b), as vec’D(Ag)) = l;D(Ag)), %vecb(Ag))an = 0,(1) and UecD(A(l))A €, = 0p(1)

NG
follow by similar arguments in the proof of (a) via Lemma D.10. To prove Etr(A;LAg)) = 0,(1), first
consider the case when C,, = H,. As in the proof of (a), for m = 2, C,—C, = (G, — o) K1n(ag) +
(6 — 0) 2K 3, (&) Hence, Ltr(A)AD) = (&, —ao) Ltr[AL K (ag)]+ (G — o) 2tr[AL KD (&,)] =
op(1), because Ltr[Al, K(l ()] = O(1), %tr[A;LKzn(dn)] = O,(1), and &, — @y = 0p(1). When
Cn = Gy, %tr(A;An ) = 0,(1) follows similar arguments. When C,, = D(G,X,/3,), we have
Ltr(A,AY) = Lvec), (A0 [RuGn X (B — Bo) = (b — o) MG X By + R (G — G) X0 Bo] = 0,(1).
When C, = D(X;;), we have 2tr(A,AL) = —(p, — po) Ltr[AL, D(M, X)) = 0,(1).

For (c), As {D,(v)} is UB uniformly in a small neighborhood of 7y, and %,, — vq = 0p(1), it
follows that {D,,(%,,)} is UB in probability. The remaining arguments will be similar to those of the

part 2 of (b). m

Lemma D.12 Suppose that z, is an n-dimensional column vector of constants which are uniformly
bounded, and {A,} is UBC. \/ﬁ(én —0) = O,(1). Let T, be either X,,, GnXnBy, vecD(Hr(f)) or
UecD(C_?gf)), with T, being its estimated counterparts. Then, under Assumptions 1-3, we have (a)
(Tn T) zn = 0p(1), f(T” T,) Apen, = 0p(1). Furthermore, let D, (%,,) be a stochastic matriz
that can be expanded to the form of (14) for some m > 2. Then, (b) %(Tn —T,,)' Dy (7,,) = 0p(1).

Proof. (a) holds by Lemma D.11 (b).

For (b), we shall illustrate the proof for the case that T, = G, X,,3, as the others are similar.
Let Dy, = Dn(4,,). We have 2(T), — T,,)' Dy, = 2[R0 (G, — G) XnBo) D + 2[R0Gn X (B, — Bo) —
(P = Po) MG X0 Bo) Dy First, L[R(Gr = Gu) XnBol' Du = E[Ru(Gr — Gn) X8yl (D — D) +
%[Rn((?n — Gn)XnBy)' Dy, = 0p(1) by Lemma D.10. The remaining term is also op(l) because
b = po = 0p(1), By — Bo = 0p(1), and LMy G XoBo)Y D = Op(1), L(RuCin X, Dy = O,(1).

Hence, the desired result follows. m

To show the proposed moment conditions are optimal, we show adding additional moment con-
ditions to the optimal moment conditions does not increase the asymptotic efficiency of the GMME
using the conditions for redundancy in Breusch et al. (1999). The definition of redundancy is given
as follows. “Let  be the optimal GMME based on a set of (unconditional) moment conditions
E[g1(y,0)] = 0. Now add some extra moment conditions E [g2(y,6)] = 0 and let 6 be the opti-
mal GMME based on the whole set of moment conditions E [g(y,0)] = E|[¢,(y,6), g5(y,0)] = 0.

We say that the moment conditions E [g2(y,0)] = 0 are redundant given the moment conditions
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E[g1(y,0)] = 0, or simply that g, is redundant given gy, if the asymptotic variances of 6 and 0 are the

same” (Breusch et al., 1999, p. 90). For moment conditions E [g(y,0)] = E [¢}(y,0), g5(y,0)] = 0,

Q Q
let Q= Eg(y,0)¢'(y,0)] = o , with Qj; = E'[g;(y,0)g,(y,0)] for j,l =1,2. And define
Qo1 Qoo

D;=F [8gj(y,9)/80/] for j = 1,2. Let the dimensions of ¢1(y, 8), g2(y,0) and 0 be k;, ko and p.

Lemma D.13 The following statements are equivalent. (a) go is redundant given ¢i; (b) Dy =

leﬂfllDl; and (c) there exists a k1 X kg matriz A such that D1 = Q11 A and Dy = Qa1 A.

Lemma D.14 Let the set of moment conditions to be considered be F [g(0)] = E [¢}(0), g5(0), g5(0)] =
0, or simply g = (91, 95, 95)". Then (g5, g5)" is redundant given gy if and only if g2 is redundant given

g1 and g3 is redundant given g1 .

E Proofs

Proof of Proposition 1. Consider the moment conditions E[g;/(6o), g}, (60)] = 0, where g,,(6)
is a vector of arbitrary moment functions taken the form of (2). To show the desired results, it is
sufficient to show that g, is redundant given g, or equivalently that there exists an A,, invariant

with Pj, (j =1,---,m) and @, st. Dy = Q9 A,, according to Lemma D.13 (c), where

0q><1 Q;annﬁo ;LXn
P odte(P) H,)  odtr(PL)GL) O

Dy = E(Wgn(eo)) = : : : ’

| odtr(PYAH,)  ogtr(PYAGy)  Orxk
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and

Qo1 = E(gn(00)gy (00)) (18)
o5 QnQn, p3Quuecp(Pr,) -+ paQuuecp (P s ,)
| mavedp(Pr)Qs obte(PLVPL) e obte(PL) Proys )
| tavec (Prn) Q5 oftr(PRAPY) o okt (PRAPL 5 )
Ogx (e +4) Ogx (k*+5)
O1x(k*44) vecp(Pin)(veep(Py,), -+ ,veep (P ys.,))
+(pg — 30p)
| Oix(keta)  vech(Pn)(veep(Pry,), -+ veep(Preys ) |
In the case that X, does not have a column proportional to [, so that X* = X, let Py, =

* (n4—=3)—73 px og'n  _ px (ny—3)
Pln - (le_l) 7/§P2n - (,1421) 37/2P3n7 Ppn P4n - WPSTU Pﬂnl - }Dl+5n for | = ]‘ k ’

* -1 *
Qﬁn: ,,:,_1 712an (714_1) 7/2Q371( Z;LX) Q)\n* r14—1 ngQQn (714_1) 7,2Q3n( l;LGanﬂo)*
20 * *
(M_g% 2Q4n and Q%, = Q3,. Note that (Py . Pr,, P51, Pipe) = (Pios- s Prysn)Ap
where
_ (n4=3)—n3 o'
I Gyt ~wen-min 0 0 0
A = (n4=3)=n3
P 0 0 0 1, (nj D= n;I" 0 )
0 0 0 0 0 J Ry

and (QBW Q}vrz? pn) (QTn’ e 7Q§n)AQ1 where

ny—1 n3 o
(7z4—41)—n§Ik'* 0 (774—1) n3 7 (0 X5 0 0
A ny—1 . 3 l ___200m
Q1 0 (174—41)—772 (774—13)—77 ("l"G X”ﬁO) (n4—1)i77§ 0
0 0 0 0 1

On the other hand, in the case that X,,’s last column is given by ¢(pg )n, let Qf,, = %Q’{n (T, O x1)+
4 3

2 —
mc(/}o)ane%k - m@;n(%l;XnL where ey, is the jth unit vector in RF, so that
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(Qg’n’ Q;m ;n) = (Qin7 T 7Q;n)AQ1 where

1 2 _
oo e Okexr) 0 gpIelp)en - g LA 00
L = T M (lp A __200m3 _
Q2 0 (?74*41)*77% (n4*13)*n§(nl"G”X”60) (?74*1)377?, 0
0 0 0 0 1
Let
205 'n )
0 0 _(774:]1)7377? 0 " 0
By, = 0 o2 0 52 0 0
oo’y 0 0 o 0 v
/ NS s o %n, * AQl 0
where b = (b}, , b)) with b, = —Wekl forl =1,---,k* Let A4, = B,
0 A,
_ Agz O _
when X,, does not have a column proportional to [,, and A, = B, when X,’s
0 A,
last column is ¢(py)l,. Let Jy, 1l I!. To check Dy = Qq1A,, the following identities

are helpful. For [ = 1,--- k¥, (a) vecp(Py,) = mvecD(G(t))f%J GnXnBy; (b)

ercD(H( )) (c) vecD(Pgnl) J. X5 and (d )Zl 1UGCD(P5n1)€kz JnXn.

It follows from (a), (b) and (d), respectively, to have that (e) 03Q%,, +psvecp (Py,) = 03Gn X0 By;

% 2 k* « _
() (m—l Qle vecD(P ), and (g) Qﬂn — (m_nﬁzlzl vecD(Pﬁnl)e%l = X,.

vecp (P;,“n) =

For an arbitrary nxn matrix P, with tr(P,) = 0, we have: (h) vec (P,)Q%,, = mvec[, (P) X
4
(i) pgvecy (Pa) Qi +odtr(PY B, ) +(na—30d)vec)y (Paveen (P5,) = oftr(PYG); (1) — 22 By vec)y (Pa)Qpu+

tr(P( )P;‘n) + (pg — 308)vec (Py)vecp(Py,) = a%tr(Pés)Hn); and (k) aétr(P,(LS)PEnl) + (g —
BUé)Uec’D(Pn)vecD(Pgnl) = (uy — aé)vec’D(Pn)vecD(Pgnl).

Tt follows from identity (f) the (1,1) block of Qa1 A, is 0; from (e) that the (1,2) block of 251 A4,
is —Q!,GnX,By; and from (g) that the (1,3) block of Q21 A4,, is —Q’, X,,. Identity (j) implies that
the (7 + 1,1) blocks of Q91 A, are —U%tr(Pj(z)Hn) for j = 1,---,m; (i) implies that the (j + 1,2)
blocks of Q21 4,, are —U%tr(Pj(Z)@n) forj=1,---,m; and (d), (h) and (k) imply that the remaining
blocks of 291 A,, are zeros. Therefore, 291 A,, = D> and the desired result follows.

Furthermore, as gX(0) is a special case of g,(0), and A, is invariant with P,’s and Q,, D1 =
Q1 A,, and hence Q1}'D; = A, where Q1 = var(gi(6o)) and Dy = E(Zg:(6)). Hence Sp =

lim,,— oo %D’lQﬁlDl = lim,, oo %D’lAn. Some tedious but straightforward algebra gives the explicit
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form of ¥p in (3). m

Proof of Proposition 2. We shall show that the objective functions F%(0) = ¢/ (0)2: 1% (6)
and £, (0) = g7/ (0)2: 71 g (0) will satisfy the conditions in Lemma D.7. If so, the GMME from the
minimization of F 7 (#) will have the same limiting distribution as that of the minimization of F,(9).
The difference of F*(6) and F,(0) and its derivatives involve the difference of §*(#) and g (6) and
their derivatives. Furthermore, one has to consider the difference of ¥ and Q.

First, consider 2 (g5 (0) — g;(0)). Let m* = k* + 5. Explicitly,

(G50~ g0)) = [ (@~ Qi) OBy = L) (OB — P en(6):

n

The €,(0) is related to €, as €,(0) = (I, + (pg — p)Hn) (I, + (Mo — A\)Gp)en + d,,(0) where d,, () =
(In + (po = P)H) (Mo = NGnXnBo + Xn(By — B)]. Tt follows that 2(Q — Q5)en(6) = £(Q; —

Y L+ (po— ) Hp) (In+ (Mo — N)Gr)en + 2 (Q% — QF)'dy () = 0,(1) uniformly in § € © by Lemma
D.12. Similarly, it follows by Lemma D.11 that L/, (8)(P%, — PJ,)en(8) = 0,(1) uniformly in 6 € ©
for j=1,--+ ,m*. Hence, L(gz(0) — g3(6)) = 0,(1) uniformly in 6 € ©.

Consider the derivatives of g (6) and g (6):

+1 0en (0) 1 +1 0%€,(0)
Q ' 60(’ Qn’ aeaé'
*(s) ey, 85 6 s BeT, [ *(s) 0%€, (0
003(0) _ | w@PLI%5 | o) | TwTPR %5+ @R s
00 : ’ 0000 :
*(8) ey (0) B¢l (0) p*(s) Den(0) *(8) 8%e, (0
| €n(0) P =g | | 55 P Z5a7 + en(O) P S

06l — —[My (L — AW)Ys = My X0, R (0) W Yo, Ru(p) X,] where Y, = 571X, 80+ S Ry e

Oenll) = [0, My WY, My X,.], Sl = [M,W,Y;,,0,0], and 259 = (31, X,,,0,0]. 1t follows
Q)

from Lemmas D.11 and D.12 that 1(8959(9) 95’19(9)) = 0p(1) and L( 353((9?) — aE) = op(1)

uniformly in 6 € ©.
Consider 1 (9% — Q%), where

2 N)yx! )k *
0@y Q 3 Qrw
@ = Elg 0o 00) = | T o ,
,L"Swjn*nQ:, JOA:’L*TL + (,LL4 - 300) jn nwm n
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w(PLVPL) e (PP

m*n

with wm n — [’UG‘CD (Pl*n)7 trr,VeCp (P;*+2,n)] and A;kn*
(PLPR) e (PP
First, consider the block matrix odA%,.,, + (g — 308w, Wiy . As { .} is UBC in probability, it

follows from Lemma D.11 that te(5/*) P ) — Ler(P W Py ) = Lee[(B) — P2 Py + PR (P, —

P;)] = op(1), and UecD(P* )vecD(P* ) — Lvecy (P, Jveep(Pj,) = lvecD(P* )UecD(P* - Pr)+

Loed] (P, =P} Jveep(Pr,) = op(1) fori,j = 1,--- ,m*. Hence, %(62) tr(P;L(S)P;n)—antr(ﬂjs)an) =

0p(1) and L (i, — 3(62)2)vecty (B veen(Ph) — L1y — 30d)vech (Pl vecn(Ph,) = op(1) for i, =
1,---,m* as 62 — 02 = 0,(1) and fiy — puy = 0,(1).

Next consider i3Q*w* ... As elements of Q* are uniformly bounded in probability for all n, it
follows from Lemmas D.11 and D.12 that Q*’vecD(P* )—+Q;/vecp(Py,) = Q*’vecD(P* —P;)+
;(QZ - Q;)vecp(P},) = 0p(1) for j =1,--- ,m*. Hence, 7u3Q*’vecD(P* ) — +u3Q veep(Py,) =
op(1) for j =1,---,m*, as fig — ug = 0,(1).

Lastly, consider 03Q'Q%. As elements of Q* are uniformly bounded in probability for all n,

Lemma D.12 implies that 1( i ;‘n Qi) = %[Q (@, —Q5,) +( A;-*" - Q7,)'Qj,] = 0p(1) for
i,j =1, ,5. Therefore, ;(5,Q1Q; — 03Q1Q;) = %(QZ’QZ —QiQY) + (67, — 08) QR =
0p(1). In conclusion, %Q* — 10 =0,(1). As the limit of 10 exists and is a nonsingular matrix,

(%QZ)_l — (£Q7)7! = 0,(1) by the continuous mapping theorem.
Furthermore, because (g5 (0) — gi(6)) = 0,(1), and 2[g;(0) — E(g;(0))] = 0p(1) uniformly in
0 € ©, and supyee = |E(g5(0))] = O(1) (Lee, 2007, p. 21), 147 (0) and L g7 (6) are O,(1) uniformly

1 8(1”(9) 193,(0) 19°9,(9) 19°9,(0) : :
BT waang and =55~ are Op(1) uniformly in 6 € ©.

in 0 € ©. Similarly, -
With the uniform convergence in probability and uniformly stochastic boundedness proper-
ties, the difference of f 7 (6) and F ,,(f) can be investigated. By expansion, L (F % (0) — F ,(0)) =

2 0n ()71 (35(0) — 95 (0) + 195 () (™" = Q5735 (0) + 597 ()27 (97.(6) — 97,(8)) = 0p(1), uni-

2
formly in 0 € ©. Similarly, for each component ; of 0, %68(5,5((5) — % 88(;5§?) = %[

Ax x—10%95(0 397’ (8) (yx—1 99: (0 x—10%g5(0)\1 _
a2 (0)u 1 900 (90 O) e10000) o gy =1 D000y (1),

934" (0) Ax—1 995, (0)
e L e

Finally, because (89%990 Qrt— 857"379909;';’1) = 0,(1) as above, and ﬁg;(ﬁo) = O,(1) by the
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central limit theorems in Lemmas D.4 and D.5,

1 0F;(60)  OF w(6o)
ﬁ( o0 20 )

_ 2{ A>}</( )

01 = Ga60) - g3 (60) + (L)t - o) g )
a"*/(

_ )Q*fl 1

S 600) — 93.(60) + 0y(1).

As J=(37(60) — 95 (60)) = 0p(1) by Lemmas D.11 and D.12, %("’Fd‘g"@ % nifo)y — o,(1). The

desired result follows from Lemma D.7. m

T
and Pﬁn ;

—% QL. (21, X,) and Qf,, = Q},. Note that P}, and Q, are lincar

Proof of Corollary 3. Let Pf, = =P — MPJf

In (ng—1)—m3 " 2
T ny—1 )%
Qpn = (ns=1)— 71§X"

= P/

H_znfor]fl ,k*. Let

(774—1) n3

combinations of P} PQTH and Qf. Hence, it is sufficient to show that the optimal GMME with

In>

g;n(py B) = (Q};na Qpn7 Pgnepn(pa /6)7 Pgn1€/m(p7 5)7 e ,Pgnk*e,m(p, /B))lepn(pv 6) is the most efficient
within M,,. Similar to the proof of Proposition 1, it is sufficient to show that there exists an A,

invariant with Pj, (j =1,---,m) and Q,, st. Dy = Q91 4,,, where

(s) 2 (s)
o ) 0 a%tr(Pln Hn) s Uotr( man)
Dy = [E(afpgpn)yE(aiﬂlgpn)”Poﬁo = X'Q 0 0 ’

and Qg1 = E(gpngzl)‘po,ﬁo in the form of (18). Let

/

-2 200_1773
A —_| Y TwEes O
0o’y 0 0 v
-3
where b = (b}, --- ,bl.)" with b, = —%621 for [ =1,---,k*. With some simplified identities
3

of those in the proof of Proposition 1, we have Q91 A, = D>.
Furthermore, as g;n is a special case of g,,, Q;'D1 = A, where Qy; = Var(ggn) and D; =

[E(£35)s E(557350)] 19,8, Hence, the desired result follows by Xp, = limp, e +DjA,. ®

—1
Proof of Corollary 4. Let P}, = Pf, — %Pﬁ = %Pgw and P, = P,

2 Q5 (50,X0) and Q% = 5 Qs

s * ny—1
for j =1,---,k*. Let Qf, = Xn =)=

(ny—1)—

(my— 1
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B Qan (51, GnXauBo) — %'sg@zn. It is sufficient to show that the optimal GMME with

(ny— 1 (ma—1)—n

g§n<p7 6) = (ana Q§n7P;n€kn(Pa B)a Pgnle)\n(paﬂ)a e aPEnk* €>\n(/77 B))le)\n(p, 6)
is the most efficient within M,,. For

) ) (GnXnBo)Qn  o2tr(P)GL) -+ altr(PiaGy)
Dy = [E(ag)\n)aE(aiﬂngn)H)\o,Bo = - X0 )
! Qn 0 0

and Q21 = E(9angin)lp,.8, in the form of (18), the desirable invariant matrix is

/

0 052 052 0
An = - ’
oo, 0 0 U
-3
where b = (b}, -+ ,b).) with b = f%e%l for I = 1,--- ,k*. With some simplified identities
4 3

of those in the proof of Proposition 1, we have Q91 4, = D. Finally, ¥p = lim, .o 2D} A, with

D, = [E(%g;n%E(aiﬁ/g;n)H)\oﬂo u

Proof of Proposition 5. We shall derive the best moment function P analytically. With m

quadratic moments in g,(p), var(gn(py)) = 0aQy,, where Q,, = (9, — 3)w\,wm + Vi, with w,, =

[WGCD(PM), tee 7U€CD(Pmn)} and
1 S
Vo = §(U€C(P1(n))7 oL wece(PE)Y) (vec(Pl(n))’ -+ wee(P))
tr(Pl(fL)Pln) e tr(Pl(Z)Pmn)
) (19)
() . (s)
tr(Pmnpln) tr(Pmann)

The two terms in §2,, can be combined into a unified one as follows. First, because

tr(PY) Pin) — vec(Pjn — D(Pjn))®vec(Pjn — D(Pjn))
= tr(P}) P) — tr[(Pn = D(Pj)) (Pj = D(Pyn))] = t2(Pyy) Pin) = tr[(Pjn, = D(Pj)) ) o]

Jn

= 2tr[D(Pjn) P = 2tr[D(P;n)D(Py,)] = 2vecy, (Pjn)vecn (Pr,),
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for any j and [, we have

tr(Pl(fL)Pln) T (P(S)Pmn)
- 2w;nwm = 7w;nwm7

where @,,, = [vec(Pi,—D(P1,)) ¥, -+ ,vec(Prn—D(Ppy))®)]. Therefore, Q, = 3 [2(ny — D)w,wp, + @h@im)].
Define the modified matrices P}, = P;, — D(Pj,) + "42_1D(Pjn) forj=1,---,m. As

Jn

vec'(P:(s))vec(P,:;l(s)) = tr(P;;(s)P,ys))
= tr{[Py) — D(P)PL) — D(PENIY + 2(ny — 1)tx[D(Pj) D(Pen)]

= ved[(Pjn — D(Pjn))Pvec|(Pin — D(Pen)) ] + 2(14 = 1vec (Pin)veen (Pin),
it follows that Q,, = (vec(PH )), . ,vec(P,jn(s))) (vec(Pf;( )), - ,Uec(PrJ,f”(f))).
Consider now tr(P»(n)Hn) = tr(Pj(Z) Hflt)) We would like to find a matrix A,, such that tr(P (S)Hff)) =
( (H © 4 A n)) holds for all j. By taking A, to be a diagonal matrix, the solution is
A, = ), which is invariant with any Pj,. Denote H, = H,(f) + A, = HT(Lt) +

) (Hn ) which has zero trace. Therefore, tr(P(S)Hn) = tr(P;L(S)Hrj).

Follovvlng Lee (2001a), the limit variance of the GMME with Pj,, j = 1,---,m, is Z;,l =
(limy, oo 23p,,) 7Y, Where Sp,, = (tr(PH,), -+, tr(PYnH)) Q5 (tr (P Hy), - tr(PYYH,)) -
With the above manipulation, ¥ p,, can be rewritten as Xp,, = %Uec’(H;(S))JJm (@%@m)_lainvec(H;(s))
with @, = [vec(an(s)), - ,U@C(PJ%S))].

By the generalized Schwarz inequality, Xp,, < fvec' (Hy, (S))vec(H,f (S)), which provides a bound
for the precision matrix ¥p, for any GMME with a finite number of quadratic moments. This

bound can be obtained with a corresponding optimum P;}* = " + (4 /% - 1)D(H,(f)). With

P; transformed back to the P, the best Py is P = P* = D(P*) + /-2 D(P*) = HYY —
D).

Furthermore, as ¥ = lim,, oo £ D/Q: 71D (Lee, 2001a), where 0, = var(g;;(py)) = Uotr(P*(s)Hn)
and D}, = B(Z g5 (py)) = —odte(Pi* H,), it follows that N = lim, o Ltr(P5" H,). m
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Table 1: The regression model with SAR disturbances (Ao = 0)

po = 0.3 Bi0=1.0 Bog =—1.0 Time
n =98 Normal (seconds)
GLS1 279(.134)[.136]  .999(.144)[.144]  —.998(.146)[.146] .0071
GLS2 278(.131)[.132]  .999(.144)[.144]  —.998(.146)[.146] .0042
BGMM 329(.143)[.146]  .997(.151)[.151]  —.999(.153)[.153] .0188
Gaussian ML .287(.134)[.135]  .999(.144)[.144]  —.998(.146)[.146] .2726
n = 490
GLS1 .294(.055)[.056]  1.000(.062)[.062] —.998(.063)[.063] .0075
GLS2 .294(.055)[.056]  1.000(.062)[.062]  —.998(.063)[.063] .0418
BGMM .305(.056)[.056] 1.000(.064)[.064]  —.997(.064)[.064] .1613
Gaussian ML .294(.055)[.055]  1.000(.062)[.062]  —.998(.063)[.063] .4870
n =98 Gamma
GLS1 281(.130)[.131]  1.004(.143)[.143]  —1.009(.144)[.144] .0069
GLS2 282(.125)[.127]  1.004(.143)[.143] —1.009(.144)[.144] 0042
BGMM 331(.138)[.141]  1.003(.113)[.113] —1.005(.115)[.115] .0195
Gaussian QML .290(.129)[.129] ~ 1.004(.143)[.143] —1.009(.144)[.144] 2632
Gamma ML .299(.101)[.101] 1.005(.093)[.093] —1.004(.093)[.093] .0324
n = 490
GLS1 .297(.056)[.056]  .996(.063)[.063] —1.003(.061)[.061] .0075
GLS2 .297(.055)[.055]  .996(.063)[.063] —1.003(.061)[.061] .0419
BGMM :307(.055)[.056]  .998(.049)[.049] —1.001(.049)[.049] .1630
Gaussian QML .297(.055)[.055]  .996(.063)[.063] —1.003(.061)[.061] .4939
Gamma ML .300(.034)[.034]  1.000(.029)[.029] —0.999(.030)[.030] .0895

Mean(SD)[RMSE]
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Table 2: The MRSAR model with i.i.d. disturbances (p, = 0)

Ao =0.3 Bi0=1.0 Bog =—1.0 Time
n =98 Normal (seconds)
2SLS 313(.176)[.177]  .989(.146)[.147]  —.990(.149)[.149] .0002
B2SLS 270(.214)[.216]  .990(.147)[.148]  —.990(.149)[.149] .0025
BGMM 320(.117)[.119]  .987(.150)[.151]  —.991(.154)[.155] .0188
Gaussian ML .287(.107)[.108]  .996(.145)[.145]  —.996(.147)[.147] .0426
n = 490
2SLS 206(.080)[.080]  .998(.064)[.064]  —.996(.064)[.064] .0022
B2SLS .290(.080)[.081]  .998(.064)[.064]  —.996(.064)[.064] .0399
BGMM 301(.047)[.047)  .997(.065)[.065]  —.994(.064)[.065] .1804
Gaussian ML .294(.046)[.046]  .999(.064)[.064]  —.997(.063)[.063] .2009
n =98 Gamma
2SLS 321(.172)[.173]  .995(.145)[.145] —1.002(.146)[.146] .0002
B2SLS 277(.198)[.199]  .996(.144)[.144] —1.002(.147)[.147] .0025
BGMM 319(.102)[.104]  .996(.114)[.114] —0.999(.115)[.115] .0194
Gaussian QML .290(.103)[.104]  1.002(.143)[.143] —1.008(.145)[.145] .0421
Gamma ML .301(.081)[.081] 1.001(.093)[.093] —1.002(.093)[.093] .0340
n = 490
2S8LS .303(.076)[.076]  .995(.064)[.064] —1.001(.062)[.063] .0022
B2SLS 297(.077)[.077)  .995(.064)[.064] —1.002(.063)[.063] .0400
BGMM 305(.041)[.041]  .997(.050)[.050] —1.000(.050)[.050] .1806
Gaussian QML .208(.045)[.045]  .996(.064)[.064] —1.003(.062)[.062] .2053
Gamma ML .299(.027)[.027]  1.000(.030)[.030] —1.000(.030)[.030] .0894

Mean(SD)[RMSE]
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Table 3: The MRSAR model with SAR disturbances

)\() =0.3 Po = 0.3 ﬁlO =1.0 620 = — Time
n =98 Normal (seconds)
G2SLS .345(.207)[.212]  .197(.240)[.261] .992(.147)[.147] —.990(.149)[.150] .0076
B2SLS .332(2.28)[2.28] .197(.240)[.261] .997(.285)[.285] —.997(.422)[.422] .0026
BGMM .243(.309)[.315]  .318(.324)[.324] .976(.161)[.163) —.974(.162)[.164] .0394
Gaussian ML 284(.206)[.206] .261(.241)[.244]  .990(.146)[.147]  —.988(.146)[.147] .1110
n =490
G2SLS .301(.094)[.094] .285(.109)[.110] .998(.063)[.063) —.996(.064)[.064] .0076
B2SLS .289(.094)[.095]  .285(.109)[.110] .997(.063)[.063) —.995(.064)[.064] .0382
BGMM .287(.098)[.099]  .306(.109)[.110] .997(.064)[.064] —.994(.064)[.065] .3311
Gaussian ML .291(.094)[.094]  .296(.107)[.107] .997(.063)[.063] —.995(.064)[.064] .5505
n = 490 Estimated model: the regression model with SAR disturbances
GLS1 — .538(.042)[.241] .950(.060)[.078] —.948(.060)[.080] .0074
GLS2 - .535(.041)[.239] .950(.060)[.078] —.948(.060)[.080] .0422
BGMM — .556(.043)[.260] .948(.061)[.080] —.946(.061)[.082] .1668
Gaussian ML - .545(.042)[.249] .949(.060)[.079] —.947(.060)[.080] .4792
n =490 Estimated model: the MRSAR model with i.i.d. disturbances
2SLS .300(.096)[.096] — .995(.065)[.066] —.994(.065)[.065] .0033
B2SLS .286(.099)[.100] - .996(.066)[.066] —.995(.065)[.065] .0406
BGMM .481(.042)[.186] — .975(.067)[.071] —.972(.065)[.071] .1737
Gaussian ML A471(.041)[.176) — .985(.064)[.066] —.983(.064)[.066] .2013
n =98 Gamma
G2SLS .350(.208)[0.214]  .194(.229)[.252] .996(.144)[0.144] —1.003(.146)[.146] .0074
B2SLS .259(.521)[0.522]  .194(.229)[.252] .993(.151)[0.151] —0.999(.165)[.165] .0024
BGMM .251(.295)[0.299]  .315(.301)[.301] .984(.130)[0.131] —0.986(.130)[.131] .0413
Gaussian QML .291(.205)[0.205] .258(.241)[.244] .993(.144)[0.144] —1.001(.146)[.146] .1107
Gamma ML .302(.169)[0.169] .271(.207)[.209] .996(.099)[0.099] —0.995(.105)[.105] .1030
n =490
G2SLS .309(.090)[.090] .280(.107)[.109] .995(.064)[.064] —1.002(.062)[.062] .0075
B2SLS .298(.090)[.090]  .280(.107)[.109] .995(.064)[.064] —1.002(.062)[.062] .0381
BGMM .299(.069)[.069]  .299(.087)[.087] .997(.050)[.050] —1.000(.049)[.049] .3353
Gaussian QML .299(.090)[.090] .291(.106)[.106] .995(.064)[.064] —1.001(.062)[.062] .5512
Gamma ML .299(.046)[.047]  .299(.061)[.061] .999(.031)[.031]  —0.999(.030)[.030] .2859
n = 490 Estimated model: the regression model with SAR disturbances
GLS1 - .539(.043)[.243] .946(.060)[.081] —.952(.058)[.075] .0096
GLS2 - .538(.042)[.241] .946(.060)[.081] —.953(.058)[.075] .0427
BGMM - .559(.043)[.262] .946(.048)[.072] —.949(.048)[.070]  .1656
Gaussian QML - .548(.042)[.252] .945(.060)[.082] —.951(.058)[.076]  .5083
Gamma ML — .559(.039)[.262] .946(.046)[.071) —.946(.046)[.071]  .0910
n = 490 Estimated model: the MRSAR model with i.i.d. disturbances
2SLS .308(.093)[.093] - .994(.066)[.066] —1.000(.064)[.064] .0034
B2SLS .294(.096)[.097) — .994(.066)[.066] —1.001(.064)[.064] .0407
BGMM .460(.040)[.165) — .979(.052)[.056] —0.982(.051)[.054] .1752
Gaussian QML .474(.041)[.179] — .983(.064)[.066] —0.990(.063)[.064] .2000
Gamma ML .438(.040)[.144] - .988(.045)[.047]  —0.988(.047)[.048] .1271

Mean(SD)[RMSE]
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